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Efficient and Robust Music ldentification with
Weighted Finite-State Transducers

Mehryar Mohri, Pedro Moreno, and Eugene Weinstein

Abstract—We present an approach to music identification our system is robust to several different types of noise and
based on weighted finite-state transducers and Gaussian ntixe  distortions.
models, inspired by techniques used in large-vocabulary g&ch  njych of the previous work on music identification (see [7]
recognition. Our modeling approach is based on learning a $e f ¢ is b d hashi ff d .
of elementary music sounds in a fully unsupervised manner. or a recent survey) is based on hashing of frequency pmam
While the space of possib|e music sound sequences is Veryteatures. The features used Val’y from WOI’k to WOI‘k. Haitsma
large, our method enables the construction of a compact and et al. [1] used hand-crafted features of energy differences
efficient representation for the song collection using fing-state petween Bark-scale cepstra. Ke et al. [2] used similar featu
transducers. but selected them automatically using boosting. Covell et

This paper gives a novel and substantially faster algorithrfor . .
the construction of factor transducers, the key representation of al. [5] furtherimproved on Ke by using wavelet features. &yas

song snippets supporting our music identification techniqe. The €t al. [6] used cepstral features in conjunction with Ldgali
complexity of our algorithm is linear with respect to the siz of Sensitive Hashing (LSH) for nearest-neighbor retrieval fo
the suffix automaton constructed. Our experiments further fiow  music identification and detection of cover songs and resnixe
that it helps speed up the construction of the weighted suffix y55hing approaches index the feature vectors computed over
automaton in our task by a factor of 17 with respect to our . . .
previous method using the intermediate steps of determinition all th_e songs in the database in a large hash.table. During
and minimization. We show that, using these techniqueS, a teSt-tIme, features Computed over the test aud|0 are Used to
large-scale music identification system can be constructetbr retrieve from the table.
a database of overl5 000 songs while achieving an identification Hashing-based approaches are marked by two main lim-
accuracy of 99.4% on undistorted test data, and performing jations, the requirement to match a fingerprint exactly or
robustly in the presence of noise and distortions. . : .
almost exactly and the need for a disambiguation step to
Index Terms—Music identification, content-based information reject many false positive matches. Batlle et al [3] propdse
;er;neval, factor automata, suffix automata, finite-state ransduc- move away from hashing approaches by suggesting a system
decoding MFCC features over the audio stream directly into a
sequence of audio events, as in speech recognition. Eagh son
|. INTRODUCTION is represented by a sequence of states in a hidden Markov
UTOMATIC identification of music has been the subjecinodel (HMM), where a state corresponds to an elementary
of several recent studies both in research [1]-[3] arfusic sound. However, the system looks only for atomic sound
industry [4]-[6]. Given a test recording of a few second$equences of a particular length, presumably to contratbea
music identification systems attempt to find the matching refomplexity.
erence recording in a large database of songs. This teajyolo In this work, we present an alternative approach to music
has numerous applications, including end-user contergchaglentification based on weighted finite-state transducats a
search, radio broadcast monitoring by recording labelg, affaussian mixture models, inspired by techniques usedgedar
copyrighted material detection by audio and video contew@cabulary speech recognition. The learning phase of our
providers such as Google YouTube. approach is based on an unsupervised training processngeld
In a practical setting, the test recording provided to a mugin inventory of music phoneme units similar to phonemes
identification system is usually limited in length to a fewin speech and leading to a unique sequence of music units
seconds. Hence, a music identification system is tasked wéitaracterizing each song. The representation and algudith
not only picking the song in the database that the recordiagpects of this approach are based on weighted finite-state
came from, but also aligning the test recording againstte@nsducers, more specificalfgctor transducerswhich can
particular position in the reference recoding. In additidre be used to give a compact representation of all song snippets
machinery used to record and/or transmit the query audfer a large database ovef 000 songs. This approach leads
such as a cell phone, is often of low quality. These challeng® a music identification system that achieves an identifinat
highlight the need for robust music identification systefitee  accuracy of99.4% on undistorted test data, and performs
approach described in this article has robustness as aateri@bustly in the presence of noise and distortions. It allows

consideration, and we demonstrate that the performanceusfto index music event sequences in an optimal and compact

way and, as we shall later demonstrate, with very rare false
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Fig. 1. Music Identification System Construction

automaton from an input acyclic weighted automaton. Thahallenges. In the remainder of this section, we addresethe
complexity of the algorithm is linear in the size of the outpuwo problems.
suffix automaton. The algorithm is also straightforward to
implement and is very efficient in practice. Our experiments: Acoustic Modeling
show that this algorithm helps speed up the construction ofOur acoustic modeling approach consists of jointly learn-
the weighted suffix automaton by a factor o7 over the ing an inventory of music phonemes and the sequence of
previous algorithms for constructing an index of a musicgsorphonemes best representing each song. Cepstral featwes ha
collection. recently been shown to be effective in the analysis of mu-
The remainder of this paper is organized as follows. Sesic [3], [9], [10], and in our work we also use mel-frequency
tion Il presents an overview of our music identification apeepstral coefficient (MFCC) features computed over the song
proach including our acoustic modeling technique and tleidio. We usel00ms windows over the feature stream, and
construction of the recognition transducer from a weightdetep the first twelve coefficients, the energy, and their dinst
factor automaton. This transducer is searched by our decodecond derivatives to produce38-dimensional feature vector.
to identify a test recording. In Section Ill, we presenttegam- 1) Model Initialization: A set of music phonemes is ini-
tial properties of our weighted suffix and factor automatod a tially created by clustering segments of pseudo-stationar
give a linear-time algorithm for its construction from apirt  audio signal in all the songs. The song audio is segmented
weighted automaton. Section IV reports our experimentl wiby sliding a window along the features and fitting a single
this algorithm demonstrating that it is substantially éaghan diagonal covariance Gaussian model to each window. We
our previous construction method. We also present empiric@mpute the symmetrized KL divergence between the regultin
results illustrating the robustness of our music identifica probability distributions of all adjacent window pairs. &h
system. symmetrized KL divergence between two Gaussiéhs ~
N(u1,%1) andGse ~ N(u2,X2) as used in this work is de-
1. MUSIC IDENTIEICATION WITH WEIGHTED fined as double the sum of the non-symmetric KL divergences,

