
Learning Generative Visual Models from Few Training Examples:
An Incremental Bayesian Approach Tested on 101 Object Categories.

Li Fei-Fei
California Institute of Technology

feifeili@vision.caltech.edu

Rob Fergus
Oxford University

fergus@robots.ox.ac.uk

Pietro Perona
California Institute of Technology

perona@vision.caltech.edu

Abstract— Current computational approaches to learning vi-
sual object categories require thousands of training images,
are slow, cannot learn in an incremental manner and cannot
incorporate prior information into the learning process. In
addition, no algorithm presented in the literature has been tested
on more than a handful of object categories. We present an
method for learning object categories from just a few training
images. It is quick and it uses prior information in a principled
way. We test it on a dataset composed of images of objects
belonging to 101 widely varied categories. Our proposed method
is based on making use of prior information, assembled from
(unrelated) object categories which were previously learnt. A
generative probabilistic model is used, which represents the shape
and appearance of a constellation of features belonging to the
object. The parameters of the model are learnt incrementally
in a Bayesian manner. Our incremental algorithm is compared
experimentally to an earlier batch Bayesian algorithm, as well
as to one based on maximum-likelihood. The incremental and
batch versions have comparable classification performance on
small training sets, but incremental learning is significantly
faster, making real-time learning feasible. Both Bayesian methods
outperform maximum likelihood on small training sets.

I. INTRODUCTION

One of the most exciting and difficult open problems of
machine vision is enabling a machine to recognize objects
and object categories in images. Significant progress has been
made on the issues of representation of objects [16], [17]
and object categories [2], [3], [5]–[8] with a broad agreement
for models that are composed of ‘parts’ (textured patches,
features) and ‘geometry’ (or mutual position of the parts).
Much work remains to be done on the issue of category
learning, i.e. estimating the model parameters that are to be
associated to a given category. Three difficulties face us at
the moment. First, a human operator must identify explicitly
each category to be learned, while it would be desirable
to let a machine identify automatically each category from
a broad collection of images. While Weber et al. [5] have
demonstrated encouraging results on identifying automatically
three categories in a limited image database, in order to reach
human performance one would like to see tens of thousands of
categories identified automatically from possibly millions of
images [1]. Second, most algorithms require the image of each
exemplar object to be geometrically normalized and aligned
with a prototype (e.g. clicking on eyes, nose and mouse corners
on face images). This is expensive and tedious; furthermore, it
is problematic when fiducial points are not readily identifiable
(can we find a natural alignment for images of octopus, of

cappuccino machines, of human bodies in different poses?).
Progress on this topic has been recently reported by Weber et
al. [5] who proposed and demonstrated a method for training
in clutter without supervision (see also the follow-up paper
by Fergus et al. [8] proposing an improved scale-invariant
algorithm). The third challenge has to do with the size of the
training set that is required: as many as 104 training examples
for some algorithms. This is not surprising: a well-known rule-
of-thumb says that the number of training examples has to be 5
to 10 times the number of object parameters – hence the large
training sets for models containing hundreds of parameters.
Yet, humans are often able to learn new categories from a
much smaller training set (how many cell-phones did we need
to see in order to learn to recognize one?). On this issue
Fei-Fei et al [4] recently proposed a Bayesian framework to
use priors derived from previously learned classes in order
to speed up learning of a new class. In a limited set of
experiments on four categories they showed that 1 to 3 training
examples are sufficient to learn a new category. Their method
is batch, in that the training examples need to be considered
simultaneously.

In this paper we explore the third issue further. First, we
argue that batch learning is an undesirable limitation. An
organism, or a machine, exploring the environment should
not be required to store explicitly the set of training images
that it has encountered so far. The current best estimate of a
given class should be a sufficient memory of past experience.
To this end we develop an incremental Bayesian algorithm
and we study the performance/memory trade-off. Second, we
collected a training set of 101 categories and we assess the new
incremental Bayesian algorithm against the batch Bayesian
algorithm of Fei-Fei et al. and against the maximum likelihood
method of Fergus et al. We wish to emphasize at this point
that previous work on object categories has been tested for the
most part on 1 or 2 categories [3] with the exception of Weber
et al [5] who tested on four and Fergus et al [8] who tested
on six. We consider the effort to collect and test on dataset
that is fifteen times larger one of the major contributions of
this paper.

