
Factor Automata of Automata and Applications

Mehryar Mohri1,2, Pedro Moreno2, and Eugene Weinstein1,2

1 Courant Institute of Mathematical Sciences
251 Mercer Street, New York, NY 10012.

2 Google Research
76 Ninth Avenue, New York, NY 10011.

Abstract. An efficient data structure for representing the full index of
a set of strings is the factor automaton, the minimal deterministic au-
tomaton representing the set of all factors or substrings of these strings.
This paper presents a novel analysis of the size of the factor automaton
of an automaton, that is the minimal deterministic automaton accepting
the set of factors of a finite set of strings, itself represented by a finite
automaton. It shows that the factor automaton of a set of strings U has
at most 2|Q| − 2 states, where Q is the number of nodes of a prefix-tree
representing the strings in U , a bound that significantly improves over
2‖U‖−1, the bound given by Blumer et al. (1987), where ‖U‖ is the sum
of the lengths of all strings in U . It also gives novel and general bounds
for the size of the factor automaton of an automaton as a function of the
size of the original automaton and the maximal length of a suffix shared
by the strings it accepts. Our analysis suggests that the use of factor
automata of automata can be practical for large-scale applications, a
fact that is further supported by the results of our experiments applying
factor automata to a music identification task with more than 15,000
songs.

1 Introduction

Pattern matching in strings is a fundamental problem in computer science and
has been extensively studied in the past [6, 5]. With the renewed interest in search
within the massive amounts of natural language texts, biological sequences, and
other widely accessible digitized sequences, this problem has gained further at-
tention and significance.

This paper considers the problem of constructing a full index, or inverted
file, for a large set of strings represented by a finite automaton. This problem
arises in a number of different contexts, such as those where the set of strings
is directly given as an automaton produced by an information extraction or
speech recognition system, or when the set of strings is compactly stored as an
automaton to reduce storage and increase the efficiency of their use [1, 9].

An efficient and compact data structure for representing a full index of a
set of strings is a factor automaton, that is a minimal deterministic automaton
representing the set of all factors of a set of strings. Since it is deterministic, the

factor automaton can be used to determine if a string x is a factor in time linear
in its length O(|x|), which is optimal.

The construction and the size of a factor automaton have been specifically
analyzed in the case of a single string [3, 4]. These authors demonstrated the
remarkable result that the size of the factor automaton of a string x is linear,
and that, more precisely, for strings x of length more than three, it has at
most 2|x| − 2 states and 3|x| − 4 transitions. They also gave on-line linear-time
algorithms for constructing a factor automaton from x. Similar results were given
for the suffix automata, the minimal deterministic automata accepting exactly
the set of suffixes of a string.

The construction and the size of the factor automata has also been previously
studied in the case of a finite set of strings U = {x1, . . . , xm} [2]. These authors
showed that an automaton accepting all factors of U can be constructed that
has at most 2‖U‖−1 states and 3‖U‖−3 transitions, where ‖U‖ is the sum of
the lengths of all strings in U , that is ‖U‖ =

∑m
i=1 |xi|.

This paper proves a significantly better bound on the size of the suffix au-
tomaton or factor automaton of a set of strings. It shows that the factor au-
tomaton of a set of strings U has at most 2|Q|−2 states, where Q is the number
of nodes of a prefix-tree representation of the strings in U . The number of nodes
|Q| can be dramatically smaller than ‖U‖, the sum of the lengths of all strings.
Thus, our space bound clearly improves on previous work [2]. Also, although
we are not demonstrating this here, our analysis leads to an algorithm for con-
structing the factor automaton of U in time O(|Q|). More generally, we give
novel bounds for the size of the factor automaton of an acyclic finite automaton
as as a function of the size of the original automaton and the maximal length of
a suffix shared by the strings accepted by the original automaton.

