Example: Loop Scheme

What makes a good scheme?

- recursive application leads to a smooth surface
Example: Loop Scheme

Refinement rule
Two geometric rules:
- even (update old points)
- odd (insert new)

Example: Loop Scheme

\[\alpha = \frac{3}{8}n, \quad n > 3, \quad \alpha = \frac{3}{16}, \text{if } n=3 \]
Control Points

Vertices of initial mesh

- define the surface
- each influences finite part of surface
Triangles and Quads
Uniform splines

- can be computed using subdivision
- quartic box spline rules:
Extraordinary Vertices

Triangle meshes

Quad meshes

regular

extraordinary
Constructing the Rules

Start with spline rules

- define rules for:

Extraordinary vertices

Boundaries

Creases etc.

© 2001, Denis Zorin
Constructing the Rules

- Invariance under rotations and translations

- Small support

- Smoothness and Fairness
Invariance w.r.t rigid transforms

transform T

subdivide
Invariance

Coefficients of masks must sum to 1

\[p = \sum a_i p_i \]

\[\sum a_i (p_i + t) = (\sum a_i) t + p \]

\[\text{displacement} \]

© 2001, Denis Zorin
Crease Examples
Subdivision Schemes

Primal

- Approx.
- Interp.

- Catmull-Clark
- Loop
- Butterfly

Dual

- (no interpolation)
- Doo-Sabin, Midedge
- Dyn-Levin-Liu (non-linear)
Catmull-Clark Scheme

Primal, quadrilateral, approximating

- tensor-product bicubic splines

© 2001, Denis Zorin
Catmull-Clark Scheme

Reduction to a quadrilateral mesh

- do one step of subdivision with special rules: only quads remain
Catmull-Clark Scheme

Extraordinary vertices

\[\gamma = \frac{1}{4K} \]

\[\beta = \frac{3}{2K} \]
Catmull-Clark Scheme

Boundaries, creases, corners

- cubic spline (same as Loop!)
- need to fix rules for \(C^1 \)-continuity

\[
\frac{1}{4} (1 + \cos \theta) \quad \frac{1}{2} - \frac{1}{4} \cos \theta
\]
Implementing subdivision

Operations needed:

- create a copy of the mesh maintaining vertex correspondence with the old mesh
- refine a mesh
- collect all neighbors of a vertex (for updating positions of old vertices, discussed at the last lecture)
- find vertices of two triangles sharing an edge (for computing positions of new vertices)
Implementing subdivision

Uniform refinement

- can be achieved using two simple operations

split two triangles adding a vertex

edge flip
Implementing subdivision

Step 1 (left): split all edges in any order, adding vertices for every edge and split adjacent triangles into two

Step 2 (right): flip all edges connecting an old vertex with a newly inserted one
Implementing an edge flip

Example: given a pair of half-edges he1, he2 flip the corresponding edge

```
he1.next = he22; he1.vertex = v4;
he2.next = he12; he2.vertex = v3;
he11.next = he1;
he12.next = he21; he12.face = f2;
he21.next = he2;
he22.next = he11; he22.face = f1;
if (f2.halfedge == he22)
    f2.halfedge = he12;
if (f1.halfedge == he12)
    f1.halfedge = he22;
if(v1.halfedge == he1)
    v1.halfedge = he21;
if(v2.halfedge == he2)
    v2.halfedge = he11;
```
Building a half-edge data structure

Similar to building face-based triangular mesh

Input: a list of vertices, a list of faces, each face is a list of vertex indices enumerated CCW

1. Create arrays of vertices, faces and halfedges, one half-edge for every seq. pair of vertices of every face; initialize all pointers to zero.

2. For each face f, with n vertices

 assign f.halfedge to its first half-edge;
 for each vertex v of a face, assign v->halfedge to the halfedge starting at it if nothing is assigned to it yet;
 for each half-edge he of a face, assign he.face = f, he->next = next half-edge in the face, he->vertex = next vertex in the face;
 record half-edge pointer he in the edge map:

 \[
 \text{edgemap}(v[i], v[i+1]) = he
 \]

3. Go over all entries of the edge map, assign for half-edges $\text{edgemap}(i, j)$ $\text{edgemap}(j, i)$ links to each other, if both exist.
Dealing with boundaries

To minimize implementation effort it is useful to create two halfedges for boundary edges, one of which has zero face pointer;

A boundary vertex v should always have $v.halfedge$ pointing to a boundary halfedge.

Then it is easy e.g. to find two boundary neighbors of a vertex.