In section II we outline the theoretical framework that is
used in this paper. The basic algorithm of our Bayesian ap-
proach is developed in [4]. We extend this into an incremental
method in which the algorithm is only given a single training
image at a time during the learning stage, a process much
more natural for living organisms. In section III we discuss in
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Fig. 1: Schematic Comparison between Maximum Likelihood algo-
rithm [5], [7], [8] and the Bayesian learning algorithm [4]. Note the
different number of training images, the different learning algorithm
and recognition criterion.

details the experimental setup, with emphasis on our dataset of
101 object categories. In section IV we present experimental
results on the 101 object categories. We conclude this paper
with a discussion in section V.

II. GENERATIVE MODEL: RECOGNITION AND LEARNING

The structure of our object categorization algorithm is based
on a Bayesian framework developed by [4]. We first briefly
summarize the recognition framework of the constellation
model and review the batch version of the Bayesian learning
procedure we have used. Although these details can be found
in [4], we reproduce them here for the sake of clarity. We
then extend the learning procedure to an incremental form. In
addition, in Fig.1 we schematically compare and contrast the
structure of the Bayesian algorithm in learning and recognition
with the Maximum Likelihood algorithm used by [5], [7], [8].

A. Recognition

We start with a learnt object class model and its corre-
sponding model distribution p(θ), where θ is a set of model
parameters for the distribution. We are then presented with a
new image and we must decide if it contains an instance of our
object class or not. In this query image we have identified N
interesting features with locations X , and appearances A. We
now make a Bayesian decision, R. For clarity, we explicitly
express training images through the detected feature locations
Xt and appearances At.

R =
p(Object|X ,A,Xt,At)

p(No Object|X ,A,Xt,At)
(1)

=
p(X ,A|Xt,At, Object) p(Object)

p(X ,A|Xt,At, No object) p(No object)
(2)

≈
R

p(X ,A|θ, Object)p(θ|Xt,At, Object) dθR
p(X ,A|θbg, No Object)p(θbg |Xt,At, No Object) dθbg

(3)

Note the ratio of p(Object)
p(No Object) in Eq.2 is usually set manually to

1, hence omitted in Eq.3.

1) The Constellation model: Our chosen representation is
based on the constellation model introduced by Burl [7] and
developed further by Weber et. al. [5] and Fergus et. al. [8].
A constellation model consists of a number of parts, each
encoding information on both the shape and appearance. The
appearance of each part is modeled and the shape of the object
is represented by the mutual position of the parts [8]. The
entire model is generative and probabilistic, so appearance and
shape are all modeled by probability density functions, which
are Gaussians. The model is best explained by first considering
recognition. We have learned a generative object model, with
P parts and a posterior distribution on the parameters θ:
p(θ|Xt,At) where Xt and At are the location and appearances
of interesting features found in the training data. Recall the
Bayesian decision rule in Eq.1 to 3. We assume that all non-
object images can also be modeled by a background with a
single set of parameters θbg which are fixed. The ratio of the
priors may be estimated from the training set or set manually
(usually to 1). Our decision then requires the calculation of
the ratio of the two likelihood functions. In order to do this,
the likelihoods may be factored as follows:

p(X ,A|θ) =
X
h∈H

p(X ,A, h|θ) =
X
h∈H

p(A|h, θ)| {z }
Appearance

p(X|h, θ)| {z }
Shape

(4)

Since our model only has P (typically 3-7) parts but there are
N (up to 100) features in the image, we introduce an indexing
variable h which we call a hypothesis which allocates each
image feature either to an object or to the background.

Appearance.Each feature’s appearance is represented as a
point in some appearance space. Each part p has a Gaussian
density (denoted by G) within this space, with mean and
precision parameters θA

p = {µA
p , ΓA

p } which is independent
of other parts’ densities.

Shape.The shape is represented by a joint Gaussian density
of the locations of features within a hypothesis. For each
hypothesis, the coordinates of all parts are subtracted off from
the left most part coordinates. Additionally, it is scale is used to
normalize the constellation. This enables our model to achieve
scale and translational invariance. The density has parameters
θX = {µX , ΓX}.