The original motivation for this work was the design of a large-scale music
identification system [9], where we represented the songs found in the database
by a compact finite automaton, as we shall briefly describe later in this paper.
To facilitate an efficient search of song snippets, we constructed the minimal
deterministic factor automaton of the song automaton. Empirically, the size of
the factor automaton was not prohibitive. But, to ensure the scalability of our
approach to a larger set of songs, e.g., several million songs, we wished to derive
a bound on the size of the factor automata of automata. One characteristic of
the strings considered in this application as in many others is that the original
strings do not share long suffixes. This motivated our analysis of the size of the
factor automata with respect to the length of the common suffixes in the original
automaton.

The remainder of the paper is organized as follows. Section 2 introduces the
string and automata definitions and terminology used throughout the paper.
In Section 3, we describe a novel analysis of factor automata and present new
bounds on the size of the factor automaton and suffix automaton of an automa-
ton. Section 4 briefly describes the use of factor automata in music identification
and reports several empirical results related to their size.

2 Factors of a Finite Automaton

This section reviews some key properties of factors of a fixed finite automaton,
generalizing similar observations made for strings by Blumer et al. (1985).

We denote by Σ a finite alphabet. The length of a string x ∈ Σ∗ over that
alphabet is denoted by |x|. A factor, or substring, of a string x ∈ Σ∗ is a sequence
of symbols appearing consecutively in x. Thus, y is a factor of x iff there exist
u, v ∈ Σ∗ such that x = uyv. A suffix of a string x ∈ Σ∗ is a factor that appears
at the end of x. Put otherwise, y is a suffix of x iff there exists u ∈ Σ∗ such
that x = uy. Analogously, y is a prefix of x iff there exists u ∈ Σ∗ such that
x = yu. More generally, a factor, suffix, or prefix of a set of strings X or an
automaton A, is a factor, suffix, or prefix of a string in X or a string accepted
by A, respectively.

In some applications such as music identification the strings considered may
be long, e.g., sequences of music sounds, but with relatively short common suf-
fixes. This motivates the following definition.

Definition 1. Let k be a non-negative integer. We will say that a finite automa-
ton A is k-suffix unique if no two strings accepted by A share a suffix of length
k. A is said to be suffix-unique when it is k-suffix unique with k = 1.

We denote by F (A) the minimal deterministic automaton accepting the set of
factors of a finite automaton A, that is the set of factors of the strings accepted by
A. Similarly, we denote by S(A) the minimal deterministic automaton accepting
the set of suffixes of an automaton A.

The following generalizes to automata some definitions and results given by
Blumer et al. (1985) for a single string.

Definition 2. Let A be a finite automaton. For any string x ∈ Σ∗, we define
end -set(x) as the set of states of A reached by the paths in A labeled with x. We
say that two strings x and y in Σ∗ are equivalent and denote this by x ≡ y, when
end -set(x) = end -set(y). This defines a right-invariant equivalence relation on
Σ∗. We denote by [x] the equivalence class of x ∈ Σ∗.

Lemma 1. Assume that A is suffix-unique. Then, a non-suffix factor x of the
automaton A is the longest member of [x] iff it is either a prefix of A, or both
ax and bx are factors of A for distinct a, b ∈ Σ.

Proof. Let x be a non-suffix factor of A. Clearly, if x is not a prefix, then there
must be distinct a and b such that ax and bx are factors of A, otherwise [x]
would admit a longer member. Conversely, assume that ax and bx are both
factors of A with a 6= b. Let y be the longest member of [x]. Let q be a state
in end -set(x) = end -set(y). Since x is not a suffix, q is not a final state, and
there exists a non-empty string z labeling a path from q to a final state. Since
A is suffix-unique, both xz and yz are suffixes of the same string. Since y is the
longest member of [x], x must be a suffix of y. Since ax and bx are both factors
of A with a 6= b, we must have y = x. Finally, if x is a prefix, then clearly it is
the longest member of [x]. ut

0 1
a

2
c

3a

4

b 5

b

a

Fig. 1. Finite automaton A accepting the strings ac, acab, acba.

