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Efficient and Robust Music Identification with
Weighted Finite-State Transducers

Mehryar Mohri, Pedro Moreno, and Eugene Weinstein

Abstract—We present an approach to music identification
based on weighted finite-state transducers and Gaussian mixture
models, inspired by techniques used in large-vocabulary speech
recognition. Our modeling approach is based on learning a set
of elementary music sounds in a fully unsupervised manner.
While the space of possible music sound sequences is very
large, our method enables the construction of a compact and
efficient representation for the song collection using finite-state
transducers.

This paper gives a novel and substantially faster algorithmfor
the construction of factor transducers, the key representation of
song snippets supporting our music identification technique. The
complexity of our algorithm is linear with respect to the size of
the suffix automaton constructed. Our experiments further show
that it helps speed up the construction of the weighted suffix
automaton in our task by a factor of 17 with respect to our
previous method using the intermediate steps of determinization
and minimization. We show that, using these techniques, a
large-scale music identification system can be constructedfor
a database of over15 000 songs while achieving an identification
accuracy of 99.4% on undistorted test data, and performing
robustly in the presence of noise and distortions.

Index Terms—Music identification, content-based information
retrieval, factor automata, suffix automata, finite-state transduc-
ers

I. I NTRODUCTION

A UTOMATIC identification of music has been the subject
of several recent studies both in research [1]–[3] and

industry [4]–[6]. Given a test recording of a few seconds,
music identification systems attempt to find the matching ref-
erence recording in a large database of songs. This technology
has numerous applications, including end-user content based
search, radio broadcast monitoring by recording labels, and
copyrighted material detection by audio and video content
providers such as Google YouTube.

In a practical setting, the test recording provided to a music
identification system is usually limited in length to a few
seconds. Hence, a music identification system is tasked with
not only picking the song in the database that the recording
came from, but also aligning the test recording against a
particular position in the reference recoding. In addition, the
machinery used to record and/or transmit the query audio,
such as a cell phone, is often of low quality. These challenges
highlight the need for robust music identification systems.The
approach described in this article has robustness as a central
consideration, and we demonstrate that the performance of
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our system is robust to several different types of noise and
distortions.

Much of the previous work on music identification (see [7]
for a recent survey) is based on hashing of frequency-domain
features. The features used vary from work to work. Haitsma
et al. [1] used hand-crafted features of energy differences
between Bark-scale cepstra. Ke et al. [2] used similar features,
but selected them automatically using boosting. Covell et
al. [5] further improved on Ke by using wavelet features. Casey
et al. [6] used cepstral features in conjunction with Locality
Sensitive Hashing (LSH) for nearest-neighbor retrieval for
music identification and detection of cover songs and remixes.
Hashing approaches index the feature vectors computed over
all the songs in the database in a large hash table. During
test-time, features computed over the test audio are used to
retrieve from the table.

Hashing-based approaches are marked by two main lim-
itations, the requirement to match a fingerprint exactly or
almost exactly and the need for a disambiguation step to
reject many false positive matches. Batlle et al [3] proposed to
move away from hashing approaches by suggesting a system
decoding MFCC features over the audio stream directly into a
sequence of audio events, as in speech recognition. Each song
is represented by a sequence of states in a hidden Markov
model (HMM), where a state corresponds to an elementary
music sound. However, the system looks only for atomic sound
sequences of a particular length, presumably to control search
complexity.

In this work, we present an alternative approach to music
identification based on weighted finite-state transducers and
Gaussian mixture models, inspired by techniques used in large-
vocabulary speech recognition. The learning phase of our
approach is based on an unsupervised training process yielding
an inventory of music phoneme units similar to phonemes
in speech and leading to a unique sequence of music units
characterizing each song. The representation and algorithmic
aspects of this approach are based on weighted finite-state
transducers, more specificallyfactor transducers, which can
be used to give a compact representation of all song snippets
for a large database over15 000 songs. This approach leads
to a music identification system that achieves an identification
accuracy of99.4% on undistorted test data, and performs
robustly in the presence of noise and distortions. It allows
us to index music event sequences in an optimal and compact
way and, as we shall later demonstrate, with very rare false
positive matches.

A primary contribution of this paper is a novel and efficient
algorithm for the construction of a weighted suffix or factor



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. Y, JANUARY 2008 2

Fig. 1. Music Identification System Construction

automaton from an input acyclic weighted automaton. The
complexity of the algorithm is linear in the size of the output
suffix automaton. The algorithm is also straightforward to
implement and is very efficient in practice. Our experiments
show that this algorithm helps speed up the construction of
the weighted suffix automaton by a factor of17 over the
previous algorithms for constructing an index of a music song
collection.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of our music identification ap-
proach including our acoustic modeling technique and the
construction of the recognition transducer from a weighted
factor automaton. This transducer is searched by our decoder
to identify a test recording. In Section III, we present the essen-
tial properties of our weighted suffix and factor automaton and
give a linear-time algorithm for its construction from an input
weighted automaton. Section IV reports our experiments with
this algorithm demonstrating that it is substantially faster than
our previous construction method. We also present empirical
results illustrating the robustness of our music identification
system.

II. M USIC IDENTIFICATION WITH WEIGHTED

FINITE-STATE TRANSDUCERS

In our music identification approach, each song is repre-
sented by a distinct sequence of music sounds, calledmusic
phonemesin our work. Fig. I gives an architectural view of
our system. Our system learns the set of music phonemes
automatically from training data using an unsupervised algo-
rithm. We also learn a unique sequence of music phonemes
characterizing each song. The music identification problemis
then reduced to a mapping of music phoneme sequences to
songs. As in a speech recognition system, this mapping can
be represented compactly with a finite-state transducer.

