Small codes and large image databases for recognition
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The Internet contains billions of images, freely available
online. Methods for efficiently searching this increditithr 3
resource are vital for a large number of applications. These

e -
include object recognition [2], computer graphics [11, 27] & m ‘ a m
personal photo collections, online image search tools. o ' e
In this paper, our goal is to develop efficient imageﬁm _LF ! m.
search and scene matching techniques that are not on§ L)
fast, but also require very little memory, enabling theieus $ -
on standard hardware or even on handheld devices. Ol{% - i) iy
approach USes recently.develop.ed machine leaming teCh'Figure 1. Short binary codes might be enough for recognifidris
niques to convert the Gist descriptor (a real valued vector figre shows images reconstructed using an increasing muofibe
that describes orientation energies at different scaled an pits and a compression algorithm similar to JPEG. The number
orientations within an image) to a compact binary code, on the left represents the number of bits used to compress eac
with a few hundredits per image. Using our scheme, it image. Reconstruction is done by adding a sparsity priontaye
is possible to perform real-time searches with milliongifro  derivatives, which reduces typical JPEG artifacts. Manpdes
the Internet using a single large PC and obtain recognition are recognizable when compressed to have around 256-1824 bi
results comparable to the full descriptor. Using our codes )
on high quality labeled images from the LabelMe database Per of images.
gives surprisingly powerful recognition results using gien These ideas are common to many approaches in the con-
nearest neighbor techniques. tent based image retrieval (CBIR) community, although the
emphasis on really large datasets means that the chosen im-

Recent interest in object recognition has yielded a wide @ge representation is often relatively simple, e.g. cdr [
range of approaches to describing the contents of an im-wavelets [29] or crude segmentations [4]. The Cortina sys-
age_ One important app"cation for this technok)gy is the tem [22] demonstrates real-time retrieval from a 10 million
visual search of large collections of images, such as thosdMage collection, using a combination of texture and edge
on the Internet or on people’s home computers. Accord- histogram features. See Datta al. for a survey of such
ingly, a number of recognition papers have explored this methods [5].
area. Nister and Stewenius demonstrate the real-time spe- Our approach is based on binary codes for representing
cific object recognition using a database of 40,000 imagesimages and their neighborhood structure. Such codes have
[19]; Obdrzalek and Matas show sub-linear indexing time received limited attention in both the vision and CBIR com-
on the COIL dataset [20]. A common theme is the repre- munities. Ghoslet al.[7] use them to find duplicate images
sentation of the image as a collection of feature vectors andin a database. Binary codes have also been used to rep-
the use of efficient data structures to handle the large num-resent the color of an image [13, 18]. Landyeal. [14]




use color, texture and shape cues in a 32-bit vector to per-ing to learn compact binary codes that allow efficient re-
form retrieval on a 10,000 image dataset. These approachegrieval. Specifically we explore how the Gist descriptor][21
also use manually designed descriptors, which in view of can be reduced to a few hundred bits using a number of ap-
the tiny capacity of each code, is likely to be highly sub- proaches including boosting, locality sensitive hashind a
optimal particularly when the database is large, a scenarioHinton et al.’s restricted Boltzmann machine architecture
not investigated by any of these papers. [12]. We find that the learning approaches give superior
Unlike CBIR we seek to recognize the objects present performance compared to LSH and that using these codes
in a novel image, not just retrieve relevant images from a it is possible to query databases with millions of images
database. We therefore want a fast way of finding imagesin a fraction of a second. When the retrieved images are
that are likely to contain the same objects as our novel im- annotated with high quality labels, simple nearest-neighb
age. Using the LabelMe database we show that the Gisttechniques give surprisingly powerful recognition resuilt
descriptor, which represents orientation energy at dffier
scales and orientations, is useful for this task. Howeter,t 1. Global image representations

descriptor is too high dimensional to use for fast querying  Global image representations were developed in the
of Internet-sized databases. framework of image retrieval (finding images that aie-