FINITE-STATE TRANSDUCERS

In our music identification approach, each song is reprélsym(G1,G2) = 2(Dkr(G1]|G2) + Dkr(G2G1))
sented by a distinct sequence of music sounds, catiesic = tr (2221‘1) + tr (2122‘1)
phonemesn our work. Fig. | gives an architectural view of T (v—1 -1
our system. Our system learns the set of music phonemes (2 = ) (El T2 )(Mz —m)
automatically from training data using an unsupervise-alg —2m (1)
rithm. We also learn a unique sequence of music phonenveisere m is the dimensionality of the data. After smoothing
characterizing each song. The music identification probdfemthe KL divergence signal, we hypothesize segment bourslarie
then reduced to a mapping of music phoneme sequenceswttere the KL divergence between adjacent windows is large.
songs. As in a speech recognition system, this mapping carwe then apply a clustering algorithm to the song segments
be represented compactly with a finite-state transducer.  to produce one cluster for each bfdesired phonemes. Clus-

Specifically, a test audio snippet can be decoded intering is performed in two steps. First we apply hierarchica
a music phoneme sequence using the Viterbi beam seaothdivisive, clustering in which all data points (hypothesi
algorithm. The transducer associates a weight to eachngairsegments) are initially assigned to one cluster. The cihtro
of a phoneme sequence with a song, and the search progessan) of the cluster is then randomly perturbed in two
approximates the most likely path through the transdua@rgi opposite directions of maximum variance to make two new
the acoustic evidence [8]. clusters. Points in the old cluster are reassigned the child

However, our music song collection is not transcribed witbluster with higher likelihood [11]. This step ends when the
reference music phoneme sequences, and hence the mdsg&red number of clusters or music phonerésreached or
phoneme inventory has to be learned simultaneously with ttie number of points remaining is too small to accommodate
most likely transcription for each song. Also, the size & tha split. In a second step we apply ordin&arymeans clustering
transducer representing the entire song collection carulte g to refine the clusters until convergence is achieved. As 1 [1
large. In addition, the requirement to identify song snigpewe use maximum likelihood as an objective distance function
(as opposed to entire songs) introduces additional algoiit rather than the more common Euclidean distance.
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2) Model Training: The acoustic model for each of o#ér Time
phonemes is initially a single Gaussian parametrized vhigh t
sufficient statistics of a single segment cluster obtaimethé
above initialization procedure. However, a single Gaussa
unlikely to accurately represent a complex music sound. In
speech recognition, a common modeling technique is to use a
mixture of Gaussians to represent speech phoneme acaustics
the cepstral feature space. Following this approach, weemod
music phonemes with Gaussian mixture models.

Since there are no reference transcriptions of the song
database in terms of music sound units, we use an unsupér-2. Anillustration of changing transcription and aligent for a particular
vised learning approach similar to that of [3] in which theend, i he couse of e eratons of scowtc mosing e
model representing each music phoneme and the transaspti@mporal boundaries between music phonemes.
are inferred simultaneously. The training procedure repise
following two steps until convergence is achieved:

« Apply Viterbi decoding using the current model an@CCurred per song between the first and second round of
allowing any sequence of music phonemes (i.e., no 1afaining. Considering that the average transcription tlerig
guage model) to find a transcription for each song. around 1700 phonemes,_ this means that only arounq half

. Refine the model using the standard expectatioﬂt the phonemes remained the same. In our experiments,

maximization (EM) training algorithm using the currenfOnvergence was exhibited after around twenty iteratiéms.
transcriptions as reference. the last few iterations of training, the average edit distan

. o _ creases considerably to aroud@), meaning5/6 of the
This process is similar to the standard acoustic mo

traini laorithm h i i th i onemes remain the same from iteration to iteration. It is
raining aigorithm for speech recognition with the excepll ., iye that the average edit distance achieved at cgarere
that at each training iteration, a new transcription is wietd

f h . datab Thi is illustrat dgrowswith the phoneme inventory size, since with a verydarg
or each song in our database. This process 1S Hustrated i, o e inventory many phonemes will be statistically very

Fig. 2.‘ Not_e that since a f.u". Viterbi search is performed agtlose. In the other extreme, with only one music phoneme, the
each iteration, the transcription as well as the alignmént f‘?anscription would never change at all

phonemes to audio frames may change.