Specifically, a test audio snippet can be decoded into
a music phoneme sequence using the Viterbi beam search
algorithm. The transducer associates a weight to each pairing
of a phoneme sequence with a song, and the search process
approximates the most likely path through the transducer given
the acoustic evidence [8].

However, our music song collection is not transcribed with
reference music phoneme sequences, and hence the music
phoneme inventory has to be learned simultaneously with the
most likely transcription for each song. Also, the size of the
transducer representing the entire song collection can be quite
large. In addition, the requirement to identify song snippets
(as opposed to entire songs) introduces additional algorithmic

challenges. In the remainder of this section, we address these
two problems.

A. Acoustic Modeling

Our acoustic modeling approach consists of jointly learn-
ing an inventory of music phonemes and the sequence of
phonemes best representing each song. Cepstral features have
recently been shown to be effective in the analysis of mu-
sic [3], [9], [10], and in our work we also use mel-frequency
cepstral coefficient (MFCC) features computed over the song
audio. We use100ms windows over the feature stream, and
keep the first twelve coefficients, the energy, and their firstand
second derivatives to produce a39-dimensional feature vector.

1) Model Initialization: A set of music phonemes is ini-
tially created by clustering segments of pseudo-stationary
audio signal in all the songs. The song audio is segmented
by sliding a window along the features and fitting a single
diagonal covariance Gaussian model to each window. We
compute the symmetrized KL divergence between the resulting
probability distributions of all adjacent window pairs. The
symmetrized KL divergence between two GaussiansG1 ∼
N(µ1, Σ1) and G2 ∼ N(µ2, Σ2) as used in this work is de-
fined as double the sum of the non-symmetric KL divergences,

KLsym(G1, G2) = 2 (DKL(G1‖G2) + DKL(G2‖G1))

= tr
(
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wherem is the dimensionality of the data. After smoothing
the KL divergence signal, we hypothesize segment boundaries
where the KL divergence between adjacent windows is large.

We then apply a clustering algorithm to the song segments
to produce one cluster for each ofk desired phonemes. Clus-
tering is performed in two steps. First we apply hierarchical,
or divisive, clustering in which all data points (hypothesized
segments) are initially assigned to one cluster. The centroid
(mean) of the cluster is then randomly perturbed in two
opposite directions of maximum variance to make two new
clusters. Points in the old cluster are reassigned the child
cluster with higher likelihood [11]. This step ends when the
desired number of clusters or music phonemesk is reached or
the number of points remaining is too small to accommodate
a split. In a second step we apply ordinaryk-means clustering
to refine the clusters until convergence is achieved. As in [11]
we use maximum likelihood as an objective distance function
rather than the more common Euclidean distance.
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2) Model Training: The acoustic model for each of ourk
phonemes is initially a single Gaussian parametrized with the
sufficient statistics of a single segment cluster obtained in the
above initialization procedure. However, a single Gaussian is
unlikely to accurately represent a complex music sound. In
speech recognition, a common modeling technique is to use a
mixture of Gaussians to represent speech phoneme acousticsin
the cepstral feature space. Following this approach, we model
music phonemes with Gaussian mixture models.

Since there are no reference transcriptions of the song
database in terms of music sound units, we use an unsuper-
vised learning approach similar to that of [3] in which the
model representing each music phoneme and the transcriptions
are inferred simultaneously. The training procedure repeats the
following two steps until convergence is achieved:

• Apply Viterbi decoding using the current model and
allowing any sequence of music phonemes (i.e., no lan-
guage model) to find a transcription for each song.

• Refine the model using the standard expectation-
maximization (EM) training algorithm using the current
transcriptions as reference.

This process is similar to the standard acoustic model
training algorithm for speech recognition with the exception
that at each training iteration, a new transcription is obtained
for each song in our database. This process is illustrated in
Fig. 2. Note that since a full Viterbi search is performed at
each iteration, the transcription as well as the alignment of
phonemes to audio frames may change.

3) Measuring Convergence:In speech recognition, each
utterance is usually labeled with a ground truth transcription
that is fixed throughout the acoustic model training process.
Convergence is typically evaluated by measuring the change
in model likelihood from iteration to iteration. Since in our
music identification scenario no such ground truth exists, to
evaluate the convergence of our algorithm we measure how
much the reference transcription changes with each iteration.
To compare transcriptions we use the edit distance, here
defined as the minimal number of insertions, substitutions,
and deletions of music phonemes required to transform one
transcription into another.

For a song setS let ti(s) be the transcription of songs at
iteration i and ED(a, b) the edit distance of sequencesa and
b. At each iterationi, we compute the average edit distance
per song

Ci =
1

|S|

∑

s∈S

ED(ti(s), ti−1(s)) (2)

as our convergence measure.
Fig. 2 illustrates this situation by giving three example

transcriptions assigned to the same song in consecutive acous-
tic model training iterations. We havet1(s) =mp2 mp5
mp86; t2(s) = mp2 mp43 mp22 mp86, and t3(s) = mp37
mp43 mp22 mp86. The edit distances computed here will be
ED(t1(s), t2(s)) = 2 and ED(t2(s), t3(s)) = 1.