Proposition 1. Assume that A is suffix-unique. Let SA = (QA, IA, FA, EA)
be the deterministic automaton whose states are the equivalence classes QA =
{[x] 6= ∅ : x ∈ Σ∗}, its initial state IA = {[ε]}, its final states FA = {[x] :
end -set(x) ∩ F 6= ∅} where F is the set of final states of A, and its transition
set E = {([x], a, [xa]) : [x], [xa] ∈ QA}. Then, SA is the minimal deterministic
suffix of A: SA = S(A).

Proof. By construction, SA is deterministic and accepts exactly the set of suffixes
of A. Let [x] and [y] be two equivalent states of SA. Then, for all z ∈ Σ∗,
[xz] ∈ FA iff [yz] ∈ FA, that is z is a suffix of A iff yz is a suffix of A. Since A
is suffix-unique, this implies that either x is a suffix of y or vice-versa, and thus
that [x] = [y]. Thus, SA is minimal. ut

In much of what follows, we will be interested in the case where the automa-
ton A is acyclic. We denote by |A|Q the number of states of A, by |A|E the
number of transitions of A, and by |A| the size of A defined as the sum of the
number of states and transitions of A.

3 Space Bounds for Factor Automata

The objective of this section is to derive new bounds on the size of S(A) and
F (A) in the case of interest for our applications where A is an acyclic automaton,
typically deterministic and minimal, representing a set of strings.

When A represents a single string, there are standard algorithms for con-
structing S(A) and F (A) from A in linear time [3, 4]. In the general case, S(A)
can be constructed from A as follows: add an ε-transition from the initial state
of A to each state of A, then apply an ε-removal algorithm, followed by deter-
minization and minimization to obtain S(A). F (A) can be obtained similarly by
further making all states final before applying ε-removal, determinization, and
minimization. It can also be obtained from S(A) by making all states of S(A) fi-
nal and applying minimization. Figure 1 shows a simple automaton A accepting
three strings and Figure 2 its suffix automaton S(A).

When A represents a single string x, the size of the automata S(A) and F (A)
can be proved to be linear in |x|. More precisely, the following bounds hold for
|S(A)| and |F (A)| [4, 3]:

|S(A)|Q ≤ 2|x| − 1 |S(A)|E ≤ 3|x| − 4
|F (A)|Q ≤ 2|x| − 2 |F (A)|E ≤ 3|x| − 4.

(1)

0

1
a

2

b

3
c

c

4

b

a

5
a

6
b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) 6= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

x
vu

u’

Fig. 3. Illustration of the situation described in Lemma 2. uv and u′v are suffixes of
the same string x. Thus, u and u′ are also suffixes of the same string. Thus, u is a
suffix of u′ or vice-versa.

u and u′ are suffixes of the same string. Thus, u is a suffix of u′ or vice-versa.
Figure 3 illustrates this situation.

Assume without loss of generality that u is a suffix of u′. Then, for any
string w, if u′w is a suffix of A so is uw. Thus, suff(q′) ⊆ suff(q), which implies
N(q′) ⊆ N(q). When u′ is a suffix of u, we obtain similarly the other case of the
statement of the lemma. ut
Note that Lemma 2 holds even when A is a non-deterministic automaton.

Lemma 3. Let A be a suffix-unique deterministic automaton and let q and q′

be two distinct states of S(A) such that N(q) = N(q′), then either q is a final
state and q′ is not, or q′ is a final state and q is not.

Proof. Assume that N(q) = N(q′). By Lemma 2, this implies suff(q) = suff(q′).
Thus, the same non-empty strings label the paths from q to a final state or the
paths from q′ to a final state. Since S(A) is a minimal automaton, the distinct
states q and q′ are not equivalent. Thus, one must admit an empty path to a
final state and not the other. ut

The following proposition extends the results of [3] which hold for a set of
strings, to the case where A is an automaton.