\4

1 I mp2| mp5 I mp86 I

2|mp2| mp43 I mp22| mp86 I

3|mp37| mp43 |mp22| mp86 |

A\ 4 i
Iteration

3) Measuring Convergenceln speech recognition, each 900 -
utterance is usually labeled with a ground truth transionpt ‘ 1%%1 Egngg —
that is fixed throughout the acoustic model training process 800 o5 E ONes —— 1
Convergence is typically evaluated by measuring the change ¢ 700 "\
in model likelihood from iteration to iteration. Since in ou e ‘
music identification scenario no such ground truth exisis, t % 600
evaluate the convergence of our algorithm we measure how A gog \3(
much the reference transcription changes with each iterati 5 \\\Q\

To compare transcriptions we use the edit distance, here W 400 N
defined as the minimal number of insertions, substitutions, 300 0—0o

and deletions of music phonemes required to transform one R hsasns

transcription into another. 2000 2 4 6 8 10 12 14 16 18 20
For a song seb let ¢;(s) be the transcription of song at Training Iteration

iterationi and EQa, b) the edit distance of sequencesand

b. At each iterationi, we compute the average edit distanc

Eig. 3. Average edit distance per song vs. training itematio

per song
1 .
C; = & > ED(ti(s), ti-1(s)) (2) B. Automata Overview
s€S Before we describe the transducer representation of our
as our convergence measure. music collection, we briefly review the automata concepts

Fig. 2 illustrates this situation by giving three exampleelevant to this work. The devices of interest in this paper
transcriptions assigned to the same song in consecutivesac@re weighted automata and transducers. For the purposes of
tic model training iterations. We have (s) =np2 nmp5 this paper, weighted automata and transducers are defined as
np86; ta(s) = Mp2 nmp43 np22 np86, andis(s) = mp37 follows.
nmp43 np22 np86. The edit distances computed here will be A weighted automatois specified by an alphabet, a finite
ED(#1(s),t2(s)) = 2 and EQt2(s), t3(s)) = 1. set of states, a finite set of transitions, an initial statseg

Fig. 3 illustrates how the edit distance changes durirgf final states, and a final weight function. Each transition
training for three phoneme inventory sizes. Note that, f@ssociates pairs of states with a symbol and a weight. A
example, with1024 phonemes almosi00 edits on average weighted finite-state transduces specified by input and
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mp37:BonJovi-LivingOnaPrayer

Fig. 4. Finite-state transducéiy, mapping each song to its identifier. migtands for music phoneme number

output alphabets, a finite set of states, a finite set of tiiansi C. Recognition Transducer
an initial state, a set of final states, and a final weight fionct  Gjven a set of songs, the music identification task is

Each transition associates pairs of states with an inpubsym g find the songs inS that contain a query song snippet
an output symbol, and a weight. In speech recognition, it is common to construct a weighted
finite-state transducer specifying the mapping of phoneme
Unweighted automata and transducers are obtained by siggquences to word sequences, and to decode test audio using
ply omitting the weights from their weighted counterpartshe Viterbi algorithm constrained by the transducer [8]rOu
Thus, a transition no longer associates a weight with a pajusic identification system operates in a similar fashiar, b
of states but only an input and/or output label. For exampiige final output of the decoding process is a single song
the transducef in Fig. 4 consists of seven states and sevéglentifier. Hence, the recognition transducer must map any
transitions, with0O the initial state andt the sole final state. sequence of music phonemes appearing in the transcriptions
The symbole represents the empty string. Input and outpdbund in the final iteration of training to the corresponding
labels are given asnput : out put . For example, one path song identifiers.
through7p associates the input sequenge37 nmp43 np22 Let ¥ denote the set of music phonemes and let the
nmp86 with the output labeBenFol dsFi ve- Bri ck. set of music phoneme sequences describimgsongs be
U={x1,...,xn},x; € 3" fori e {1,...,m}. A factor, or
The semiring over which an acceptor or transducer is desubstring of a sequence € ¥* is a sequence of consecutive
fined specifies the weight set used and the algebraic opesatiphonemes appearing in. Thus,y is a factor ofz iff there
for combining weights. One semiring used extensively iexistsu,v € ¥* such thatz = uyv. In our experiments,
speech and text processing is the tropical semiring. In the = 15455, || = 1024 and the average length of a
tropical semiring, the total path along a given path is fourttanscriptionz; is more than1700. Thus, in the worst case,
by adding the weights of the transitions composing the pathere can be as many a5 455 x 1700% ~ 45 x 10 factors.
If the weights are log-likelihoods, the total weight of atpatThe size of a naive prefix-tree-based representation vtbukl
is the total log-likelihood. The total weight assigned by thbe prohibitive, and hence we endeavor to represent the set of
automaton to a string is that of the minimum weight (max- factors with a much more compact factor automaton.
imum likelihood) path labeled with. For weighted automata
the weight is indicated asnput : out put / wei ght . If the
weight is omitted, then it is zero (in the tropical semiring)
For example, the acceptor in Fig. 6(b) has an accepting path
(that leading from the initial to a final state) labeled with22
np86 with a weight of0 and an accepting path labeled with @
np8 np22 np37 with a weight of1.

An automaton isdeterministicif at any state no two out-
going transitions share the same input label. A deterninist
automaton isminimal if there is no equivalent deterministicFig. 5. Deterministic and minimal unweighted factor acoet(A) for two
automaton with a smaller number of states. An automaton®&'9%:
epsilon-fredf it contains no epsilon transitions. An automaton
that is epsilon-free and deterministic can be processed inl) Factor Automaton ConstructionVe denote by'(A) the
a time-efficient manner. A minimal (deterministic) automaminimal deterministic automaton accepting the set of fiacto
ton is further optimally space-efficient. Accordingly, sucof a finite automatonA, that is the set of factors of the
an automaton is often referred to afficient.In fact, it is strings accepted byl. Similarly, we denote byS(A) the
optimal in the sense that the lookup time for a given stringinimal deterministic automaton accepting the set of sefix
in the automaton is linear in the size of the string. As af an automatonA. In the remainder of this section, we
result of the relatively recent introduction of new algbnits, outline a method for constructing a factor automaton of an
such as weighted determinization, minimization, and epsil automaton using the general automata algorithms for wetght
removal [12], [13], automata have become a compellirdgterminization and minimization. This method is desaibe
formalism used extensively in a number of fields, includingere to illustrate the concept of factor automata, as well as
speech, image, and language processing. to give the context of the methods for constructing factor
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automata previously employed both in the presentwork and fo ~ “shortcut.” This produces the weighted accepfQfA)

other tasks (e.g., [14]). However, the novel suffix automato (Fig. 6(a)).
algorithm given in Section 1lI-B enjoys a linear complexity 4) Apply epsilon removal, determinization, and minimiza-
and thus is now the preferred method for this construction. tion to produce the weighted accepfy(A) (Fig. 6(b)).