We were inspired by the results of Salakhutdinov and ilar to an input image) [5] and scene recognition (classi-
Hinton [25] who train compact binary codes to performdoc- fying an image as being a beach scene, a street, a living-
ument retrieval. We believe binary codes are promising for room, etc.) [9, 21, 15]. The main characteristic of global
three reasons. First, as shown by results on image compresimage representations is that the scene is represented as a
sion (e.g. Figure 1) it is possible to represent images with whole, rather than splitting it into its constituent obgct
a very small number of bits and still maintain the informa- Such models correspond to the state of the art in scene
tion needed for recognition. Second, scaling up to Internet recognition and context-based object recognition. Global
size databases requires doing the calculations in memory —image representations are based on computing statistics of
desktop hard-drives are simply too slow. Fitting hundrefds o low level features (oriented edges, vector quantized image
millions of images into a few Gigabytes of memory means patches, etc.) over fixed image regions or over large image
we have a budget of very few bytes per image. Third, as segments [4].

demonstrated convincingly in [25], short binary codes al- In this paper we will use the scene representation pro-
low very fast querying in standard hardware, either using posed in [21] and we use the code available online. The
hash tables or efficient bit-count operations. image is first decomposed by a bank of multiscale oriented

Perhaps the state-of-the-art method to obtain compact bifilters (tuned to 8 orientations and 4 scales). Then, the
nary descriptors for querying a large database is Locality output magnitude of each filter is averaged over 16 non-
Sensitive Hashing (LSH), which finds nearest neighbors of overlapping windows arranged ontax 4 grid. The result-
points lying in a high dimensional Euclidean space in con- ing image representation isiax 8 x 16 = 512 dimensional
stant time. LSH does this by computing a hash function vector. For smaller images (332 pixels), we use 3 scales,
for a point by rounding a number of random projections of resulting in3 x 8 x 16 = 384 dimensions. This representa-
that pointintoR"'. Thus each random projection contributes tion can be thought of as using a single SIFT feature [17] to
a few bits (depending on the rounding function) to the de- describe the entire image. Other techniques involve count-
scriptor of a point. Andoni and Indyk show that with high ingthe number of occurrences of vector quantized SIFT fea-
probability, points that are close iR™ will have similar tures [3, 15] and textons.
hash functions, and use this fact to efficiently find approx-  Despite the simplicity of the representation, and the fact
imate nearest neighbors. LSH has been used successfullyhat they represent the full image rather than each object
in a number of vision applications [26]. An alternative ap- separately, these methods perform surprisingly well amd ca
proach is to use kd-trees [16, 17] although LSH has beenprovide an initial guess of the scene identity, the objects
reported to work better in high dimensions [1]. present in the image and their spatial configuration. In this

Despite the success of LSH, it is important to realize that paper we will use global representation as a way of building
the theoretical guarantees are asymptotic - as the numbevery compact and efficient codes.
of random projections grows. In our experience, when the : ;
number of bits is fixed and relatively small, LSH can per- 2. Learning binary codes
form quite poorly. The performance increases with more  |n this section we describe two learning approaches that
bits but given our desire to scale up to millions of images, generate binary codes. In the next section we will evalu-
it would be desirable to learn a compact code, rather thanate these approaches in the framework of recognition and
waiting for it to emerge from random projections. segmentation. Our goal is to identify what is the minimal