Proposition 2. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
suffix automaton of A is bounded as follows

|S(A)|Q ≤ 2|A|Q − 3. (4)

Proof. If the strings accepted by A are all of the form an, S(A) can be derived
from A simply by making all its states final and the bound is trivially achieved.
In the remaining of the proof, we can thus assume that not all strings accepted
by A are of this form.

Let F be the unique final state of S(A) with no outgoing transitions. Lem-
mas 2-3 help define a tree T associated to all states of S(A) other than F by
using the ordering:

N(q) v N(q′) iff
{

N(q) ⊂ N(q′) or
N(q) = N(q′) and q′ final, q non-final. (5)

We will identify each node of T with its corresponding state in S(A). By Propo-
sition 1, each state q of S(A) can also be identified with an equivalence class

[x]. Let q be a state of S(A) distinct from F , and let [x] be its corresponding
equivalence class. Observe that since A is suffix-unique, end -set(x) coincides
with N(q).

We will show that the number of nodes of T is at most 2|A|Q− 4, which will
yield the desired bound on the number of states of S(A). To do so, we bound
separately the number of non-branching and branching nodes of T .

Let q be a node of T and let [x] be the corresponding equivalence class,
with x its longest member. The children of q are the nodes corresponding to the
equivalence classes [ax] where a ∈ Σ and ax is a factor of A.

By Lemma 1, if x is a non-suffix and non-prefix factor, then there exist factors
ax and bx with a 6= b. Thus, q admits at least two children corresponding to [ax]
and [bx] and is thus a branching node. Thus non-branching nodes can only be
either nodes q where x is a prefix, or those where x is a suffix, that is when q is
a final state of S(A).

Since the strings accepted by A are not all of the form an for some a ∈ Σ, the
empty prefix ε occurs at least in two distinct left contexts a and b with a 6= b.
Thus, the prefix ε, which corresponds to the root of T , is necessarily branching.
Also, let f be the unique final state of A with no outgoing transitions. The
equivalence class of the longest factor ending in f , that is the longest string
accepted by A corresponds to the state F in S(A) which is not included in the
tree T . Thus, there are at most |A|Q − 2 non-branching prefixes.

There can be at most one non-branching node for each string accepted by
A. Let Nstr denote the number of strings accepted by A, then, the number of
non-branching nodes Nnb of T is at most Nnb ≤ |A|Q − 2 + Nstr.

To bound the number of branching nodes Nb of T , observe that since A is
suffix-unique, each string accepted by A must end with a distinct symbol ai,
i = 1, . . . , Nstr. Each ai represents a distinct left context for the empty factor
ε, thus the root node [ε] admits all [ai]s, i = 1, . . . , Nstr, as children. Let Tai

represent the sub-tree rooted at [ai] and let nai represent the number of leaves
of Tai . Let aj , j = Nstr + 1, . . . , Nstr + k denote the other children of the root
and let Taj denote each of the corresponding sub-tree. A tree with nai leaves has
less than nai branching nodes. Thus, the number of branching nodes of Tai is at
most nai − 1. The total number of leaves of T is at most the number of disjoint
subsets of Q excluding the initial state and f .

Note however that when the root node [ε] admits only [ai]s, i = 1, . . . , Nstr,
as children, that is when k = 0, then there is at least one ai, say a1, that is
also a prefix of A since any other symbol would have been the root node’s child.
The node a1 will then have also a child since it corresponds to a suffix or final
state of S(A). Thus, a1 cannot be a leaf in that case. Thus, there are at most
as many as

∑Nstr+k
i=1 nai ≤ |A|Q − 2−min{1, k} leaves and the total number of

branching nodes of T , including the root is at most Nb ≤
∑Nstr+k

i=1 (nai−1)+1 ≤
|A|Q − 2 −min{1, k} − (Nstr + k) + 1 ≤ |A|Q − 2 − Nstr. The total number of
nodes of the tree T is thus at most Nnb + Nb ≤ 2|A|Q − 4. ut
In the specific case where A represents a single string x, the bound of Proposi-
tion 2 matches that of [4] or [3] since |A|Q = |x|+1. The bound of Proposition 2

is tight for strings of length more than three and thus is also tight for automata
accepting strings of length more than three. Note that the automaton of Figure 1
is suffix-unique, deterministic, and minimal and has |A|Q = 6 states. The number
of states of the minimal suffix automaton of A is |S(A)|Q = 7 < 2|A|Q − 3.