Let Ty be the transducer mapping phoneme sequences t@pserve in Fig. 6(b) that the numerical labélsand 1
song identifiers before determinization and minimizatiiy. are assigned to song labeBenFol dsFi ve- Bri ck and
4 showsT, when U is reduced to two short songs. Leét BonJovi - Li vi ngOnaPr ayer, respectively. Notice that,
be the acceptor obtained by omitting the output label§iof for example, the factonp22 np37 is correctly assigned a
Intuitively, to accept any factor ofl, we want to read strings weight of 1 by F,,(A). Observe finally that the information
in A, but starting and finishing at any pair of states linked byhout all the factors found in the original transdu@gr(Fig.
a sequence of transitions. We can accomplish this by ceatify and the songs they correspond to is preserved.
“shortcut” e-transitions from the initial state ofl to all other Fina”y, Fw (A) is transformed into a song recognition trans-
states, making all states final, and applyiagemoval, deter- qucerT by treating each output weight integer as a regular
minization, and minimization to yield an efficient acceptopytput symbol. Given a music phoneme sequence as input, the
This construction yields the factor automatéii4) (Fig. 5), associated song identifier is obtained by summing the ositput
but it does not allow us to output the song identifier assedlatyie|ded byT.
with each factor. We have empirically verified the feasibility of this constru

2) The Algorithmic Challenge of Factor Automat&on- tion, For 15 455 songs, the total number of transitions of the
structing a compact and efficient factor automaton thairetayansdqucerr” is about53.0M (million), only about2.1 times
the mapping between all possible music phoneme subggst of the minimal deterministic transduc representing
quences and the songs to which they correspond is n@{\- fyll-song transcriptions. In Section Ill, we presenteth
trivial. The following intuitive, but naive, solution uktrates regyits of a careful analysis of the size of factor autométa o
this point. All accepting paths of the automatdnafter the aytomata and give a matching linear-time algorithm forrthei
addition ofe-transitions, i.e. all factors, can be augmented withynstruction. These results suggest that our method cdm sca

matching song identifier is always obtained as an output when

traversing a set of input music phonemes.

However, this approach immediately fails because factors
with different output labels cannot be collapsed into thmea
path, and as a result upon determinization and minimizationAs discussed in Section IV-C, the above representation of
the resulting transducer is prohibitively larger thdn Thus, Music sequences with factor automata is empirically compac
the crucial question about the problem of constructing #ofac for our music collection of overl5000 songs. To ensure
transducer for our music identification task is how to cartr the scalability of our approach to a larger set of songs, we
an automaton where states and transitions can be shatéghed to derive a bound on the size of the factor automata
among paths belonging to different songs, while preservifj automata. One quality of the music phoneme sequences
the mappmg between phoneme sequences and songs. considered in this as well as in many other applications is

3) Using Weights to Represent Song Lab&sir approach that the sequences do not share long suffixes. This motivated
for avoiding the combinatorial explosion just mentioned igur analysis of the size of the factor automata with respect t
to use weights, instead of output labels, to represent sdifi§ length of the common suffixes in the original automaton,
identifiers. We create a compact weighted acceptor over figémalized with the following definition.

tropical semiring accepting the factors bf that associates Definition Let k be a positive integer. A finite automatehis

tr:ce to_tarl] w:ghtsz to each factgrx. During the application ;g uniquaf no two strings accepted byl share a suffix
of weighted determinization and minimization to CONSIBCt o jonch 1 4 is said to besuffix-uniquewhen it is k-suffix-

factor automaton, the song identifier is treated as a wegtit tunique withk — 1.

can be distributed along a path. The property that the sum of

the weights along the path labeled withs s, is preserved by

these operations. As a result, paths belonging to trartemtip A- Bounds on the Size of Suffix and Factor Automata
factors common to multiple songs can be collapsed and theThe following two propositions give novel and substaniall

1. ANALYSIS AND CONSTRUCTION OFSUFFIX AND
FACTOR AUTOMATA

mapping between factors to songs is preserved. improved bounds on the size of the suffix and factor automata
To construct the weighted factor automatBp(A) from Ty of A if A is suffix-unique and:-suffix-unique. The notation

we |Alg, |A|g and|A4] is used to refer to the number of states,
1) Drop the output labels to producke transitions, and states and transitions combined, resphct

2) Assign a numerical label to each song and augment eactthe automator.
song’s path inA with that label as a single weight (at The factor automato#’(A) can be obtained from the suffix
the transition leaving the initial state). automatonS(A) by making all states final and applying
3) Adde-transitions from the initial state to each other stateinimization. Thus|F'(A4)| < |S(A)|. The following bounds
weighted with the song identifier corresponding to thare stated as bounds on the size of the factor autonfagd),
path of the song to which the transition serves as kit they are actually proved as bounds on that of the suffix
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Fig. 6.
acceptorF,,(A) produced by optimizingFe (A).

(a) Factor acceptaFe(A) for two songs produced by adding weights and epsilon tiansitto A. (b) Deterministic and minimal weighted factor

automatonS(A), and apply of course also t6'(A) by the acyclic minimization algorithm [17], it suffices to desagib
size relationship just mentioned. The detailed proofs ef tta linear-time algorithm for the construction &f(A). It is

following result are given in [15], [16].