Fig. 3 illustrates how the edit distance changes during
training for three phoneme inventory sizes. Note that, for
example, with1024 phonemes almost900 edits on average

Fig. 2. An illustration of changing transcription and alignment for a particular
song during the course of three iterations of acoustic modeltraining. mpx
stands for music phoneme numberx and the vertical bars represent the
temporal boundaries between music phonemes.

occurred per song between the first and second round of
training. Considering that the average transcription length is
around 1700 phonemes, this means that only around half
of the phonemes remained the same. In our experiments,
convergence was exhibited after around twenty iterations.In
the last few iterations of training, the average edit distance
decreases considerably to around300, meaning5/6 of the
phonemes remain the same from iteration to iteration. It is
intuitive that the average edit distance achieved at convergence
grows with the phoneme inventory size, since with a very large
phoneme inventory many phonemes will be statistically very
close. In the other extreme, with only one music phoneme, the
transcription would never change at all.
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Fig. 3. Average edit distance per song vs. training iteration.

B. Automata Overview

Before we describe the transducer representation of our
music collection, we briefly review the automata concepts
relevant to this work. The devices of interest in this paper
are weighted automata and transducers. For the purposes of
this paper, weighted automata and transducers are defined as
follows.

A weighted automatonis specified by an alphabet, a finite
set of states, a finite set of transitions, an initial state, aset
of final states, and a final weight function. Each transition
associates pairs of states with a symbol and a weight. A
weighted finite-state transduceris specified by input and
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Fig. 4. Finite-state transducerT0 mapping each song to its identifier. mpx stands for music phoneme numberx

output alphabets, a finite set of states, a finite set of transitions,
an initial state, a set of final states, and a final weight function.
Each transition associates pairs of states with an input symbol,
an output symbol, and a weight.

Unweighted automata and transducers are obtained by sim-
ply omitting the weights from their weighted counterparts.
Thus, a transition no longer associates a weight with a pair
of states but only an input and/or output label. For example
the transducerT0 in Fig. 4 consists of seven states and seven
transitions, with0 the initial state and4 the sole final state.
The symbolǫ represents the empty string. Input and output
labels are given asinput:output. For example, one path
throughT0 associates the input sequencemp37 mp43 mp22
mp86 with the output labelBenFoldsFive-Brick.

The semiringover which an acceptor or transducer is de-
fined specifies the weight set used and the algebraic operations
for combining weights. One semiring used extensively in
speech and text processing is the tropical semiring. In the
tropical semiring, the total path along a given path is found
by adding the weights of the transitions composing the path.
If the weights are log-likelihoods, the total weight of a path
is the total log-likelihood. The total weight assigned by the
automaton to a stringx is that of the minimum weight (max-
imum likelihood) path labeled withx. For weighted automata
the weight is indicated asinput:output/weight. If the
weight is omitted, then it is zero (in the tropical semiring).
For example, the acceptor in Fig. 6(b) has an accepting path
(that leading from the initial to a final state) labeled withmp22
mp86 with a weight of0 and an accepting path labeled with
mp8 mp22 mp37 with a weight of1.

An automaton isdeterministicif at any state no two out-
going transitions share the same input label. A deterministic
automaton isminimal if there is no equivalent deterministic
automaton with a smaller number of states. An automaton is
epsilon-freeif it contains no epsilon transitions. An automaton
that is epsilon-free and deterministic can be processed in
a time-efficient manner. A minimal (deterministic) automa-
ton is further optimally space-efficient. Accordingly, such
an automaton is often referred to asefficient. In fact, it is
optimal in the sense that the lookup time for a given string
in the automaton is linear in the size of the string. As a
result of the relatively recent introduction of new algorithms,
such as weighted determinization, minimization, and epsilon
removal [12], [13], automata have become a compelling
formalism used extensively in a number of fields, including
speech, image, and language processing.

C. Recognition Transducer

Given a set of songsS, the music identification task is
to find the songs inS that contain a query song snippetx.
In speech recognition, it is common to construct a weighted
finite-state transducer specifying the mapping of phoneme
sequences to word sequences, and to decode test audio using
the Viterbi algorithm constrained by the transducer [8]. Our
music identification system operates in a similar fashion, but
the final output of the decoding process is a single song
identifier. Hence, the recognition transducer must map any
sequence of music phonemes appearing in the transcriptions
found in the final iteration of training to the corresponding
song identifiers.

Let Σ denote the set of music phonemes and let the
set of music phoneme sequences describingm songs be
U = {x1, . . . , xm}, xi ∈ Σ∗ for i ∈ {1, . . . , m}. A factor, or
substring, of a sequencex ∈ Σ∗ is a sequence of consecutive
phonemes appearing inx. Thus,y is a factor ofx iff there
exists u, v ∈ Σ∗ such thatx = uyv. In our experiments,
m = 15 455, |Σ| = 1024 and the average length of a
transcriptionxi is more than1700. Thus, in the worst case,
there can be as many as15 455× 17002 ≈ 45 × 109 factors.
The size of a naı̈ve prefix-tree-based representation wouldthus
be prohibitive, and hence we endeavor to represent the set of
factors with a much more compact factor automaton.
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Fig. 5. Deterministic and minimal unweighted factor acceptor F (A) for two
songs.

