Example: Loop Scheme

What makes a good scheme?

- recursive application leads to a smooth surface

Example: Loop Scheme

Reffinement rule
Example: Loop Scheme

Two geometric rules:
- even (update old points)
- odd (insert new)

\[\alpha = \frac{3}{8}n, \quad n > 3, \quad \alpha = \frac{3}{16}, \text{ if } n = 3 \]

Control Points

Vertices of initial mesh
- define the surface
- each influences finite part of surface
Uniform splines
- can be computed using subdivision
- quartic box spline rules:
Extraordinary Vertices

Triangle meshes

Quad meshes

regular

extraordinary

Constructing the Rules

Start with spline rules
- define rules for:

Extraordinary vertices

Boundaries

Creases etc.
Constructing the Rules

- Invariance under rotations and translations
- Small support
- Smoothness and Fairness

Invariance w.r.t rigid transforms

Transform T to T and subdivide.
Invariance

Coefficients of masks must sum to 1

\[
p = \sum a_i p_i
\]

\[
\sum a_i (p_i + t) = (\sum a_i) t + p
\]

Crease Examples
Subdivision Schemes

Primal

<table>
<thead>
<tr>
<th>Approx.</th>
<th>Interp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catmull-Clark</td>
<td>Kobbelt</td>
</tr>
</tbody>
</table>

Dual

- (no interpolation)

| Doo-Sabin, Midedge |
| Dyn-Levin-Liu (non-linear) |

Catmull-Clark Scheme

Primal, quadrilateral, approximating

- tensor-product bicubic splines
Catmull-Clark Scheme

Reduction to a quadrilateral mesh
- do one step of subdivision with special rules: only quads remain

Catmull-Clark Scheme

Extraordinary vertices

\[\gamma = \frac{1}{4K} \]

\[\beta = \frac{3}{2K} \]
Catmull-Clark Scheme

Boundaries, creases, corners
- cubic spline (same as Loop!)
- need to fix rules for C^1-continuity

\[
\begin{array}{c|c|c}
3 & 1 \\
\hline
\frac{1}{32} & \frac{1}{32} \\
\hline
\frac{1}{4} (1 + \cos \theta) & \frac{1}{2} - \frac{1}{4} \cos \theta \\
3 & 1 \\
\hline
\frac{3}{32} & \frac{1}{32}
\end{array}
\]

Implementing subdivision

Operations needed:
- create a copy of the mesh maintaining vertex correspondence with the old mesh
- refine a mesh
- collect all neighbors of a vertex (for updating positions of old vertices, discussed at the last lecture)
- find vertices of two triangles sharing an edge (for computing positions of new vertices)
Implementing subdivision

Uniform refinement
- can be achieved using two simple operations

 split two triangles adding a vertex
 edge flip

Step 1 (left): split all edges in any order, adding vertices for every edge and split adjacent triangles in to two
Step 2 (right): flip all edges connecting an old vertex with a newly inserted one
Implementing an edge flip

Example: given a pair of half-edges $he1, he2$ flip the corresponding edge

![Diagram of half-edges](image)

```plaintext
he1.next = he22; he1.vertex = v4;
he2.next = he12; he2.vertex = v3;
he11.next = he1;
h12.next = he21; h12.face = f2;
h21.next = he2;
he22.next = he11; he22.face = f1;
if (f2.halfedge == he22)
f2.halfedge = he12;
if (f1.halfedge == he12)
f1.halfedge = he22;
if (v1.halfedge == he1)
v1.halfedge = he21;
if (v2.halfedge == he2)
v2.halfedge = he11;
```

Building a half-edge data structure

Similar to building face-based triangular mesh

Input: a list of vertices, a list of faces, each face is a list of vertex indices enumerated CCW

1. Create arrays of vertices, faces and halfedges, one half-edge for every seq. pair of vertices of every face; initialize all pointers to zero.
2. For each face f, with n vertices
   ```plaintext
   assign $f.halfedge$ to its first half-edge:
   for each vertex $v$ of a face, assign $v->halfedge$ to the halfedge starting at it if nothing is assigned to it yet;
   for each half-fedge $he$ of a face, assign $he.face = f$, $he->next = next$ half-edge in the face, $he->vertex = next$ vertex in the face;
   record half-edge pointer $he$ in the edge map:
   ```
   ```plaintext
   edgemap(v[i], v[i+1]) = he
   ```
3. Go over all entries of the edge map, assign for half-edges
   ```plaintext
   edgemap(i, j) edgemap(l, j)
   ```
links to each other if both exist

© 2001, Denis Zorin
Dealing with boundaries

To minimize implementation effort it is useful to create two halfedges for boundary edges, one of which has zero face pointer;

A boundary vertex v should always have $v.halfedge$ pointing to a boundary halfedge.

Then it is easy e.g. to find two boundary neighbors of a vertex.