The goal of this assignment is to implement a simple system for setting up lights in a 3d scene, as well as explore texturing surfaces (in the second part) and changing material settings.

1 What your program should do

There are three distinct parts to this assignment. One is setting up an environment with several objects and a simple camera manipulation interface. The second is a user interface for positioning lights in this environment, and the last one is an interface for choosing material colors for objects.

The current mode of the user interface is selected from a GLUT popup menu, which should contain the following items: camera, light positions, material diffuse, material specular.

Objects in the scene. Your scene should contain at least the following objects:

- A sphere; (do not use glutSphere, write your own OpenGL code generating polygons); If you sample ϕ at $n + 1$ values $\phi_r = r\pi/n, r = 0 \ldots n$, and $\theta_s = 2s\pi/m$ at $m + 1$ values $s = 0 \ldots m$, the points on the sphere have coordinates $(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$;
- A closed cylinder with caps filled in.
- An object of complex shape (you can use glutTeapot),
- A ground plane (just a big rectangle).

These objects will be texture-mapped in the second part.

Position the objects so that all are visible at once.

Use the simple interface in the sample code for changing the view: clicking on using gluLookAt and gluUnproject functions, up and down arrows move the camera closer and further away.

Light positioning interface. It should be possible to place 4 point light sources in the scene. Pressing a digit i from 1 to 4 enables manipulation of a light; a small sphere should be displayed at the light source position for enabled lights. The following operations should be supported:

- space bar turns the current light on and off;
- clicking close to the sphere with the mouse and dragging moves the light parallel to the screen plane;
- Pressing shift and moving the mouse up and down moves the light along a line perp. to the screen. Horizontal component of the mouse motion has no effect in this case;
- Pressing up and down arrows changes the light intensity.

Initially, only the first light is turned on. Pressing S toggles lights on and off. Note that the direction of motion of a light in the world coordinates depends on the camera position and orientation: You need to infer the direction of motion from the camera position, look-at point, and the up vector.
Material specification interface. In the lower left corner of your image, display four horizontal bars, three with the gradient of a primary color (red, green or blue) from 255 to 0, and one to set shininess for specular reflection (no effect for diffuse mode). The bars can be drawn as three OpenGL rectangles, setting up a simple orthographics camera just for this purpose (the camera is switched to a perspective view when the scene is drawn). The gradient of colors is obtained by assigning suitable colors to the vertices of each polygon.

When one of the two material menu items is selected, clicking on a point inside one of the rectangles affects the corresponding parameter of the material property of the current object (e.g. if the current mode is material diffuse, clicking on the red bar changes the red component of the diffuse coefficient). The space bar switches between objects.

2 What to turn in

Just the source code and a working executable of your program.