In this paper, we leverage recentresults in machine learn-number of bits that we need to encode an image so that the



nearest neighbor defined using a Hamming distance is also As we want the final metric to be a Hamming distance,

a semantically similar image. we restrict the class of weak learners so that all the weights
We consider the following learning problem - given a are the same for all the featureg = « (the values of3,
database of image§r;} and a distance functio®(i, ) do not need to be constrained as they only contribute to final

we seek a binary feature vectgr = f(x;) that preserves  distance as a constant offset, independent of the input pair
the nearest neighbor relationships using a Hamming dis-This small modification is important as it allows for very
tance. Formally, for a point;, denoted byNiqo(z;) the efficient techniques for computing distances on very large
indices of the 100 nearest neighborsmfaccording to the  datasets. The parametehas an effect in the generalization
distance functionD(4, ). Similarly, defineN1oo(y;) the of the final function. For our experiments, we set= 0.1.
set of indices of the 100 descriptoys that are closest to By using a larger value a& (closer to 1), the algorithm is
y; in terms of Hamming distance. Ideally, we would like only able to learn distances when very short codes are used
Nioo(x;) = Nigo(y;) for all examples in our training set. (around 30 bits) and it starts over-fitting after that.

The two learning approaches are Boosting (introduced Once the learning stage is finished, every image can be
to this context by Shaknarovich and Darell [26]) and Re- compressed into M bits, where each bit is computed as
stricted Boltzmann Machines (RBMs) introduced by Hinton k., (z;) = elz; > T,. The algorithm is simple to code,

and colleagues [12]. relatively fast to train, and it provides results compesti
with more complex approaches as we will discuss in the
2.1. BoostSSC next section. For our experiments, the vectoyscontain

the Gist descriptors. For training, we use 150,000 training

Shaknarovich and Darrell [26] introduced Boosting sim- pairs 80% being negative examples).

ilarity sensitive coding (BoostSSC) to learn an embedding
of the original input space into a new space i_n which _dis- 2.2 Restricted Boltzmann M achines
tances between images can be computed using a weighted
hamming distance. In this section we describe the algorithm ~ The second algorithm is based on the dimensionality
with some modifications so that it can be used with a Ham- reduction framework of Salakhutdinov and Hinton [12],
ming distance. which uses multiple layers of restricted Boltzmann ma-
In their approach, each image is represented by a binarychines (RBMs). We first give a brief overview of RBM's,
vector with M bitsy; = [h1(z;), ha(2i), ..., har(z:)], SO before describing how we apply them to our problem.
that the distance between two images is given by a weighted An RBM models an ensemble of binary vectors with a
Hamming distancé (i, j) = Zﬁ L (i) = ho(25)]. network of stochastic binary units arranged in two layers,
The weightsy; and the functions,, (z;) that map the input ~ One visible, one hidden. Unite in the visible layers are
vectorz; into binary features are learned using Boosting. ~ connected via a set of symmetric weightsto unitsh in
For the learning stage, positive examples are pairs of im- the hidden layer. The joint configuration of visible and hid-
agesr;, z; so thatr; is one of the N nearest neighborsiof den units has an energy:

j € N(x). Negat|ve examples are pairs of images that are F(v,h) Z biv; — Z bjhj—Zvihiwij Q)
not neighbors. In our implementation we use GentIeBoost icvisible jehidden ij
with regression stumps to minimize the exponential loss. In wherewv; andh; are the binary states of visible and hidden
BoostSSC, each regression stump has the form: unitsi andj. w;; are the weights anél; andb; are bias
terms, also model parameters. Using this energy function, a
fal@i, ;) = an [(ef 2 > Ty) = (efz; > T,)] + B probability can be assigned to a binary vector at the visible
) ) units: _E(v.h)
At each iteratiomn we select the parameters gf, the re- Z )
gression coefficients\,, 5,,), the stump parameters (where Z e~ B(ug)
ex is a unit vector, so that’« returns thekth componentof  RpwMs lack connectlons between units within a layer, hence
a, andT, is a threshold), to minimize the square loss: the conditional distributiong(h|v) andp(v|h) have a con-
venient form, being products of Bernoulli distributions:
Zw (2 — folzk, J)) p(hy =1lv) = U(bj+zwijvi)
Where K is the number of training pairs;, is the neigh- ploi=1h) = o(bi+ Zwijhj) 3)
borhood label £, = 1 if the two images are neigh- /
bors andz; = —1 otherwise), andw;, is the weight  whereo(z) = 1/(1 + ¢~), the logistic function. Using
for each training pair at iteratiom given by w® = Eqn. 3, parameters;;,b;,b; can be updated via a con-