Proposition 1. Let A be a suffix-unique deterministic and
minimal automaton accepting strings of length more than
three. Then, the number of states of the suffix or fact%r.
automaton ofA is bounded as follows

possible however to give a similar direct linear-time aiton

for the construction off'(A). The algorithm given in this
section holds over the tropical semiring, which is used in
our music identification system; however, we conjecture tha
is algorithm can be generalized to arbitrary semiringse T

algorithm is a generalization of the unweighted algorithm

[F(Ale < 2[4l —3. ®)

Proposition 2. Let A be ak-suffix-unique automaton accept-

presented in [16].

ing strings of length more than three and tebe the number CREATE-SUFFIX-AUTOMATON(, f)

of strings accepted byl. Then, the following bound holds for
the suffix or factor automaton of:

|F(A)|g < 2|Ak|g + 2kn — 3.

1

(4)

where A is the part of the automaton ofi obtained by

removing the states and transitions of all suffixes of length
k.
7

Corollary 1. LetU = {x1,...,x,} be a set of strings of 8
length more than three and let be a prefix-tree representing 9
U. Then, the number of states of the suffix or factor automatatD
of the strings ofU is bounded as follows 11

abrowiN

6

12

F(U)lq < 2/4lq 2 ®) 13

14

B. Weighted Suffix Automaton Algorithm 15

In Section II-C we described a method for constructingl6
a compact factor transduc& mapping music phoneme se- 17
guences to song identifiers by addingransitions tod and ap- 18
plying weighted determinization and minimization; howeve

S — Qs — {I} > initial state
s[I] < UNDEFINED; [[I] — 0; W[i] < 0
while S # 0 do
p < HEAD(S)
for eacha such thaty4(p,a) # UNDEFINED do
if d4(p,a)# f then
Qs — Qs U {p}
lg] < U[p] +1
SUFFIX-NEXT(p, a, q)
ENQUEUE(S, ¢)
Qs — Qs U{f}
for each state € Q4 and a € ¥ s.t. 04(p,a) = f do
VFFIX-NEXT(p, a, f)
SUFFIX-FINAL (f)
for eachp € 'y do
SUFFIX-FINAL (g)
ps(I) « minyeqs Wp|
return S(A) = (Qs, I, Fs,ds)

we stated that a more efﬁCie_nt mthOd would be presented 7. aigorithm for the construction of the weighted suffitomaton of
shortly. Indeed, the bounds in section IlI-A guarantee onbysuffix-unique automaton.

a linear size increase from to S(A) and F(A). However,

the e-removal and determinization algorithms used in this Figs. 7-9 give the pseudocode of the algorithm for con-
method have in general at least a quadratic complexity structing the suffix automatao$i(A) = (Qs, I, Fs,ds,ws, ps)

the size of the input automaton. While the final result aff a suffix-unique automatodl = (Qa,I, Fa,d4,wa,pa),
the construction algorithm is guaranteed to be compact, tWbere is: Qs x ¥ — Qg denotes the partial transition

algorithms described thus far are not optimal.

function of S(A) and likewiseds: Q4 x X +— Q4 that of 4;

This section describes a new linear-time algorithm for thes: Qs x X — K andw,: Q4 x ¥ — K give the weight for
construction of the suffix automatoS(A) of a weighted each transition ir6(A) and A, respectively; angs: Fg — K
suffix-unique input automator, or similarly the factor au- andp4: Fa — K are the final weight functions fo¥(A) and

tomatonF'(A) of A. SinceF(A) can be obtained frons'(A)

A. f denotes the unique final state df with no outgoing

by making all states of(A) final and applying a linear-time transitions. Letz be the longest string it¥(A) reaching the
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SUFFIX-NEXT(p, a, q)

1

17
18
19
20
21
22
23
24
25

Fig. 8. Subroutine of EEATE-SUFFIX-AUTOMATON processing a transition

lg] < max(I[p] + 1,1[q])
Wlg] — W(p] + wa(p,a)
while p # I and d5(p,a) = UNDEFINED do
65(}7, a) —dq
ws(p,a) — Wlg] — Wp]
p < s[p]
if ds(p,a) = UNDEFINED then
0s(l,a) «—q
WS(L a) — W[q]
slg] <1
elseifl[p] + 1 = l[0s(p,a)] and ds(p,a) # q then
slq] < ds(p, a)
elser « ¢
if ds(p,a) # q then
r « copy of s(p, a) with same transitions
Qs — Qs U{r}
sla) —r
s[r] — s[0s(p, a)]
s[os(p,a)] —r
Wir] < Wip] + ws(p, a)
lr] < Ip]+1
while p # UNDEFINED and 1[ds(p, a)] > I[r] do
ds(p,a) — r
ws(p,a) — Wr] — Wip|
p < slp]

of A from statep to stateq labeled witha.