2) Model distribution: Let us consider a mixture model of
constellation models with Ω components. Each component ω
has a mixing coefficient πω; a mean of shape and appearance
µX

ω , µA
ω ; a precision matrix of shape and appearance ΓX

ω ,ΓA
ω .

The X and A superscripts denote shape and appearance
terms respectively. Collecting all mixture components and
their corresponding parameters together, we obtain an overall
parameter vector θ = {π, µX , µA,ΓX ,ΓA}. Assuming we
have now learnt the model distribution p(θ|Xt,At) from a set
of training data Xt and At, we define the model distribution
in the following way

p(θ|Xt,At) = p(π)
Y

ω

p(ΓX
ω )p(µX

ω |ΓX
ω )p(ΓA

ω )p(µA
ω |ΓA

ω ) (5)

where the mixing component is a symmetric Dirichlet: p(π) =
Dir(λωIΩ), the distribution over the shape precisions is
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a Wishart p(ΓX
ω ) = W(ΓX

ω |aX
ω , BX

ω ) and the distribution
over the shape mean conditioned on the precision matrix
is Normal: p(µX

ω |ΓX
ω ) = G(µX

ω |mX
ω , βX

ω ΓX
ω ). Together the

shape distribution p(µX
ω ,ΓX

ω ) is a Normal-Wishart density
[?], [9]. Note {λω, aω, Bω, mω, βω} are hyperparameters for
defining their corresponding distributions of model parameters.
Identical expressions apply to the appearance component in
Eq. 5.

3) Bayesian decision: Recall that for the query image
we wish to calculate the ratio of p(Object|X ,A,Xt,At)
and p(No object|X ,A,Xt,At). It is reasonable to assume
a fixed value for all model parameters when the object is
not present, hence the latter term may be calculated once
for all. For the former term, we use Bayes’s rule to ob-
tain the likelihood expression: p(X ,A|Xt,At, Object) which
expands to

∫
p(X ,A|θ) p(θ|Xt,At) dθ. Since the likelihood

p(X ,A|θ) contains Gaussian densities and the parameter pos-
terior, p(θ|Xt,At) is its conjugate density (a Normal-Wishart)
the integral has a closed form solution of a multivariate
Student’s T distribution (denoted by S):

p(X ,A|Xt,At, Object) =
ΩX

ω=1

|Hn|X

h=1

π̃ω S(Xh| gX
ω ,mX

ω , ΛX
ω ) S(Ah| gA

ω ,mA
ω , ΛA

ω ) (6)

gω = aω + 1 − d

Λω =
βω + 1

βωgω
Bω

π̃ω =
λω∑
ω′ λω′

Note d is the dimensionality defined in Eq. 17. If the ratio
of posteriors, R in Eq. 3, calculated using the likelihood
expression above exceeds a pre-defined threshold, then the
image is assumed to contain an occurrence of the learnt object
category.

B. Learning

The task in learning is to estimate the density p(θ|Xt,At).
This is done using the Variational Bayes procedure [9]–
[11]. It approximates the posterior distribution p(θ|X t,At) by
q(θ, ω, h). ω is the mixture component label and h is the
hypothesis. Using Bayes’ rule: q(θ, ω, h) ≈ p(θ|Xt,At) ∝
p(Xt,At|θ)p(θ). The likelihood terms use Gaussian densities
and by assuming priors of a conjugate form, in this case a
Normal-Wishart, our posterior q-function is also a Normal-
Wishart density. The variational Bayes procedure is a vari-
ant of EM which iteratively updates the hyper-parameters
and latent variables to monotonically reduces the Kullback-
Liebler distance between p(θ|Xt,At) and q(θ, ω, h). Using
this approach allows us to incorporate prior information in a
systematic way and is far more powerful that a maximum-
likelihood approach used in [8]. We first briefly give an
overview of the algorithm [4], based on [9], which is a batch
learning algorithm. Then we introduce the new incremental
version of the algorithm.