exp(—zk Z;‘:—f fe(ak, x;?)). trastive divergence sampling scheme (see [12] for details)
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Figure 2. Each row shows the input image and the 12 nearegtlais using, a) ground truth distance using the histograinabjects

present on each image (see text), b) L2 distance using RGBwat) L2 distance using Gist descriptors, d) Gist featcoespressed to 8
bits using an RBM and Hamming distance, e) 16 bits RBM and Hig2RBM.

This ensures that the training samples have a lower energytrastive divergence, the activation probabilities (givien
than nearby hallucinations, samples generated synthigtica Eqn. 3) of the hidden layer are fixed and used as data for the
to act as negative examples. layer above — the hidden units becoming the visible ones for
Recently, Hinton and colleagues have demonstratedthe nextlayer up, and so on up to the top of the network.
methods for stacking RBMs into multiple layers, creating  In fine-tuning, we make all the units deterministic, re-
“deep” networks which can capture high order correlations taining the weights and biases from pre-training and per-
between the visible units at the bottom layer of the network. form gradient descent on them using back-propagation. Our
By choosing an architecture that progressively reduces thechosen objective function is Neighborhood Components
number of units in each layer, a high dimensional binary in- Analysis (NCA) [8, 24]. This attempts to preserve the se-
put vector can be mapped to a far smaller binary vector atmantic neighborhood structure by maximizing the number
the output. Thus each bit at the output maps through multi- of neighbors around each query that have the same class la-
ple layers of non-linearities to model the complicated sub- bels. Givenk labeled training casexf, ¢*), we define the
space of the input data. Since the Gist descriptor values argorobability that point: is assigned the class of poihtis
not binary but real numbers, the first layer of visible units px- The objectivéDnca attempts to maximize the expected
are modified to have a Gaussian distribution number of correctly classified points on the training data:
The deep network is trained into two stages: first, an %
un;uperwseqare-t_ramlng phas_e wh|gh sets the network Onea = Z Z Dhiy PEL =
weights to approximately the right neighborhood; second, a
fine-tuningphase where the network has its weights moved
to the local optimum by back-propagation on labeled data. Where f(x|W) is the projection of the data point by the
In pre-training, the network is trained from the visible Multi-layered network with paramete§’. This function
input layer up to the output layer in a greedy fashion. Once ¢an be minimized by taking derivatives Oinca with re-

the parameters of the first layer have converged using con-SPect tolV” and using conjugate gradient descent.
Our chosen RBM architecture for experiments used four

Lin Eqn. 3,p(v; = z|h) is modified to be a Gaussian with a mean !ayers of hic_iden gnits, haVing sizes 512-512-786A be-
determined by the hidden units, see [24]. ing the desired size of the final code. However, for 8 and
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032 - How many bits do we need to representimages? In these
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g 32-LSH ) o goal is to find in this dataset images that are semantically
H g;:gg:ﬂsting o s boosting similar. We use two datasets, one of 22,000 from LabelMe
16384-gist 005 Tesegist [23] and another of 12.9 million web images from [28].
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Figure 3. For a fixed number of true neighbors (= 50), we 3.1. LabelMeretrieval

plot the percentage of true nearest neighbors that arevettias

a function of the total number of images retrievetl True neigh- In order to train the similarity measures we need to de-
bors are defined in terms of object label histograms. fine what ground truth semantic similarity is. Our definition
of semantic distance between two images is based on the
histogram of object labels in the two images. For this we
use the spatial pyramid matching [10, 15] over object la-
bels. The spatial pyramid matching uses the histogram of
object labels over image regions of different sizes, and the