Corollary 1. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (6)

Proof. As mentioned earlier, a factor automaton F (A) can be obtained from a
suffix automaton S(A) by making all states final and applying minimization.
Thus, |F (A)| ≤ |S(A)|. The result follows Proposition 2. ut

Blumer et al. (1987) showed that an automaton accepting all factors of a set
of strings U has at most 2‖U‖−1 states, where ‖U‖ is the sum of the lengths of
all strings in U . The following gives a significantly better bound on the size of
the factor automaton of a set of strings U as a function of the number of nodes of
a prefix-tree representing U , which is typically substantially smaller than ‖U‖.
Corollary 2. Let U = {x1, . . . , xm} be a set of strings of length more than three
and let A be a prefix-tree representing U . Then, the number of states of the factor
automaton F (U) and that of the suffix tree S(U) of the strings of U are bounded
as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m}, ob-
tained by appending to each string of U a new symbol $i, i = 1, . . . , m, to make
their suffixes distinct and let B′ be the automaton obtained by minimization of
B. By construction, B has m more states than A, but since all final states of
B are equivalent and merged after minimization, B′ has at most one more state
than A.

By construction, B′ is a suffix-unique automaton and by Proposition 2,
|S(B′)|Q ≤ 2|B′|Q−3. Removing from S(B′) the transitions labeled with the ex-
tra symbols $i and connecting the resulting automaton yields the minimal suffix
automaton S(U). In S(B′), there must be a final state reachable by the tran-
sitions labeled with $i and only such transitions, which becomes non-accessible
after removal of the extra symbols. Thus, S(U) has at least one state less than
S(B′), which gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (8)

A similar bound holds for the factor automaton F (U) following the argument
given in the proof of Corollary 1. ut
When A is k-suffix-unique with a relatively small k as in our applications of
interest, the following proposition provides a convenient bound on the size of
the suffix automaton.

Proposition 3. Let A be a k-suffix-unique deterministic automaton accepting
strings of length more than three and let n be the number of strings accepted by A.
Then, the following bound holds for the number of states of the suffix automaton
of A:

|S(A)|Q ≤ 2|Ak|Q + 2kn− 3, (9)

where Ak is the part of the automaton of A obtained by removing the states and
transitions of all suffixes of length k.

Proof. Let A be a k-suffix-unique deterministic automaton accepting strings of
length more than three and let the alphabet Σ be augmented with n temporary
symbols $1, . . . , $n. By marking each string accepted by A with a distinct symbol
$i, we can turn A into a suffix-unique deterministic automaton A′.

To do that, we first unfold all k-length suffixes of A. In the worst case, all
these (distinct) suffixes were sharing the same (k−1)-length suffix. Unfolding can
thus increase the number of states of A by as many as kn−n states in the worst
case. Marking the end of each suffix with a distinct $-sign further increases the
size by n. The resulting automaton A′ is deterministic and |A′|Q ≤ |Ak|Q + kn.
By Proposition 2, the size of the suffix automaton of A′ is bounded as follows:
|S(A′)| ≤ 2|A′| − 3. Since transitions labeled with a $-sign can only appear
at the end of successful paths in S(A′), we can remove these transitions and
make their origin state final, and minimize the resulting automaton to derive a
deterministic automaton A′′ accepting the set of suffixes of A. The statement of
the proposition follows the fact that |A′′| ≤ |S(A′)|. ut
Since the size of F (A) is always less than or equal to that of S(A), we obtain
directly the following result.