SUFFIX-FINAL (p)

~NOoO O~ WN PR

Fig. 9.

m — Wip]

if p € Fg then
p < slp]

while p # UNDEFINED and p ¢ Fs do
Fs — Fs U {p}
ps(p) < m — W]p|
p < slp]

Subroutine of EEATE-SUFFIX-AUTOMATON making all states on

the suffix chain ofp final.

statep andu € ¥* the longest suffix ofc reaching a distinct
state p’ in the automaton such that is the longest string
reachingp’. Thenyp' is referred to so theuffix link or suffix

pointer of p.
The algorithm given here generalizes our previous lineao ber (line 19) and that of- is set to bes[¢’] (18), andl[r]
time unweighted suffix automaton construction algorithi®] [1 set tol[p] + 1 (21). The transitions labeled with leaving the
to the case wherd is a weighted automaton. The unweightederated suffix pointers op are inspected and redirectedto
algorithm is in turn a generalization to an input suffix-umreg so long as they are non-solid transitions (lines 22-25).
automaton of the standard construction for a single inputThe subroutine 8FFIX-FINAL sets the finality and the final
string [18], [19]. Our presentation is similar to that of [18 weight of states inS(A). For any statep that is final in A,
The algorithm maintains two array§] andl[q] for each state p and all the states found by following the chain of suffix
q of Qs. s[q] denotes the suffix pointer or failure state @f pointers starting ap are made final inS(A) in the loop of
I[q] denotes the length of the longest path from the initial staliees 4-7. The final weight of each statefound by traversing

to ¢ in S(A). [ is used to determine the so-calledlid edges
or transitionsin the construction of the suffix automaton. A
transition (p, a, ¢) is solid if {[p] + 1 = [[g], that is it is on
a longest path from the initial state tg otherwise, it is a
shortcut transition.

We assume that for alb € Qa, pa(p) = 0, since we
may encodeA to contain no final weights as follows: for
any statep such thatpa(p) = e, we setpa(p) = 0 and
add a transition such thalty(p,$) = f andwa(p,$) = e,
where $ is a unique encoding symbol for this transition.
Decoding the resulting suffix automaton simply reverses thi
process. The weighted suffix automaton algorithm relies on
the computation of¥ [p], the forward potential of statg, i.e.,
the total weight of the path fromto p in A. The introduction
of W yields a natural extension of our previous unweighted
algorithm to the weighted case. This forward potential is
computed as the automaton is traversed and is used to set
weights as transitions are added to and redirected withit).
Throughout the algorithm, for any transitigp, a, ¢) in S(A),
we setws(p,a) = Wlg] — W{p] so that traversing a suffix in
S(A) yields the same weight as traversing the original string
in A. As a result, any solid transition ifi(A) retains its weight
from A.

S is a queue storing the set of states to be examined. The
particular queue discipline & does not affect the correctness
of the algorithm, but we can assume it to be a FIFO order,
which corresponds to a breadth-first search and thus admits
a linear-time implementation. In each iteration of the ladp
lines 3-10 in Fig. 7, a new state is extracted fromS. The
processing of the transitior(p, a, f) with destination statef
is delayed to a later stage (lines 12-14). This is becaudeeof t
special property of that it may not only admit different suffix
pointers [16] but also different values 8ff] andW[f]. Other
transitions(p, a, ¢) are processed one at a time by creating, if
necessary, the destination statand adding it taQ s, defining
I[q] and calling SIFFIX-NEXT(p, a, q).

The subroutine GFFIX-NEXT processes each transition
(p,a,q) of A. The loop of lines 3-6 inspects the iterated
suffix pointers ofp that do not have an outgoing transition
labeled witha. It creates such transitions reachinpdrom all
the iterated suffix pointers until the initial state or a stat
already admitting such a transition is reached. In the forme
case, the suffix pointer of is set to be the initial staté and
the transition(7, a, q) is created.

In the latter case, if the existing transitiép', a, ¢’) is solid
and ¢’ # ¢, then the suffix pointer of is simply set to be/
(line 12). Otherwise, ify’ # q, a copy of the state’, r, with
the same outgoing transitions is created (lines 15-16) hed t
suffix pointer ofq is set to ber. The suffix pointer ofy’ is set
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Fig. 10. Construction of the weighted suffix automaton USBREATE-SUFFIX-AUTOMATON. (@) Original automatorA. (b)-(g) Intermediate stages of the
construction ofS(A). For each state[s, ] /w, n is the state numbesg is the suffix pointer ofn, [ is [[n], andw is the final weight, if any.

the suffix pointer chain is set t#/[p] — W[p'] (line 6). transitions are added or redirected (with the exceptiorhef t

We have imp'emented and tested the We|ghted Sufﬁx a%jngle initial We|ght adjustment in line 17 ofREATE-SUFFIX-
tomaton algorithm just described. Fig. 10 illustrates thplia AUTOMATON). Hence, the total number of weight adjustments
cation of the algorithm to a particular weighted automatsh. is also linear. u
intermediate stages of the constructiongfd) are indicated,

including s[g], W|q], andi[q] for each statey. IV. EXPERIMENTS

In the following, we discuss the experimental evaluation of
Proposition 3. Let A be a minimal deterministic suffix- 5+ mysic identification system. The software tools used for
unique automaton. Then, a call tCREATE-SUFFIX-  acoustic modeling and runtime Viterbi decoding were those
AUTOMATON(A, f) constructs the suffix .au.tomaton of,  developed at Google for large-vocabulary speech recogniti
S(A) in time linear in the size of(A), thatis inO(|S(A)|).  applications [20]. The algorithms for constructing the téni

Proof: The unweighted version of the suffix automatoﬁtate transducer representation of the song database were
construction algorithm is shown to have a complexity dfnplemented in the OpenFst toolkit [21].
O(]S(A)|) in [16]. The total number of transitions added
and redirected by the unweighted algorithm is of courd Music Detection
also linear. In the weighted algorithm given in Figs. 7-9, In a practical music identification system, a test recording
transitions are added and redirected in the same way asriay be provided that does not belong to a song in our
the unweighted algorithm, and weights are only adjustedwhdatabase. Hence, an important task is music detection, or
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classifying songs as belonging to our database or not. ffee accuracy when the mixing level of the noise is increased.
detect out-of-set songs, we use a single universal backgrorhis is to be expected as the higher mixing levels result in a
acoustic model (UBM) generically representing all possiblow signal-to-noise ratio (SNR). The inclusion of noisy alat
song sounds. This is similar to techniques used in speakiee acoustic model training process slightly improves fifien
identification (e.g., [22]). The UBM is constructed by agply cation quality — for instance, in the WNoise-0.01 experithen
a divisive clustering algorithm to Gaussian mixtures asithe the accuracy improves fro8b.5% to 88.4%. Slight variations
GMNMs of all the music phonemes, until the desired number of playback speed are handled quite well by our system (high
clusters/mixtures is yielded. We used a UBM wiihclustered 90's); however, major variations such 89x and1.1x cause
components. the accuracy to degrade into tHe's. MP3 recompression at
To classify a song and in-set or out-of-set, we compute th®v bitrates is handled well by our system.
log-likelihood of the best path in a Viterbi search through
the regular song identification transducer and that given a