distance between images is computed using histogram in-

16-bit codes, we seV=32 and added a fifth layer of 8 or tersection. This results in a simple similarity measure tha
16 units respectively. The input to the model was a 384 takes into account the objects present in the image as well
or 512-dimensional Gist vector for the 12.9 million image @ their spatial organization: two images that have the same
dataset and the LabelMe dataset respectively. The modePPiect labels in similar spatial locations are rated aseslos
has a large number of parameters, for example in the casdhan two images with the same objects but in different spa-
N=32, there are 663,552 (548512+256512+25632) tlgl Iocatlon_s, and this is rated closer than two images with
weights alone. Correspondingly, pre-training used Gistve different object classes.
tors from 70,000 images, 20,000 from the LabelMe training  As the LabelMe dataset contains many different labels
set, 50,000 from PeekaBoom images describing the same objects, we collapsed the annotations
using synonyms sets [23]. For instance, we group under
the label “person”, all the objects labeled as “pedestrian”

“human”, “woman”, “man”, etc.

For back-propagation, in the case of LabelMe, we used _ ) ) _
20 batches of 10001000 neighborhood regions, taking se- F|.g. 2 shows rep_resentaﬂv_e retrieval r_esults and Fig. 3
mantic labels from the LabelMe training data. Within each Provides a quantitative analysis of the retrieval perfamoea
neighborhood region, the mean number of neighbors with ©0 2000 test images. Fig. 3(a) displays the percentage
the same class label was 100. For the Web images dataseP! the first true 50 nearest neighbors that are included in
we computed the neighborhood labels to mimic the struc- the retrleyed set as a function of the number Of_ the im-
ture of Gist vectors, taking the 50 neighbors to have the ages retrievedX/). F_|g. 3(b) shows a section of Fig. 3(a)
same class label, with 100 batches of 500x500 neighbor-or M = 500. The figures compare LSH, BoostSSC and
hood being used. For each batch, three iterations of con-RBMS. Fig. 3(b) shows the effect of increasing the number
jugate gradient descent were performed, and a total of 2001‘ bits. Top performance is reached with around 30 bits for

epochs of training were used. The activation probabilities RBMS’_ with the othe_r methods requiring more bits. HOW’
of the top hidden layer were binarized using a threshold set&Ver given enough bits, all the approaches converge to sim-
at the median value of each bit over the training data. llar retrieval performance.

percentage of true 50 neightbors within the first M:

;
M
a)

2Further pre-training details: The Gist vectors were noineal to be

In testi the Gist d iot ted f h zero mean, unit mean variance and split into 700 batchezefl€l0. The
ntestng, the Gist descriptors are computed for ach g layer of the RBM, having Gaussian visible units, wasnied more

query image and normalized in the same manner as thegently than the others using 200 epochs of stochastic gradéscent with

training data. In contrast to the training, evaluation of an a learning rate of 0.001, weight decay of 0.00002 and mometL0.9.

RBM network is very fast (see Section 3.3 for timings) All other layers were trained with a learning rate of 0.1,ngs50 epochs,

th tivati babilities bei t d the nat ' other parameters being identical. The code was adaptedtfranaccom-
e activation probabilities being propagated up the NEtWO  panying [12),

and binarized at the top layer, giving &ftbit binary code.