1) Batch Learning: There are two stages to learning: an
E-step where the responsibilities of the hidden variables are
calculated and an M-step where we update the hyperparame-
ters of q(θ, ω, h), Θ = {λ, m, β, a, B}. For each image, n
we calculate the responsibilities:

γ̃n
ω,h = π̃ω γ̃ω(Xn

h ) γ̃ω(An
h) (7)

using the update rules given in [9]. The hyperparameters are
updated from these responsibilities. This is done by computing
the sufficient statistics. While the update rules for the shape
components are shown, they are of the same form for the
appearance terms. The sufficient statistics, for mixture com-
ponent ω are calculated as follows::

π̄ω =
1
N

N∑

n=1

|Hn|∑

h=1

γn
ω,h and N̄ω = Nπ̄ω (8)

µ̄X
ω =

1
N̄ω

N∑

n=1

|Hn|∑

h=1

γn
ω,hX n

h and (9)

Σ̄
X
ω =

1
N̄ω

N∑

n=1

|Hn|∑

h=1

γn
ω,h(X n

h − µ̄X
ω )(X n

h − µ̄X
ω )T(10)

Note that to compute these, we need the responsibilities from
across all images. From these we can update the hyper-
parameters (update rules are in [9]).

2) Incremental learning: We now give an incremental ver-
sion of the update rules, based on Neal and Hinton’s adaptation
of conventional EM [15]. Let us assume that we have a model
with hyper-parameters Θ = {λ, m, β, a, B}, estimated using
M previous images (M ≥ 0) and we have N new images
(N ≥ 1) with which we wish to update the model. From
the M previous images, we have retained sufficient statistics
πe

ω, µe
ω,Σe

ω for each mixture component ω. We then compute
the responsibilities for the new images, i.e. γn

ω,h for n =
1 . . .N and from them, the sufficient statistics, π̄ω, µ̄ω, Σ̄ω

using eqn.’s 8 and 10. In the Incremental M-step we then
combine the sufficient statistics from these new images with
the existing set of sufficient statistics from the previous M
images. Then the overall sufficient statistics, π̂ω, µ̂ω, Σ̂ω are
computed:

π̂ω =
Mπe

ω + Nπ̄ω

M + N
(11)

µ̂ω =
Mµe

ω + N µ̄ω

M + N
(12)

Σ̂ω =
MΣe

ω + NΣ̄ω

M + N
(13)

From these we can then update the model hyper-parameters.
Note the existing sufficient statistics are not updated within the
update loop. When the model converges, the final value of the
sufficient statistics from the new images are combined with
the existing set, ready for the next update: π e

ω = π̂ω, µe
ω =

µ̂ω,Σe
ω = Σ̂ω. Initially M = 0, so πe

ω , µe
ω,Σe

ω drop from our
equations and our model hyper-parameters are set randomly
(within some sensible range).
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III. METHODS

A. 101 Object Categories

We test our Bayesian algorithms (Incremental and Batch)
using 101 assorted object categories. The names of 101
categories were generated by flipping through the pages of the
Webster Collegiate Dictionary [12], picking a subset of cate-
gories that were associated with a drawing. After we generated
the list of category names, we used Google Image Search
engine to collect as many images as possible for each category.
Two graduate students not associated with the experiment then
sorted through each category, mostly getting rid of irrelevant
images (e.g. a zebra-patterned shirt for the “zebra” category).
Fig.7 shows examples of both the 101 foreground object
categories as well as the background clutter category. Minimal
preprocessing was performed on the categories. Categories
such as motorbike, airplane, cannon, etc. where two mirror
image views were present, were manually flipped, so all
instances faced in the same direction. Additionally, categories
with a predominantly vertical structure were rotated to an
arbitrary angle, as the model parts are ordered by their x-
coordinate, so have trouble with vertical structures. One could
also avoid rotating the image by choosing the y-coordinate
as ordering reference. This rotation is used for the sake of
programming simplicity. At last, images were scaled roughly
to around 300 pixels wide.

B. Feature Detection

Feature points are found using the detector of Kadir and
Brady [13]. This method finds regions that are salient over
both location and scale. Gray-scale images are used as the
input. The most salient regions are clustered over location
and scale to give a reasonable number of features per image,
each with an associated scale. The coordinates of the center
of each feature give us X . Once the regions are identified,
they are cropped from the image and rescaled to the size of
a small (11 × 11) pixel patch. Each patch exists in a 121
dimensional space. We then reduce this dimensionality by
using PCA [8]. A fixed PCA basis, pre-calculated from the
background datasets, is used for this task, which gives us the
first 10 principal components from each patch. The principal
components from all patches and images form A. Note that
the same set of parameters were used for feature detection for
all 101 object categories. Figs. 4(a) & 5(a) show examples of
feature detection on some training images.