Condition Identification  Detection
Accuracy Accuracy

trivial transducer allowing only the UBM. When the ratio of &35 99.4%, 96.9%
these two likelihoods is large, the test audio is accounted f  \wNoise-0.001 44.0 dB SNR) 98.5% 96.8%
much better by the in-set models than the generic model andWnNoise-0.01 24.8 dB SNR) 85.5% 94.5%
hence it's more likely to have come from an in-set song, WNoise-0.05 (0.4 dB SNR) 39.0% 93.2%
and vice versa. As a binary classification problem, this is \évp'\é‘;'ged%é 6.9 dB SNR) ééé? gg-g?
a natural tas_k for discriminative cIassmer_s such as suppor Speed-1.02 98‘4(72 96_4(72
vector machines (SVMs) [23], [24]. The input to the SVM  gpeed-0.9 45.7% 85.8%
is a three-dimensional feature vectdr,, Ly, (L, — Ly)] for Speed-1.1 43.2% 87.7%
each song snippet, whetle. and L; are the log-likelihoods ~ MP3-64 98.1% 96.6%
of the best path and background acoustic models, respiyctive MP3-32 95.5% 95.3%
We used thd.| BSVMimplementation [25] with a radial basis TABLE |

function (RBF) kernel. The accuracy was measured using 1QpentiFicaTION ACCURACY RATES UNDER VARIOUS TEST CONDITION
fold cross-validation.

The detection performance of our system is in 90& for
all conditions except the0% speedup and slowdown. This is
Our training data set consisted bf 455 songs. The average most likely due to the spectral shift introduced by the speed
song duration was.9 minutes, for a total of ovet000 hours gjteration technique. This shift results in a mismatch leew
of training audio. The test data consisted1d2 in-set and  the audio data and the acoustic models. We believe that a time
1856 out-of-setl0-second snippets drawn frotd0 in-set and scaling method that maintains spectral characteristicgdioe
100 out-of-set songs selected at random. The first and2last handled better by our acoustic models.
seconds of each song were omitted from the test data sinc®jrect comparisons to previous results are difficult beeaus
they were more likely to consist of primarily silence or veryt is usually not possible for researchers to share music
quiet audio. collections. However, anecdotally we can see that our Byste
Our music phoneme inventory size WH$4 units because performs comparably to or better than some of the other
it was convenient for the divisive CIustering algorithm foe Systems in the literature. For examp|e’ [5] achieves pErfeC
number of phonemes to be a power of two, and also becausgdhtification accuracy with a database Wf 000 songs on
inventory of this size produced good results. Each phon@melean ten-second snippets 3% and 93.7% accuracy on

acoustic model consisted of6 mixture components. All test conditions comparable to our Speed-1.02 and Spe&-0.9
experiments run faster than real time: for instance with r@spectively.

Viterbi search beam width of2, the runtime is0.48 of real
time (meaning a song snippet of seconds can be processed. Automata Size

in 0.48m seconds). We tested the robustness of our system by:ig. 6(b) shows the weighted automatbp(A) correspond-
applying the following transformations to the audio sniggpe ing to the unweighted automatoR(A4) of Fig. 6(a). Note
1) WNoise=: additive white noise (usingsox). Since that F,,(A) is no larger thanF'(A). Remarkably, even in
white noise is a consistently broadband signal, thite case ofl5 455 songs, the total number of transitions of
simulates harsh noise.is the noise amplitude comparedr,,(A) is 53.0M, only about0.004% more thanF(A). We
to saturation (e.g., WNoise01 is 0.01 of saturation). also havglF(A)|r ~ 2.1|A|g. As is illustrated in Fig. 11(a),
2) Speede: speed up or slow down by factor of (using this multiplicative relationship is maintained as the smeg
sox). Radio stations frequently speed up or slow dowsize is varied betweei and 15 455. We have|F,(A)|g ~
songs in order to produce more appealing sound [3]. 28.8M =~ 1.2|A|g, meaning the bound of Proposition 2 is
3) MP3«: mp3 reencode at: kbps (usingl ane). This verified in this empirical context.
simulates compression or transmission at a lower bitrate.
The identification and detection accuracy results are pra- Suffix Automaton Algorithm Experiments
sented in Table I, showing almost perfect identification ac- As previously mentioned, the method of Section II-C
curacy on clean data. The addition of white noise degrades constructing a compact factor transducer by adding

B. Detection and Identification Experiments
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Fig. 11. (a) Comparison of automaton sizes for different bers of songs. #States/Arcs Non-factor” is the size of the automatbraccepting the entire
song transcriptions.# States factor” and# Arcs factor” is the number of states and transitions in théghted factor acceptoF, (A), respectively. (b)
Runtime speeds for constructir§( A) with e-removal and the new suffix automaton algorithm.

tion, and minimization has at least a quadratic worst-case 45000
complexity. However, the novel weighted suffix automaton  »40000
algorithm given in Section I1I-B can be used to construct £35000
the factor transducef’ needed for the music identification £30000 \
system in linear time. As discussed in IlI-B, since acyclic  $25000 \
automata can be minimized in linear time, the complexity ‘220000 \\

\

transitions tad and applying weightee-removal, determiniza- 50000 T

advantage of the algorithm is demonstrated by applying the :éjlsooo

novel algorithm in place ot-removal, determinization mini- 210000

mization. This algorithm operates on suffix-unique aut@nat 5000 \

and the automatoml representing the song transitions can 0 p

easily be made suffix-unique by appending a unique symbol 0 20 40 60 80 100 120

#; to the end of each song transcription These placeholder Factor Length

symbols are ignored during the decoding process of the sdfigy 12. Number of factors occurring in more than one son§ for different
identification algorithm. factor lengths.