- N ‘ ' ‘ Ton Dataset LabelMe Web
%os 256bits ] 2o #images 2x 10 1.29x10°
v : 128bi 8 i Gist vector dim. 512 384
fos 64bits 15, Method Time (s) | Time (s)
g os 30bits go #30hbits Spill tree - Gist vector 1.05 -
§§i ] : 128bits Brute force - Gist vector 0.38 -

o <o ﬁ Brute force - 30 bit binary || 4.3x10~* 0.146

° 5ai0 00 TS 00 S 0 Ksooo o0 Z0b00 ‘miﬁffiu{a. 232300;500 0 " - 30 bit binary, M/T 2.7x 1072 0.074
Figure 4. Comparison of retrieval results on the Web datdse9 Br,l,Jte forcg i 2.56 bit binary 1.4x 10,4 0.75

S ; : . . - 256 bit binary, M/T 4.7x10 0.23
Million images) using different RBM encodings. The retaéper- Hashing - 30 bit binary 6x10°° 610"
formance increases with the number of bits, but even for 266 b

we need to look at 4,000 images to find 25 of the 50 nearest heigh
bors obtained using Gist. Nevertheless, the performarfee st-

ter than LSH (right) which requires more than 50,000 images t
retrieve 25 of the 50 nearest neighbors.

Table 1. Timings for different methods of finding the 5 neares
neighbors to query vectors from the LabelMe dataset (2nahen)

and the web images dataset (3rd column). Rows 2 and 3 detail th
size of the dataset and the dimensionality of Gist vectorsing)
3.2. Web image dataset retrieval the standard Gist descriptor to represent each image sésigiow

. . matching since it must be performed in a high dimensionatspa
As we increase the size of the dataset, we expect thalgficient methods such as spill-trees offer no advantage lnete

longer codes will be required in order to find the nearest force in such settings. Note that for the web images datiset,
neighbors to one image. Here, we learn compact binaryraw Gist vectors cannot fitinto memory so timings cannot be-co
codes on a dataset of 12.9 million images from the web [28]. puted. By contrast, our binary codes can be matched quigkly b
As we lack ground truth for semantic similarity in this brute force search. Using multi-threading (M/T) on a quacec
dataset, in these experiments we have trained the RBM taProcessor offers significant performance gains. We alsathis
reproduce the same neighborhood as the original Gist de-fiming of our 30-bit hashing scheme, whose run time is indepe
scriptors. Fig. 4 shows the overlap between the neighborsdent of the database size, being approximatefytites faster that
obtained with Gist and the neighbors obtained by comput- matching in the original Gist descriptor space.
ing Hamming distance using different bit length codes with image to find the closest 5 neighbors to a query point in
RBMs and LSH. F|g 5 shows examp|es of input images both the LabelMe and Web images dataset using a Variety
and the 12 nearest neighbors using different code lengthsof methods and input representaticns
There is a significant improvement in the semantic similar- ~ Note that kd-trees cannot be applied to the Web dataset
ity of the neighbor images as we move from 30 bits to 256 due to prohibitive memory requirements and even when

bits per image. they can be applied (for the LabelMe dataset), they are
) . much slower than exhaustive search on the compact bit rep-
3.3. Retrieval speed evaluation resentation. Even for 12 million images, we can find exact

We used two different algorithms for fast retrieval us- nearest neighbors in Hamming space in a fraction of a sec-
ing the compact binary representation. The first is based®nd on a fast PC.
on hashing. The compact binary descriptor for each image3 4. Short Binary Codes for Recognition
becomes its hash key. Given a query descriptor, we enu- ) o S
merate all hash keys having up Bbits different from the From our previous definition of semantic similarity, two

query. Any hash entries found are returned as neighborsmages are semantically similar if their segmentations and
under our Hamming distance metric. Multiple images hay- ©Piectlabels are exchangeable. If the retrieval is suskss

ing the same hash key are stored in a linked list. The draw-the outputwill be an object label for every pixelin the input
back to this scheme is the large memory requirements sincdMage- For this to work, we need a large database of anno-
an N-bit code requires a hash table of siz8. Giventhe tatedimages so that the database covers most object config-

memory capacity of current PC’s, this translates to a practi urations. In the first set of these experiments we used a large
cal maximum of aroundv=30. collection oflabeledimages from the LabelMe dataset. In