C. Prior and Initialization

One critical issue is the choice of priors for the Norm-
Wishart distributions. In this paper, learning is performed
using a single mixture component. The choice of prior is
itself a topic worth full investigation. In order to keep the
consistency and prove the concept, we use here a single prior
distribution for all 101 object categories. Since prior knowl-
edge should reflect some information of the real-world object
categories, we estimated this prior distribution using well
learned Maximum Likelihood (ML) models of faces, spotted
cats and airplanes in [8]. It is important to point out that the

idea of using prior information from unrelated categories was
proposed independently by Miller et al. [14]. The ML models
are simply averaged together for each parameter to obtain a
model distribution for the prior. Fig. 3(a-b) shows the prior
shape and appearance model for each category.

Initial conditions are chosen in exactly the same way as
[4]. Again, the same initialization is used for all 101 object
categories.

D. Experimental Setup for Each Category

Each experiment was carried out under identical conditions.
For each category dataset, N training images are drawn
randomly first. Then 50 testing images are randomly drawn
from the remaining images in the dataset. For some dataset,
less than 50 images are left after training images are drawn. In
this case we use all the remaining ones as testing images. We
then learn models using both Bayesian and ML approaches
and evaluate their performance on the test set. For evaluation
purposes, we also use 50 images from a background dataset
of assorted junk images from the Internet. For each category,
we vary N at 0, 1, 3, 6, 15, repeating the experiments 10 times
for each value (using a randomly chosen N training images
each time) to obtain a more robust estimate of performance.
When N = 0, we use the prior model alone to perform object
categorization without any training data. Only the Bayesian
algorithm is used in this case. In addition, when N = 1, ML
fails to converge, so we only show results for the Bayesian
methods in this case.

When evaluating the models, the decision is a simple ob-
ject present/absent one. Under these conditions, an algorithm
performing at random has a 50% performance rate. All perfor-
mance values are quoted as area under the receiver-operating
characteristic (ROC). ROC curve is obtained by testing the
model on 50 foreground test images and 50 background im-
ages. In all the experiments, the following parameters are used:
number of parts in model = 4; number of PCA dimensions for
each part appearance = 10; and average number of detections
of interest point for each image = 20. All parameters remain
the same for learning different categories of objects.

IV. EXPERIMENTAL RESULTS

Fig. 2 illustrates the recognition performance at Training
Number = 1, 3, 6, 15 for the different algorithms: Bayesian
Incremental, Bayesian Batch and Maximum Likelihood. The
performance of each method is compared with the perfor-
mance of the prior-model on the given category. Despite the
rudimentary prior, a strong performance gain is observed for
the majority of the 101 categories, even when only a few
training examples are used. With one training example, the
Bayesian method achieves an average performance of 71%,
with the best results being over 80%. At Training Number
= 3, Maximum Likelihood has a performance at chance while
both Bayesian methods achieve a performance near 75%. At
Training Number = 15 that the Maximum Likelihood catches
up the recognition performance with the Bayesian methods.
At Training Number = 15, the average Bayesian Incremental
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method is not as reliable as the Bayesian Batch method. In
general the incremental method is much more sensitive to the
quality of the training images and to the order in with they
are presented to the algorithm. Therefore it is more likely to
form suboptimal models.
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(d) Training = 15
1.   trilobite
2.   face
3.   pagoda
4.   tick
5.   inlineskate
6.   metronome
7.   accordion
8.   yinyang
9.   soccerball

10.  spotted cat
11.  nautilus
12.  grand-piano
13.  crayfish
14.  headphone
15.  hawksbill
16.  ferry
17.  cougar-face

18.  bass
19.  ketch
20.  lobster
21.  pyramid
22.  rooster
23.  laptop
24.  waterlilly
25.  wrench
26.  strawberry
27.  starfish
28.  ceilingfan
29.  seahorse
30.  stapler
31.  stop-sign
32.  zebra
33.  brontosaurus
34.  emu