1) Factor Automaton Construction:We denote byF (A) the
minimal deterministic automaton accepting the set of factors
of a finite automatonA, that is the set of factors of the
strings accepted byA. Similarly, we denote byS(A) the
minimal deterministic automaton accepting the set of suffixes
of an automatonA. In the remainder of this section, we
outline a method for constructing a factor automaton of an
automaton using the general automata algorithms for weighted
determinization and minimization. This method is described
here to illustrate the concept of factor automata, as well as
to give the context of the methods for constructing factor
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automata previously employed both in the present work and for
other tasks (e.g., [14]). However, the novel suffix automaton
algorithm given in Section III-B enjoys a linear complexity
and thus is now the preferred method for this construction.

Let T0 be the transducer mapping phoneme sequences to
song identifiers before determinization and minimization.Fig.
4 showsT0 when U is reduced to two short songs. LetA
be the acceptor obtained by omitting the output labels ofT0.
Intuitively, to accept any factor ofA, we want to read strings
in A, but starting and finishing at any pair of states linked by
a sequence of transitions. We can accomplish this by creating
“shortcut” ǫ-transitions from the initial state ofA to all other
states, making all states final, and applyingǫ-removal, deter-
minization, and minimization to yield an efficient acceptor.
This construction yields the factor automatonF (A) (Fig. 5),
but it does not allow us to output the song identifier associated
with each factor.

2) The Algorithmic Challenge of Factor Automata:Con-
structing a compact and efficient factor automaton that retains
the mapping between all possible music phoneme subse-
quences and the songs to which they correspond is non-
trivial. The following intuitive, but naı̈ve, solution illustrates
this point. All accepting paths of the automatonA after the
addition ofǫ-transitions, i.e. all factors, can be augmented with
output labels corresponding to song identifiers. As a result, the
matching song identifier is always obtained as an output when
traversing a set of input music phonemes.

However, this approach immediately fails because factors
with different output labels cannot be collapsed into the same
path, and as a result upon determinization and minimization
the resulting transducer is prohibitively larger thanA. Thus,
the crucial question about the problem of constructing a factor
transducer for our music identification task is how to construct
an automaton where states and transitions can be shared
among paths belonging to different songs, while preserving
the mapping between phoneme sequences and songs.

3) Using Weights to Represent Song Labels:Our approach
for avoiding the combinatorial explosion just mentioned is
to use weights, instead of output labels, to represent song
identifiers. We create a compact weighted acceptor over the
tropical semiring accepting the factors ofU that associates
the total weightsx to each factorx. During the application
of weighted determinization and minimization to constructa
factor automaton, the song identifier is treated as a weight that
can be distributed along a path. The property that the sum of
the weights along the path labeled withx is sx is preserved by
these operations. As a result, paths belonging to transcription
factors common to multiple songs can be collapsed and the
mapping between factors to songs is preserved.

To construct the weighted factor automatonFw(A) from T0

we
1) Drop the output labels to produceA.
2) Assign a numerical label to each song and augment each

song’s path inA with that label as a single weight (at
the transition leaving the initial state).

3) Add ǫ-transitions from the initial state to each other state
weighted with the song identifier corresponding to the
path of the song to which the transition serves as a

“shortcut.” This produces the weighted acceptorFǫ(A)
(Fig. 6(a)).

4) Apply epsilon removal, determinization, and minimiza-
tion to produce the weighted acceptorFw(A) (Fig. 6(b)).

Observe in Fig. 6(b) that the numerical labels0 and 1
are assigned to song labelsBenFoldsFive-Brick and
BonJovi-LivingOnaPrayer, respectively. Notice that,
for example, the factormp22 mp37 is correctly assigned a
weight of 1 by Fw(A). Observe finally that the information
about all the factors found in the original transducerT0 (Fig.
4) and the songs they correspond to is preserved.

Finally, Fw(A) is transformed into a song recognition trans-
ducerT by treating each output weight integer as a regular
output symbol. Given a music phoneme sequence as input, the
associated song identifier is obtained by summing the outputs
yielded byT .

We have empirically verified the feasibility of this construc-
tion. For 15 455 songs, the total number of transitions of the
transducerT is about53.0M (million), only about2.1 times
that of the minimal deterministic transducerT0 representing
all full-song transcriptions. In Section III, we present the
results of a careful analysis of the size of factor automata of
automata and give a matching linear-time algorithm for their
construction. These results suggest that our method can scale
to a larger set of songs, e.g., several million songs.

III. A NALYSIS AND CONSTRUCTION OFSUFFIX AND

FACTOR AUTOMATA

As discussed in Section IV-C, the above representation of
music sequences with factor automata is empirically compact
for our music collection of over15 000 songs. To ensure
the scalability of our approach to a larger set of songs, we
wished to derive a bound on the size of the factor automata
of automata. One quality of the music phoneme sequences
considered in this as well as in many other applications is
that the sequences do not share long suffixes. This motivated
our analysis of the size of the factor automata with respect to
the length of the common suffixes in the original automaton,
formalized with the following definition.

Definition Let k be a positive integer. A finite automatonA is
k-suffix-uniqueif no two strings accepted byA share a suffix
of lengthk. A is said to besuffix-uniquewhen it isk-suffix-
unique withk = 1.

A. Bounds on the Size of Suffix and Factor Automata

The following two propositions give novel and substantially
improved bounds on the size of the suffix and factor automata
of A if A is suffix-unique andk-suffix-unique. The notation
|A|Q, |A|E and |A| is used to refer to the number of states,
transitions, and states and transitions combined, respectively,
in the automatonA.