Corollary 3. Let A be a k-suffix-unique automaton accepting strings of length
more than three. Then, the following bound holds for the factor automaton of A:

|F (A)|Q ≤ 2|Ak|Q + 2kn− 3. (10)

The bound given by the corollary is not tight for relatively small values of k in
the sense that in practice, the size of the factor automaton does not depend on
kn, the sum of the lengths of suffixes of length k, but rather on the number of
states of A used for their representation, which for a minimal automaton can
be substantially less. However, for large k, e.g., when all strings are of the same
length and k is as long as the length of the strings accepted by A, our bound
coincides with that of [2].

Similar results can be obtained for the number of transitions of the suffix
automaton or factor automaton of a suffix-unique automaton (|S(A)|E ≤ 3|A|E−
4) and k-suffix-unique automaton (|S(A)|E ≤ 3|Ak|E + 3kn− 3k − 1), as in the
string case.

4 Factor Automata for Music Identification

We have verified the above insights into factor automata in the context of a music
identification system [9]. Music identification is the task of matching an audio

0

1mp_72:ε

3mp_736:ε

6
mp_736:ε

2mp_240 :ε

4mp_736 :ε

7
mp_28 :ε

10

mp_2: Beatles--Let_It_Be

5mp_240:ε mp_20:Madonna--Ray_Of_Light

8mp_349:ε 9mp_448:ε mp_889:Van_Halen--Right_Now

Fig. 4. Finite-state transducer T0 mapping each song to its identifier.

stream to a particular song. In our system, we learn an inventory of music phone
units similar to phonemes in speech and a unique sequence of music phones
characterizing each song. We view the music phone set as our alphabet and
the music phone sequences as a set of strings, transforming the task into a
factor recognition problem. Our approach is to construct a compact transducer
mapping music phone sequences to corresponding song identifiers.

4.1 Factor Transducer Construction

Let Σ denote the set of music phones and let the set of music phone sequences
describing m songs be U = {x1, . . . , xm}, xi ∈ Σ∗ for i ∈ {1, . . . , m}. In our
experiments, m = 15,455, |Σ| = 1,024 and the average length of a transcrip-
tion xi is more than 1,700. Thus, in the worst case, there can be as many as
15,455×1,7002 ≈ 45×109 factors. The size of a naive prefix-tree-based represen-
tation would thus be prohibitive, and hence we endeavor to represent the set of
factors with a much more compact factor automaton. We construct a determin-
istic and minimal automaton representing the sequences in U and subsequently
a deterministic and minimal finite-state transducer mapping each song to its
identifier using transducer determinization and minimization algorithms [7, 8].

Let T0 be the transducer mapping phone sequences to song identifiers before
determinization and minimization. Figure 4 shows T0 when U is reduced to three
short songs. Let A be the acceptor obtained by omitting the output labels of T0.
The factor automaton F (A) is constructed as described in Section 3: by creating
ε-transitions from the initial state of A to all other states, making all states final,
and applying epsilon-removal, determinization, and minimization. This leads to
a compact automaton representing the factors of U (see Figure 5(a)), but it does
not allow us to output the song identifier associated with each factor.

To accomplish this, we create a compact weighted acceptor over the tropical
semiring accepting the factors of U that associates the total weight sx to each
factor x. A crucial advantage of this representation is the use of weighted de-
terminization and minimization [7] during which the song identifier is treated
as a weight that can be distributed along a path. The property that the sum of
the weights along the path labeled with x is sx is preserved by these operations.
Let Fw(A) be the automaton constructed analogously to F (A), but where each
ε-transition added is weighted with the song identifier corresponding to that
transition. The weighted acceptor Fw(A), obtained after determinization and
minimization over the tropical semiring, is transformed into a song recognition
transducer T by treating each output weight integer as a regular output symbol.