For codes longer than 30 bits, we use exhaustive searcifhat database, the set of street scenes is representext parti
— for each query we calculate the Hamming distance to all Ularly well. For each such image users have labeled pixels
images in the database. This would seem prohibitively slow @S Pelonging to different objects like cars, roads, treg, sk

for millions of images, but the Hamming distance can be Pedestrians, etc.

calculated very quickly — it requires an xor followed by a  Figure 6 shows some labeling results. For each test im-
bit-count operation. age we select the 50 nearest neighbors, then for each pixel

We compar_ed our approach to kd-trees, a _Standard SFor the kd-tree, we used a variant known as a spill-tree,gusote
method for quick matching. Table 1 shows the time per from [16].
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Figure 5. 12 nearest neighbors from a database of 12,900@§es. As the number of bits increases the retrieved imaigesf similar
visual quality as the Gist descriptor.
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a)
. . . . ¥ binary codes (using average precision), relative to fulbtGie-
Figure 7. Pixel labeling experiment. a) Performance as ation scriptor

of confidence (the agreement in votes provided by the retdev

images). Each bin contain ¥0of the images from the test set. a confidence score as to the presence/absence of each ob-
Note that for 205 of the images, arount)% of the pixels are cor- P

rectly labeled. b) Average percentage of pixels correetheled as ject class in the image. Fig. 8("?1) shpws the recall-preaisio
a function of the number of bits used for each code. curve for the person class, while Fig. 8(b) shows the rela-
tive performance codes for all 5 classes to the original Gist

we assign the object label that has more votes at that pixeldescriptor. This figure shows that in a recognition task, for

location. The final performance corresponds to the percent-such a large dataset, we need more than 30 bits. Around

age of pixels correctly labeled. Fig. 7 summarizes the re- 256 bits, performances are comparable to those achieved

sults on 2000 test images. It is important to note that the With the uncompressed Gist descriptor.

performances are b_ognde_d by th_e dataset. If one image doea_ Discussion

not have another similar image in the dataset, then we can

not provide a segmentation. The black line in Fig. 7(a),(b)  One of the lessons of modern search engines is that even

represents the maximal performance of the labeling taskvery simple algorithms can give remarkable performances

achieved when we use the true neighbors. On average, 68 by utilizing data on an Internet scale. It is therefore very

of the pixels are correctly labeled. tempting to apply such an approach to object recognition.
We also performed a larger scale experiment on the WebBut any research in this direction immediately runs into

images dataset. 2000 test examples were selected at randogaunting problems of computation — imagine trying to

and manually labeled as being one of six classes (person, lodownload 80 million images, to say nothing of doing ex-

cation, plant, animal, device, junk). For each testimage, w periments with such a huge database. Efficient schemes of

found the closest 500 images in the 12.9 million and usedrepresentation and matching are needed.

the text label from the neighbors to vote on the class la-  In this paper we have presented such schemes. We have

bel, using Wordnet voting in the manner of [28]. This gave shown that using recent developments in machine learn-

T s s 7 s
test set binned by confidence
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Figure 6. This figure shows six example input images. For @éaege, we show the first 12 nearest neighbors when using drouth
semantic distance (see text), using 32bits RBM and theraidbist descriptor (which uses 16384 bits). Below each seeghbors
we show the LabelMe segmentations of each image. Those stafinas and their corresponding labels are used by a piig-voting
scheme to propose a segmentation and labeling of the inmgemThe resulting segmentation is shown below each inpageém The
number above the segmentation indicates the percentageets porrectly labeled. A more quantitative analysis iewh in Fig. 7.

ing, it is possible to learn compact binary codes for large
databases (as few as 256 bits per image). With these codes
a database of 12.9 million images takes up less than 600"
Megabytes of memory and can fit on a memory stick. Fur- g
thermore, we have shown that fast querying is possible
on this database on a standard PC. We plan to make the!®
database and the querying tools publically available and
hope this will help push object recognition research toward

the Internet-scale challenge. [11]
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