The factor automatonF (A) can be obtained from the suffix
automatonS(A) by making all states final and applying
minimization. Thus,|F (A)| ≤ |S(A)|. The following bounds
are stated as bounds on the size of the factor automatonF (A),
but they are actually proved as bounds on that of the suffix
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Fig. 6. (a) Factor acceptorFǫ(A) for two songs produced by adding weights and epsilon transitions toA. (b) Deterministic and minimal weighted factor
acceptorFw(A) produced by optimizingFǫ(A).

automatonS(A), and apply of course also toF (A) by the
size relationship just mentioned. The detailed proofs of the
following result are given in [15], [16].

Proposition 1. Let A be a suffix-unique deterministic and
minimal automaton accepting strings of length more than
three. Then, the number of states of the suffix or factor
automaton ofA is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (3)

Proposition 2. Let A be ak-suffix-unique automaton accept-
ing strings of length more than three and letn be the number
of strings accepted byA. Then, the following bound holds for
the suffix or factor automaton ofA:

|F (A)|Q ≤ 2|Ak|Q + 2kn− 3. (4)

where Ak is the part of the automaton ofA obtained by
removing the states and transitions of all suffixes of length
k.

Corollary 1. Let U = {x1, . . . , xm} be a set of strings of
length more than three and letA be a prefix-tree representing
U . Then, the number of states of the suffix or factor automaton
of the strings ofU is bounded as follows

|F (U)|Q ≤ 2|A|Q − 2. (5)

B. Weighted Suffix Automaton Algorithm

In Section II-C we described a method for constructing
a compact factor transducerT mapping music phoneme se-
quences to song identifiers by addingǫ-transitions toA and ap-
plying weighted determinization and minimization; however,
we stated that a more efficient method would be presented
shortly. Indeed, the bounds in section III-A guarantee only
a linear size increase fromA to S(A) and F (A). However,
the ǫ-removal and determinization algorithms used in this
method have in general at least a quadratic complexity in
the size of the input automaton. While the final result of
the construction algorithm is guaranteed to be compact, the
algorithms described thus far are not optimal.

This section describes a new linear-time algorithm for the
construction of the suffix automatonS(A) of a weighted
suffix-unique input automatonA, or similarly the factor au-
tomatonF (A) of A. SinceF (A) can be obtained fromS(A)
by making all states ofS(A) final and applying a linear-time

acyclic minimization algorithm [17], it suffices to describe
a linear-time algorithm for the construction ofS(A). It is
possible however to give a similar direct linear-time algorithm
for the construction ofF (A). The algorithm given in this
section holds over the tropical semiring, which is used in
our music identification system; however, we conjecture that
this algorithm can be generalized to arbitrary semirings. The
algorithm is a generalization of the unweighted algorithm
presented in [16].

CREATE-SUFFIX-AUTOMATON(A, f)

1 S ← QS ← {I} � initial state
2 s[I]← UNDEFINED; l[I]← 0; W [i]← 0
3 while S 6= ∅ do
4 p← HEAD(S)
5 for eacha such thatδA(p, a) 6= UNDEFINED do
6 if δA(p, a) 6= f then
7 QS ← QS ∪ {p}
8 l[q]← l[p] + 1
9 SUFFIX-NEXT(p, a, q)

10 ENQUEUE(S, q)
11 QS ← QS ∪ {f}
12 for each statep ∈ QA and a ∈ Σ s.t. δA(p, a) = f do
13 SUFFIX-NEXT(p, a, f)
14 SUFFIX-FINAL (f)
15 for eachp ∈ FA do
16 SUFFIX-FINAL (q)
17 ρS(I)← minp∈QS

W [p]
18 return S(A) = (QS , I, FS , δS)

Fig. 7. Algorithm for the construction of the weighted suffixautomaton of
a suffix-unique automatonA.

Figs. 7-9 give the pseudocode of the algorithm for con-
structing the suffix automatonS(A) = (QS , I, FS , δS , ωS , ρS)
of a suffix-unique automatonA = (QA, I, FA, δA, ωA, ρA),
where δS : QS × Σ 7→ QS denotes the partial transition
function ofS(A) and likewiseδA : QA×Σ 7→ QA that of A;
ωS : QS ×Σ 7→ K andωA : QA×Σ 7→ K give the weight for
each transition inS(A) andA, respectively; andρS : FS 7→ K

andρA : FA 7→ K are the final weight functions forS(A) and
A. f denotes the unique final state ofA with no outgoing
transitions. Letx be the longest string inS(A) reaching the
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SUFFIX-NEXT(p, a, q)

1 l[q]← max(l[p] + 1, l[q])
2 W [q]←W [p] + ωA(p, a)
3 while p 6= I and δS(p, a) = UNDEFINED do
4 δS(p, a)← q
5 ωS(p, a)←W [q]−W [p]
6 p← s[p]
7 if δS(p, a) = UNDEFINED then
8 δS(I, a)← q
9 ωS(I, a)← W [q]

10 s[q]← I
11 elseif l[p] + 1 = l[δS(p, a)] and δS(p, a) 6= q then
12 s[q]← δS(p, a)
13 elser ← q
14 if δS(p, a) 6= q then
15 r ← copy of δS(p, a) with same transitions
16 QS ← QS ∪ {r}
17 s[q]← r
18 s[r]← s[δS(p, a)]
19 s[δS(p, a)]← r
20 W [r]←W [p] + ωS(p, a)
21 l[r]← l[p] + 1
22 while p 6= UNDEFINED and l[δS(p, a)] ≥ l[r] do
23 δS(p, a)← r
24 ωS(p, a)←W [r] −W [p]
25 p← s[p]

Fig. 8. Subroutine of CREATE-SUFFIX-AUTOMATON processing a transition
of A from statep to stateq labeled witha.