Fig. 11(b) gives a comparison of the runtimes of both algo-
rithms for varying sizes of our song set. When constructing a
suffix automaton representing the entire collectionl®ft55 it is unlikely that the sharing of is coincidental, and likely
songs, the new algorithm of section IlI-B runs in around 58presents a repeated structural element in the song.
minutes, as compared to 934 minutes for the old algorithmFig. 12 gives the number of non-unique factors over a
usinge-removal and determinization. Furthermore, a clear norange of lengths. This illustrates that some sharing of long
linear runtime increase is exhibited by theemoval algorithm elements is present, indicating similar music segmentssacr

as the size of the song collection is increased. songs. However, factor collisions decrease rapidly asabif
length increases. For example, out of thé.4M existing
E. Factor Uniqueness Analysis factors of lengthb0, only 256 appear in more than one song.

We observed that our identification system performs wefonsidering that the average duration of a music phoneme
when test snippets of five seconds or longer are used. In fdBt0Ur experiments is aroun200ms, a factor length of0
the accuracy is almost the same for ten-second Snippetscg_ges_ponds to around te_n_seconds of audlo_, and in fact it is
when the full audio of the song is used. This encouraged @idite likely that these colliding ten-second snippets &iref
to analyze the sharing and repetition of similar audio SeB[lmanly S|Ience_. This vall_dgtes our |.n|t|al estimate tthen.
ments among songs in our collection. A benefit of our musRecONds of music are sufficient to uniquely map the audio to
phoneme representation is that it reduces the task of tggatf SONg in our database. In fact, even with factor length of
audio similarity to that of finding repeated factors of th€® Music phonemes, there are orflg2 non-unique factors
song transcriptions. More precisely, let two song tramsions qut of 23.9M tqtal fa(_:tors. _Th|s explains the f_act tr_lz_;\t even a
a1, 75 € U share a common factgr € ¥ such thate; = w fv five-second snippet is sufficient for accurate identifiqatio
andxs = afc; u,v,a,c € ¥*. Then the sections in these two
songs transcribed by are similar. Further, if a song; has a V. CONCLUSION
repeated factof € ¥* such thatr; = ufvfw; u,v,w € X*, We have described a music identification system based on
thenz; has two similar audio segments. |If| is large, then Gaussian mixture models and weighted finite-state traresduc
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and have shown it to be effective for identifying and detegti [14] C. Allauzen, M. Mohri, and M. Saraclar, “General indéza of

songs in the presence of noise and other distortions. The Weighted automata - application to spoken utterance _valrlén Human
Language Technology Conference and North American Chayiténe

compact representation of the mapping of .m.u5|c phongmes to Association for Computational Linguistics (HLT/NAACL 2p0Work-
songs based on transducers allows for efficient decoding and shop on Interdisciplinary Approaches to Speech IndexirdjRetrieval,

high accuracy, even in the presence of noise and distortions Boston, Massachusetts, May 2004, pp. 33-40.
. . . . M. Mohri, P. Moreno, and E. Weinstein, “Factor automafeautomata
We have given a novel alg_onthm fOI‘ We'the_d SUﬁ_' and applications,” ininternational Conference on Implementation and

and factor automaton construction, which has a linear-time Application of Automata (CIAAPrague, Czech Republic, July 2007.
worst case complexity, a drastic improvement on the previol}é! —— “General suffix automaton construction algorithmdaspace

. . . bounds,” Theoretical Computer Science, To Appear
method using the genericremoval and determinization al-[17] p. Revuz, “Minimisation of acyclic deterministic awtmta in linear
gorithms. This algorithm is a natural and essential extansi time,” Theoretical Computer Scienceol. 92, pp. 181-189, 1992.

; ; ; [18] M. Crochemore, “Transducers and repetition$fieoretical Computer
of our previous unweighted algorithm [16] and matches o2 Sionoevel 45 o1 o 6a-50, 1056

previous results guaranteeing the gompactness of suffix 5}[@1 A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. edh and
factor automata of automata. In this work we have appl|ed J. Seiferas, “The smallest automaton recognizing the stdsaaf a text,”

; ; in At ; Theoretical Computer Scienceol. 40, pp. 31-55, 1985.
this algorithm to our music identification system, and 'mﬂe(?eZO] C. Alberti. M. Bacchiani. A. Bezman, C. Chelba, A. Drof. Liao,

in this setting it has exhibited an over 17-fold speedup over  p Moreno, T. Power, A. Sahuguet, M. Shugrina, and O. Siotém,
the previous method. Furthermore, this contribution isegeh audio indexing system for election video material,"|DASSP Taipei,

; ; ; Taiwan, 2009.
anq appllcable toa nu.mber O.f other tasks where Indexatlon[?f] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. MaHiOpenFst:
strlngs or sequences Is reqwred.

a general and efficient weighted finite-state transducerarty in
12th International Conference on Implementation and Agion of
Automata (CIAA)Prague, Czech Republic, July 2007.
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