35.  snoopy
36.  okapi
37.  schooner
38.  binocular
39.  motorbike
40.  hedgehog
41.  garfield
42.  airplane
43.  umbrella
44.  panda
45.  crocodile-head
46.  llama
47.  windsor-chair
48.  car-side
49.  pizza
50.  minaret
51.  dollarbill

52.  gerenuk
53.  sunflower
54.  rhino
55.  cougar-body
56.  crab
57.  ibis
58.  helicopter
59.  dalmatian
60.  scorpion
61.  revolver
62.  beaver
63.  saxophone
64.  kangaroo
65.  euphonium
66.  flamingo
67.  flamingo-head
68.  elephant

69.  cellphone
70.  gramophone
71.  bonsai
72.  lotus
73.  cannon
74.  wheel-chair
75.  dolphin
76.  stegosaurus
77.  brain
78.  menorah
79.  chandelier
80.  camera
81.  ant
82.  scissors
83.  butterfly
84.  wildcat
85.  crocodile

86.  barrel
87.  joshua-tree
88.  pigeon
89.  watch
90.  dragonfly
91.  mayfly
92.  cup
93.  ewer
94.  octopus
95.  platypus
96.  buddha
97.  chair
98.  anchor
99.  mandolin
100.  electric-guitar
101.  lamp

(e) Category list sorted by incremental perf. at Training Number = 15.

Fig. 2: (a)-(d) Performance comparison between ML, Bayesian Batch
and Bayesian Incremental methods for all 101 object categories
at Training Number = (1, 3, 6, 15). In each plot, a category has
three markers: Red-Circle represents Bayesian Incremental method,
Green-Plus Bayesian Batch method and Blue-Diamond Maximum
Likelihood method. For each panel, the x-axis indicates Bayesian
method categorization performance with only the prior model. Note
with one training image, the Bayesian Incremental method and Batch
method are exactly the same. The y-axis indicates categorization
performance for each of the three methods. There is no Maximum
Likelihood performance in the degenerate case of Training Number
= 1. Moreover, Bayesian Incremental method and Batch method are
also the same for Training Number = 1. (e) Category name list is
sorted according to the Bayesian Incremental method performance at
Training Number = 15.

While performance is a key measurement for recognition
algorithms, efficiency in training and learning are also im-
portant. One big advantage that we have gained from the
Bayesian Incremental method is its fast speed in training.
Fig.3(c) shows the comparison of average learning time across
all 101 categories between these three methods. All methods

show approximately linear increase in learning time as the
number of training images increases. The incremental method,
particularly, shows a very small slope. In our Matlab im-
plementation, it takes approximately 6 seconds per image to
train in Bayesian Incremental method, while the Batch and
Maximum Likelihood methods take 6 times as long.

In Figs.4 & 5 we show in details the results from the grand-
piano and cougar-face categories, both of which performed
well (ROC Areas 16% and 15% repspectively for Training
Number = 15). As the number of training examples increases,
we observe that the shape model is more defined and structured
with reducing variance. This is expected since the algorithm
should be more and more confident of what is to be learned.
Figs.4(c) & 5(c) shows examples of the part appearance that
are closest to the mean distribution of the appearance. Notice
that critical features such as keyboards for the piano and
eyes or whiskers for the cougar-face are successfully learned
by the algorithm. Three learning methods’ performances are
compared in Figs.4(d) & 5(d). The Bayesian methods clearly
show a big advantage over the ML method when training
number is small. Bayesian Incremental, however, shows more
greater performance fluctuations as compared to the Bayesian
Batch method. Finally, we show some classified test images,
using an incremental model trained from a single image.

It is also useful to look at the other end of the perfor-
mance spectrum - those categories that have low recognition
performance. We give some insights into the cause of the poor
performance.

Feature detection is a crucial step for both learning and
recognition. On both the crocodile and mayfly figures in Fig.6,
notice that some testing images marked “INCORRECT” have
few detection points on the target object itself. When feature
detection fails either in learning or recognition, it affects the
performance results greatly. Furthermore, Fig.6(a) shows that a
variety of viewpoints is present in each category. In this set of
experiments we have only used one mixture component, hence
only a single viewpoint can be accommodated. Our model is
also a simplified version Burl, Weber and Fergus’ constellation
model [5], [7], [8] as it ignores the possibility of occluded
parts.