SUFFIX-FINAL (p)

1 m←W [p]
2 if p ∈ FS then
3 p← s[p]
4 while p 6= UNDEFINED and p 6∈ FS do
5 FS ← FS ∪ {p}
6 ρS(p)← m−W [p]
7 p← s[p]

Fig. 9. Subroutine of CREATE-SUFFIX-AUTOMATON making all states on
the suffix chain ofp final.

statep andu ∈ Σ∗ the longest suffix ofx reaching a distinct
state p′ in the automaton such thatu is the longest string
reachingp′. Thenp′ is referred to so thesuffix link or suffix
pointer of p.

The algorithm given here generalizes our previous linear-
time unweighted suffix automaton construction algorithm [16]
to the case whereA is a weighted automaton. The unweighted
algorithm is in turn a generalization to an input suffix-unique
automaton of the standard construction for a single input
string [18], [19]. Our presentation is similar to that of [18].
The algorithm maintains two arrayss[q] andl[q] for each state
q of QS . s[q] denotes the suffix pointer or failure state ofq.
l[q] denotes the length of the longest path from the initial state

to q in S(A). l is used to determine the so-calledsolid edges
or transitions in the construction of the suffix automaton. A
transition (p, a, q) is solid if l[p] + 1 = l[q], that is it is on
a longest path from the initial state toq, otherwise, it is a
shortcut transition.

We assume that for allp ∈ QA, ρA(p) = 0, since we
may encodeA to contain no final weights as follows: for
any statep such thatρA(p) = e, we setρA(p) = 0 and
add a transition such thatδA(p, $) = f and ωA(p, $) = e,
where $ is a unique encoding symbol for this transition.
Decoding the resulting suffix automaton simply reverses this
process. The weighted suffix automaton algorithm relies on
the computation ofW [p], the forward potential of statep, i.e.,
the total weight of the path fromI to p in A. The introduction
of W yields a natural extension of our previous unweighted
algorithm to the weighted case. This forward potential is
computed as the automaton is traversed and is used to set
weights as transitions are added to and redirected withinS(A).
Throughout the algorithm, for any transition(p, a, q) in S(A),
we setωS(p, a) = W [q]−W [p] so that traversing a suffix in
S(A) yields the same weight as traversing the original string
in A. As a result, any solid transition inS(A) retains its weight
from A.

S is a queue storing the set of states to be examined. The
particular queue discipline ofS does not affect the correctness
of the algorithm, but we can assume it to be a FIFO order,
which corresponds to a breadth-first search and thus admits
a linear-time implementation. In each iteration of the loopof
lines 3-10 in Fig. 7, a new statep is extracted fromS. The
processing of the transitions(p, a, f) with destination statef
is delayed to a later stage (lines 12-14). This is because of the
special property off that it may not only admit different suffix
pointers [16] but also different values ofl[f ] andW [f ]. Other
transitions(p, a, q) are processed one at a time by creating, if
necessary, the destination stateq and adding it toQS , defining
l[q] and calling SUFFIX-NEXT(p, a, q).

The subroutine SUFFIX-NEXT processes each transition
(p, a, q) of A. The loop of lines 3-6 inspects the iterated
suffix pointers ofp that do not have an outgoing transition
labeled witha. It creates such transitions reachingq from all
the iterated suffix pointers until the initial state or a state p′

already admitting such a transition is reached. In the former
case, the suffix pointer ofq is set to be the initial stateI and
the transition(I, a, q) is created.

In the latter case, if the existing transition(p′, a, q′) is solid
andq′ 6= q, then the suffix pointer ofq is simply set to beq′

(line 12). Otherwise, ifq′ 6= q, a copy of the stateq′, r, with
the same outgoing transitions is created (lines 15-16) and the
suffix pointer ofq is set to ber. The suffix pointer ofq′ is set
to ber (line 19) and that ofr is set to bes[q′] (18), andl[r]
set tol[p] + 1 (21). The transitions labeled witha leaving the
iterated suffix pointers ofp are inspected and redirected tor
so long as they are non-solid transitions (lines 22-25).

The subroutine SUFFIX-FINAL sets the finality and the final
weight of states inS(A). For any statep that is final inA,
p and all the states found by following the chain of suffix
pointers starting atp are made final inS(A) in the loop of
lines 4-7. The final weight of each statep′ found by traversing
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Fig. 10. Construction of the weighted suffix automaton usingCREATE-SUFFIX-AUTOMATON. (a) Original automatonA. (b)-(g) Intermediate stages of the
construction ofS(A). For each staten[s, l]/w, n is the state number,s is the suffix pointer ofn, l is l[n], andw is the final weight, if any.

the suffix pointer chain is set toW [p]−W [p′] (line 6).

We have implemented and tested the weighted suffix au-
tomaton algorithm just described. Fig. 10 illustrates the appli-
cation of the algorithm to a particular weighted automaton.All
intermediate stages of the construction ofS(A) are indicated,
including s[q], W [q], andl[q] for each stateq.

Proposition 3. Let A be a minimal deterministic suffix-
unique automaton. Then, a call toCREATE-SUFFIX-
AUTOMATON(A, f) constructs the suffix automaton ofA,
S(A) in time linear in the size ofS(A), that is inO(|S(A)|).