0 1

mp_2

mp_20

2mp_72

3mp_240

4
mp_736

5mp_240
mp_2

mp_20

6
mp_240

7

mp_736

mp_2

mp_20
mp_240

0
1/0

mp_2/0

mp_20/1

2/0mp_72/0

3/0
mp_240/0

4/0

mp_736/1

5/0mp_240/0
mp_2/0

mp_20/1

6/0

mp_240/0

7/0

mp_736/0

mp_2/0

mp_20/0

mp_240/0

(a) (b)

Fig. 5. (a) Deterministic and minimal unweighted factor acceptor F (A) for two songs.
(b) Deterministic and minimal weighted factor acceptor Fw(A) for two songs.

Given a music phone sequence as input, the associated song identifier is obtained
by summing the outputs yielded by T .

4.2 Automata Size

Figure 5(b) shows the weighted automaton Fw(A) corresponding to the un-
weighted automaton F (A) of Figure 5(a). Note that Fw(A) is no larger than
F (A). Remarkably, even in the case of 15,455 songs, the total number of tran-
sitions of Fw(A) was 53.0M, only about 0.004% more than F (A). We also have
|F (A)|E ≈ 2.1|A|E . As is illustrated in Figure 6(a), this multiplicative rela-
tionship is maintained as the song set size is varied between 1 and 15 ,455.
Furthermore, for the case of 15 ,455 songs, U is 45-suffix-unique. Figure 6(b)
demonstrates that the number of suffix “collisions” drops rapidly as the suffix
size is increased. We also have |Fw(A)|Q ≈ 28.8M ≈ 1.2|A|Q, meaning the bound
of Corollary 3 is verified in this empirical context.

5 Conclusion

We presented a novel analysis of the size of the factor automaton of an automa-
ton in terms of the size of the original automaton and described the use of factor
automata in a large-scale application. Our analysis shows that factor automata
can be practical for a large number of strings. Our application to a large-scale
music identification task further demonstrates this fact. Factor automata of au-
tomata are likely to form a useful and compact index for very large-scale tasks.

Acknowledgments

We thank Cyril Allauzen for several discussions about the material presented. The

research of Mehryar Mohri and Eugene Weinstein was partially supported by the New

York State Office of Science Technology and Academic Research (NYSTAR). This

project was also sponsored in part by the Department of the Army Award Num-

ber W81XWH-04-1-0307. The U.S. Army Medical Research Acquisition Activity, 820

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
iz

e

Songs

States factor
Arcs factor

States/Arcs Non-factor

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40 45

N
on

-u
ni

qu
e

so
ng

s

k (suffix length)

(a) (b)

Fig. 6. (a) Comparison of automaton sizes for different numbers of songs.
“#States/Arcs Non-factor” is the size of the automaton A accepting the entire song
transcriptions. “# States factor” and “# Arcs factor” is the number of states and
transitions in the weighted factor acceptor Fw(A), respectively. (b) Number of strings
in U for which the suffix of length k is also a suffix of another string in U .

Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering ac-

quisition office. The content of this material does not necessarily reflect the position or

the policy of the Government and no official endorsement should be inferred.

References

1. Cyril Allauzen, Mehryar Mohri, and Murat Saraclar. General Indexation of
Weighted Automata – Application to Spoken Utterance Retrieval. In Proceedings
of the Workshop on Interdisciplinary Approaches to Speech Indexing and Retrieval
(HLT/NAACL 2004), pages 33–40, Boston, Massachusetts, May 2004.

2. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnell. Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM, 34:578–
589, 1987.

3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science, 40:31–55, 1985.

4. M. Crochemore. Transducers and repetitions. Theoretical Computer Science, 45:63–
86, 1986.

5. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.
6. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, Cambridge, UK., 1997.
7. M. Mohri. Finite-state transducers in language and speech processing. Computa-

tional Linguistics, 23(2):269–311, 1997.
8. M. Mohri. Statistical Natural Language Processing. In M. Lothaire, editor, Applied

Combinatorics on Words. Cambridge University Press, 2005.
9. E. Weinstein and P. Moreno. Music Identification with Weighted Finite-State Trans-

ducers. In Proceedings of ICASSP 2007, Honolulu, Hawaii, 2007.

