Meshes

polygonal soup

— polygons specified one-by-one with no explicit information on
shared vertices

polygonal nonmanifold

— connectivity information is provided (which vertices are shared)
no restrictions on connections between polygons

polygonal manifold

— no edge is shared by more than two polygons; the faces
adjacent to a vertex form a single ring (incomplete ring for
boundary vertices)

triangle manifold
— In addition, all faces are triangles

Mesh elements
faces, vertices, edges

Each mesh element can have information
associated with it; typical mesh operations
Involve visiting (traversing) all vertices, faces, or edges

Mesh descriptions

« OBJformat |
each line defines an element (vertex or face); first
character defines the type

Vertex:
V X,yZ

Face with n vertices:
f 1121213 ...1In

where I1.. In, are vertex indices; the indices are obtained by
numbering all vertices sequentially as they appear in a
file

Mesh operations

* Types of mesh operations

traversals go over all elements of certain type
collect adjacent elements (e.g. all neighbors of a vertex)
refinement

edge flips /\ —> /\
N = LT

1::laznlccﬁtion/deletion \ / — \ /\

face merge E —> E

Traversal operations

 |terate over all vertices, faces, edge
— Vvisit each only once

— Iterate over all elements (faces, vertices,
edges) adjacent to an element

A simple mesh representation

One-to-one correspondence with OBJ

- 0
array of vertices 3
2 arrays for faces 1
each face iIs a list of vertex indices
enumerated clockwise 5 A
starting indices of face
0 4 vertex lists

0 1 2 3|3 2 4 vertex indices of

all faces

Traversal operations

Complexity of traversal operations w/o additional data
structures as function of the number of vertices,
assuming constant vertex/face ratio

iterate over V E F
collect
adjacent
\/ quadratic | quadratic ||linear
E quadratic |quadratic ||inear
F quadratic | quadratic |linear

Traversal operations

Most operations such as collecting all adjacent faces for a
vertex are slow, because the connectivity information is
not explicit: one needs to search the whole list of faces
to find faces with a given vertex; if neighbors are
encoded explicitly this can be done in const. time

Half-edge data structure

e General manifold polygonal meshes

— Polygons have variable number of vertices
variable size;

— data structures based on faces are inconvenient and
Inefficient.
e Solution: use edge-based structures (winged
edge, half-edge).
— Half-edge Is currently most common

— Each edge = 2 half edges; can be interpreted either
as
directed edge or face-edge pair

Half-edge data structure

struct HalfEdge

Vertex* vertex; // the head vertex the
//half edge i1s pointing to

Face* face; // 1T data stored i1n faces

HalfEdge* next; // next halfedge iIn the face
// on the left

HalfEdge* opp; // the other half edge for
//the same edge

+
struct Vertex {
HalfEdge* halfedge; // one of the half edges
) // starting at the vertex
O

Traversal operations

Vertices adjacent to a vertex v, mesh without
boundary
he = v->halfedge;
do {
he = he->0opp->next;
. // perform operations with
// he->vertex
} while (he '= v->halfedge)

No “If” statements.

Building a half-edge data structure

Input: a list of vertices, a list of faces, each face is a list of vertex
Indices enumerated CCW

1. Create arrays of vertices, faces and halfedges, one half-edge
{or every seq. pair of vertices of every face; initialize all pointers
0 zero.

2. For each face T, with n vertices

assign f.halfedge to its first half-edge;
for each vertex v of a face, assign v->hal fedge to the halfedge
starting at it if nothing is assigned to it yet;
for each half-fedge he of a face, assign
he.face =f, he->next =next half-edge in the face,
he->vertex = nextvertex in the face;
record half-edge pointer he in the edge map:

edgemap(v[i1].v[i1+1]) = he
3. Go over all entries of the edge_n)an, assign for half-edges
in

e_d%:jemap(l ,J) edgemap(j,1 ks to each other, It both
exis

Dealing with boundaries

To minimize implementation effort it is useful to create two
halfedges for boundary edges, one of which has zero face pointer,

A boundary vertex v should always have v_halfedge
pointing to a boundary halfedge.
Then it is easy e.g. to find two boundary neighbors of a vertex.

Face-based mesh representation

Useful primarily for triangle or quad. meshes

Triangle meshes:

struct Face {
Face* TfTace[3]; // pointers
//to neighbors

Vertex* vertex|[3]; @)
} v
struct Vertex {))
Face* face; // pointer to a triangle
//adjacent to the vertex

(not really necessary, can refer to vertices using a handle (Face pitr,
vertex index)

Traversing faces sharing a vertex

Assuming a mesh without boundary:

fstart = v->face;
T = fstart;

do {
... // perform operations with *f
// assume that vertex 1 1S across edge 1
i1IT (F->vertex[0]== v)
T = f->fFace[l]; // crossing edge #1 vert. 0 - vert. 2
else 1t (f->v[1] == v)
T = f->fFace[2]; // crossing edge #2 vert. 1 - vert. O

else
T = f->Tace[0]; // crossing edge #0 vert. 2 - vert. 1

} while(¥ ! = fstart);

Similar for edges and vertices.

All such operations can be done in const. time per vertex/face/edge.

Constructing a mesh data structure

Construct face-based structure from a list of triangles and vertices

Assume that vertices are listed counterclockwise for each triangle and v_i indices of vertices in the
face; other(il,i2) foril,i2 =0..2,il #i2 is the third vertex of the triangle i3 # i1,i2

Edgemap is a map (associative array) from pairs of vertices (directed edges) to faces;

in addfition;o the face, we also record the number of the edge in the face (See C++ STL map details
of use

This is pseudocode (not using C syntax to emphasize this)

for each face
create face structure f1l, initialize neighbors to O
for each triangle vertex 1=0..2
edgemap(v_i, v_{(1+1)%3}) := (f1, other(i, (1+1)%3))
endfor
endfor
for each entry (1,j) of the map edgemap
edgemap(1,J)
(f2,e2) == edgemap(j,1);
iIf 2 '= 0 then
fl->f[el] = 12
f2->f[e2] = 1
endif
endfor