A great source of improvement could potentially come
from prior model information. The prior model is currently
rather weak and improvements in this area would undoubtedly
improve the models performance. However, the performance
could be degraded if the model was to incorporate misleading
information - as illustrated in Fig6(b). Our choice of prior
for this paper is kept as simple as possible to facilitate the
experiments. We expect further exploration into this topic can
help improving recognition performances greatly.

V. SUMMARY AND DISCUSSION

We presented a Bayesian incremental algorithm for learning
generative models of object categories from a very limited
training set. Our work is an extension of Fei-Fei et al’s
Bayesian batch method [4]. We have tested both methods
using a prior derived from three unrelated categories, alongside
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Fig. 3: (a)-(b) Prior distribution for shape mean (µX ) and appearance mean (µA) for all the categories to be learned. Each prior’s
hyperparameters are estimated from models learned with maximum likelihood methods, using “the other” datasets [8]. Only the first three
PCA dimensions of the appearance priors are displayed. All four parts of the appearance begin with the same prior distribution for each
PCA dimension. (c) Average learning time for ML, Bayesian Batch and Bayesian Incremental methods over all 101 categories.
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Fig. 4: Results for the “grand-piano” category. Panel (a) shows examples of feature detection. Panel (b) shows the shape models learned at
Training Number = (1, 3, 6, 15). Similarly to Fig.3(a), the x-axis represents the x position, measured by pixels, and the y-axis represents the
y position, measured by pixels. Panel (c) shows the appearance patches for the model learned at Training Number = (1, 3, 6, 15). Panel (d)
shows the comparative results between ML, Bayesian Batch and Bayesian Incremental methods (the error bars show the variation over the
10 runs). Panel (e) shows recognition result for the incremental method at Training Number = 1. Pink dots indicate the center of detected
interest points.
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Fig. 5: Results for the “cougar face” category.
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(a) Crocodile (b) Mayfly

Fig. 6: Two categories with unsatisfactory performance. (a)Crocodile (ROC Area = 26%). (b) Mayfly. (ROC Area = 27%).
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a simplified version of Fergus et al.’s maximum likelihood
method, on a large dataset of 101 object categories .

First of all, it is possible to train complex models of object
categories with a handful of images. It is clear that Bayesian
methods allow category learning from small training sets. On
one, three and six training examples the maximum likelihood
method is unable to discriminate any category from images
containing random clutter. By contrast the Bayesian methods
achieve better than chance performance on 90higher than 80

Second, the desirable incremental learning feature leads to
much faster learning speed (Fig.3), but is paid with worse
recognition performance for larger training set sizes. We
conjecture that this is due to the fact that less information is
carried along by the incremental algorithm from one learning
epoch to the next, while the batch algorithm has all training
images available at the same time thus allowing, for example,
to test a larger number of hypotheses on how foreground and
clutter features should be assigned in each training image.

Third, the maximum likelihood method matches the perfor-
mance of the Bayesian methods when the training set reaches
size 15. This is surprising, given that the number of parameters
in each model is 50, and therefore a few hundred training
examples are in principle required by a maximum likelihood
method – one might have expected the Bayesian methods to be
bettered by ML only around 100 training examples. The most
likely reason for this result is that the prior that we employ is
too simple. Bayesian methods live and die by the quality of
the prior that is used. Our prior density is derived from only
three object categories. Given the variability of our training
set, it is realistic that we would need many more categories to
train a reasonable prior.

Fourth, the good news is that the problem of recognizing
automatically hundreds, perhaps thousands, of object cate-
gories does not belong to a hopelessly far future. We hope
that the success of our method on the large majority of 101
very diverse and challenging categories, despite the simplicity
of our implementation and the rudimentary prior we employ,
will encourage other vision researchers to test their algorithms
on larger and more diverse datasets.
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Google Background

Fig. 7: The 101 object categories and the background clutter category. Each category contains between 45 to 400 images. Two randomly chosen
samples are shown for each category. The categories were selected prior to the experimentation, collected by operators not associated with the
experiment, and no category was excluded from the experiments. The last row shows examples from the background dataset. This dataset is
obtained by collecting images through the Google image search engine (www.google.com). The keyword “things” is used to obtain hundreds
of random images. Note only gray-scale information is used in our system. Complete datasets can be found at http://vision.caltech.edu
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