Proof: The unweighted version of the suffix automaton
construction algorithm is shown to have a complexity of
O(|S(A)|) in [16]. The total number of transitions added
and redirected by the unweighted algorithm is of course
also linear. In the weighted algorithm given in Figs. 7-9,
transitions are added and redirected in the same way as in
the unweighted algorithm, and weights are only adjusted when

transitions are added or redirected (with the exception of the
single initial weight adjustment in line 17 of CREATE-SUFFIX-
AUTOMATON). Hence, the total number of weight adjustments
is also linear.

IV. EXPERIMENTS

In the following, we discuss the experimental evaluation of
our music identification system. The software tools used for
acoustic modeling and runtime Viterbi decoding were those
developed at Google for large-vocabulary speech recognition
applications [20]. The algorithms for constructing the finite-
state transducer representation of the song database were
implemented in the OpenFst toolkit [21].

A. Music Detection

In a practical music identification system, a test recording
may be provided that does not belong to a song in our
database. Hence, an important task is music detection, or
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classifying songs as belonging to our database or not. To
detect out-of-set songs, we use a single universal background
acoustic model (UBM) generically representing all possible
song sounds. This is similar to techniques used in speaker
identification (e.g., [22]). The UBM is constructed by applying
a divisive clustering algorithm to Gaussian mixtures across the
GMMs of all the music phonemes, until the desired number of
clusters/mixtures is yielded. We used a UBM with16 clustered
components.

To classify a song and in-set or out-of-set, we compute the
log-likelihood of the best path in a Viterbi search through
the regular song identification transducer and that given a
trivial transducer allowing only the UBM. When the ratio of
these two likelihoods is large, the test audio is accounted for
much better by the in-set models than the generic model and
hence it’s more likely to have come from an in-set song,
and vice versa. As a binary classification problem, this is
a natural task for discriminative classifiers such as support-
vector machines (SVMs) [23], [24]. The input to the SVM
is a three-dimensional feature vector[Lr, Lb, (Lr − Lb)] for
each song snippet, whereLr and Lb are the log-likelihoods
of the best path and background acoustic models, respectively.
We used theLIBSVM implementation [25] with a radial basis
function (RBF) kernel. The accuracy was measured using 10-
fold cross-validation.

B. Detection and Identification Experiments

Our training data set consisted of15 455 songs. The average
song duration was3.9 minutes, for a total of over1000 hours
of training audio. The test data consisted of1762 in-set and
1856 out-of-set10-second snippets drawn from100 in-set and
100 out-of-set songs selected at random. The first and last20
seconds of each song were omitted from the test data since
they were more likely to consist of primarily silence or very
quiet audio.

Our music phoneme inventory size was1024 units because
it was convenient for the divisive clustering algorithm forthe
number of phonemes to be a power of two, and also because an
inventory of this size produced good results. Each phoneme’s
acoustic model consisted of16 mixture components. All
experiments run faster than real time: for instance with a
Viterbi search beam width of12, the runtime is0.48 of real
time (meaning a song snippet ofm seconds can be processed
in 0.48m seconds). We tested the robustness of our system by
applying the following transformations to the audio snippets:

1) WNoise-x: additive white noise (usingsox). Since
white noise is a consistently broadband signal, this
simulates harsh noise.x is the noise amplitude compared
to saturation (e.g., WNoise-0.01 is 0.01 of saturation).

2) Speed-x: speed up or slow down by factor ofx (using
sox). Radio stations frequently speed up or slow down
songs in order to produce more appealing sound [3].

3) MP3-x: mp3 reencode atx kbps (usinglame). This
simulates compression or transmission at a lower bitrate.

The identification and detection accuracy results are pre-
sented in Table I, showing almost perfect identification ac-
curacy on clean data. The addition of white noise degrades

the accuracy when the mixing level of the noise is increased.
This is to be expected as the higher mixing levels result in a
low signal-to-noise ratio (SNR). The inclusion of noisy data in
the acoustic model training process slightly improves identifi-
cation quality – for instance, in the WNoise-0.01 experiment,
the accuracy improves from85.5% to 88.4%. Slight variations
in playback speed are handled quite well by our system (high
90’s); however, major variations such as0.9x and1.1x cause
the accuracy to degrade into the40’s. MP3 recompression at
low bitrates is handled well by our system.

Condition Identification Detection
Accuracy Accuracy

Clean 99.4% 96.9%

WNoise-0.001 (44.0 dB SNR) 98.5% 96.8%

WNoise-0.01 (24.8 dB SNR) 85.5% 94.5%

WNoise-0.05 (10.4 dB SNR) 39.0% 93.2%

WNoise-0.1 (5.9 dB SNR) 11.1% 93.5%

Speed-0.98 96.8% 96.0%

Speed-1.02 98.4% 96.4%

Speed-0.9 45.7% 85.8%

Speed-1.1 43.2% 87.7%

MP3-64 98.1% 96.6%

MP3-32 95.5% 95.3%

TABLE I
IDENTIFICATION ACCURACY RATES UNDER VARIOUS TEST CONDITIONS

The detection performance of our system is in the90’s for
all conditions except the10% speedup and slowdown. This is
most likely due to the spectral shift introduced by the speed
alteration technique. This shift results in a mismatch between
the audio data and the acoustic models. We believe that a time
scaling method that maintains spectral characteristics would be
handled better by our acoustic models.

Direct comparisons to previous results are difficult because
it is usually not possible for researchers to share music
collections. However, anecdotally we can see that our system
performs comparably to or better than some of the other
systems in the literature. For example, [5] achieves perfect
identification accuracy with a database of10 000 songs on
clean ten-second snippets but80.3% and93.7% accuracy on
test conditions comparable to our Speed-1.02 and Speed-0.98,
respectively.

C. Automata Size

Fig. 6(b) shows the weighted automatonFw(A) correspond-
ing to the unweighted automatonF (A) of Fig. 6(a). Note
that Fw(A) is no larger thanF (A). Remarkably, even in
the case of15 455 songs, the total number of transitions of
Fw(A) is 53.0M, only about0.004% more thanF (A). We
also have|F (A)|E ≈ 2.1|A|E . As is illustrated in Fig. 11(a),
this multiplicative relationship is maintained as the songset
size is varied between1 and 15 455. We have|Fw(A)|Q ≈
28.8M ≈ 1.2|A|Q, meaning the bound of Proposition 2 is
verified in this empirical context.

D. Suffix Automaton Algorithm Experiments

As previously mentioned, the method of Section II-C
for constructing a compact factor transducer by addingǫ-
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Fig. 11. (a) Comparison of automaton sizes for different numbers of songs. “#States/Arcs Non-factor” is the size of the automatonA accepting the entire
song transcriptions. “# States factor” and “# Arcs factor” is the number of states and transitions in the weighted factor acceptorFw(A), respectively. (b)
Runtime speeds for constructingS(A) with ǫ-removal and the new suffix automaton algorithm.

transitions toA and applying weightedǫ-removal, determiniza-
tion, and minimization has at least a quadratic worst-case
complexity. However, the novel weighted suffix automaton
algorithm given in Section III-B can be used to construct
the factor transducerT needed for the music identification
system in linear time. As discussed in III-B, since acyclic
automata can be minimized in linear time, the complexity
advantage of the algorithm is demonstrated by applying the
novel algorithm in place ofǫ-removal, determinization mini-
mization. This algorithm operates on suffix-unique automata,
and the automatonA representing the song transitions can
easily be made suffix-unique by appending a unique symbol
#i to the end of each song transcriptionxi. These placeholder
symbols are ignored during the decoding process of the song
identification algorithm.

Fig. 11(b) gives a comparison of the runtimes of both algo-
rithms for varying sizes of our song set. When constructing a
suffix automaton representing the entire collection of15 455
songs, the new algorithm of section III-B runs in around 53
minutes, as compared to 934 minutes for the old algorithm
usingǫ-removal and determinization. Furthermore, a clear non-
linear runtime increase is exhibited by theǫ-removal algorithm
as the size of the song collection is increased.

E. Factor Uniqueness Analysis

We observed that our identification system performs well
when test snippets of five seconds or longer are used. In fact,
the accuracy is almost the same for ten-second snippets as
when the full audio of the song is used. This encouraged us
to analyze the sharing and repetition of similar audio seg-
ments among songs in our collection. A benefit of our music
phoneme representation is that it reduces the task of locating
audio similarity to that of finding repeated factors of the
song transcriptions. More precisely, let two song transcriptions
x1, x2 ∈ U share a common factorf ∈ Σ∗ such thatx1 = ufv
andx2 = afc; u, v, a, c ∈ Σ∗. Then the sections in these two
songs transcribed byf are similar. Further, if a songx1 has a
repeated factorf ∈ Σ∗ such thatx1 = ufvfw; u, v, w ∈ Σ∗,
then x1 has two similar audio segments. If|f | is large, then
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Fig. 12. Number of factors occurring in more than one song inS for different
factor lengths.

it is unlikely that the sharing off is coincidental, and likely
represents a repeated structural element in the song.

Fig. 12 gives the number of non-unique factors over a
range of lengths. This illustrates that some sharing of long
elements is present, indicating similar music segments across
songs. However, factor collisions decrease rapidly as the factor
length increases. For example, out of the24.4M existing
factors of length50, only 256 appear in more than one song.
Considering that the average duration of a music phoneme
in our experiments is around200ms, a factor length of50
corresponds to around ten seconds of audio, and in fact it is
quite likely that these colliding ten-second snippets consist of
primarily silence. This validates our initial estimate that ten
seconds of music are sufficient to uniquely map the audio to
a song in our database. In fact, even with factor length of
25 music phonemes, there are only962 non-unique factors
out of 23.9M total factors. This explains the fact that even a
five-second snippet is sufficient for accurate identification.

V. CONCLUSION

We have described a music identification system based on
Gaussian mixture models and weighted finite-state transducers
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and have shown it to be effective for identifying and detecting
songs in the presence of noise and other distortions. The
compact representation of the mapping of music phonemes to
songs based on transducers allows for efficient decoding and
high accuracy, even in the presence of noise and distortions.

We have given a novel algorithm for weighted suffix
and factor automaton construction, which has a linear-time
worst case complexity, a drastic improvement on the previous
method using the genericǫ-removal and determinization al-
gorithms. This algorithm is a natural and essential extension
of our previous unweighted algorithm [16] and matches our
previous results guaranteeing the compactness of suffix and
factor automata of automata. In this work we have applied
this algorithm to our music identification system, and indeed
in this setting it has exhibited an over 17-fold speedup over
the previous method. Furthermore, this contribution is general
and applicable to a number of other tasks where indexation of
strings or sequences is required.
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