Meshes

- polygonal soup
- polygons specified one-by-one with no explicit information on shared vertices
- polygonal nonmanifold
- connectivity information is provided (which vertices are shared) no restrictions on connections between polygons
- polygonal manifold
- no edge is shared by more than two polygons; the faces adjacent to a vertex form a single ring (incomplete ring for boundary vertices)
- triangle manifold
- in addition, all faces are triangles

Mesh elements

faces, vertices, edges

Each mesh element can have information associated with it; typical mesh operations involve visiting (traversing) all vertices, faces, or edges

Mesh descriptions

- OBJ format each line defines an element (vertex or face); first character defines the type Vertex:
v x, yz
Face with n vertices: f i1 i2 i3 ... in
where i1.. in, are vertex indices; the indices are obtained by numbering all vertices sequentially as they appear in a file

Mesh operations

- Types of mesh operations
- traversals go over all elements of certain type
- collect adjacent elements (e.g. all neighbors of a vertex)
- refinement
- edge flips

- face addition/deletion
- face merge

Traversal operations

- Iterate over all vertices, faces, edge
- visit each only once
- iterate over all elements (faces, vertices, edges) adjacent to an element

A simple mesh representation

One-to-one correspondence with OBJ array of vertices
2 arrays for faces each face is a list of vertex indices enumerated clockwise

starting indices of face vertex lists
vertex indices of all faces

Traversal operations

Complexity of traversal operations w/o additional data structures as function of the number of vertices, assuming constant vertex/face ratio

collect iterate over adjacent	V	E	F
V	quadratic	quadratic	linear
E	quadratic	quadratic	linear
F	quadratic	quadratic	linear

Traversal operations

Most operations such as collecting all adjacent faces for a vertex are slow, because the connectivity information is not explicit: one needs to search the whole list of faces to find faces with a given vertex; if neighbors are encoded explicitly this can be done in const. time

Half-edge data structure

- General manifold polygonal meshes
- Polygons have variable number of vertices variable size;
- data structures based on faces are inconvenient and inefficient.
- Solution: use edge-based structures (winged edge, half-edge).
- Half-edge is currently most common
- Each edge = 2 half edges; can be interpreted either as
directed edge or face-edge pair

Half-edge data structure

struct HalfEdge \{
Vertex* vertex; // the head vertex the //half edge is pointing to
Face* face; // if data stored in faces
HalfEdge* next; // next halfedge in the face // on the left
HalfEdge* opp; // the other half edge for //the same edge
struct Vertex \{
HalfEdge* halfedge; // one of the half edges // starting at the vertex
\}

Traversal operations

Vertices adjacent to a vertex v, mesh without boundary he = v->halfedge;

he = he->opp->next;
... // perform operations with // he->vertex
\} while (he != v->halfedge)
No "if" statements.

Building a half-edge data structure

- Input: a list of vertices, a list of faces, each face is a list of vertex indices enumerated CCW
- 1. Create arrays of vertices, faces and halfedges, one half-edge for every seq. pair of vertices of every face; initialize all pointers to zero.
- 2. For each face f, with n vertices
assign f. halfedge to its first half-edge;
for each vertex \mathbf{v} of a face, assign \mathbf{v}->halfedge to the halfedge starting at it if nothing is assigned to it yet; for each half-fedge he of a face, assign he.face $=\mathrm{f}$, he->next =next half-edge in the face, he->vertex = next vertex in the face; record half-edge pointer he in the edge map:

$$
\operatorname{edgemap}(v[i], v[i+1])=h e
$$

- 3. Go over all entries of the edge map, assign for half-edges edgemap (\mathbf{i}, \mathbf{j}) edgemap (\mathbf{j}, \mathbf{i}) links to each other, if both exist

Dealing with boundaries

- To minimize implementation effort it is useful to create two halfedges for boundary edges, one of which has zero face pointer;
- A boundary vertex \mathbf{v} should always have \mathbf{v}. halfedge
- pointing to a boundary halfedge.
- Then it is easy e.g. to find two boundary neighbors of a vertex.

Face-based mesh representation

Useful primarily for triangle or quad. meshes
Triangle meshes:

```
struct Face {
```

Face* face[3]; // pointers //to neighbors
Vertex* vertex[3];
\}

```
struct Vertex
    Face* face; // pointer to a triangle
                                    //adjacent to the vertex
```

\}
(not really necessary, can refer to vertices using a handle (Face ptr,
vertex index)

Traversing faces sharing a vertex

Assuming a mesh without boundary:

```
fstart = v->face;
f = fstart;
do {
    ... // perform operations with *f
    // assume that vertex i is across edge i
    if (f->vertex[0]== v)
        f = f->face[1]; // crossing edge #1 vert. 0 - vert. 2
    else if (f->v[1] == v)
        f = f->face[2]; // crossing edge #2 vert. 1 - vert. 0
    else
        f = f->face[0]; // crossing edge #0 vert. 2 - vert. 1
    } while( f ! = fstart);
```

Similar for edges and vertices.
All such operations can be done in const. time per vertex/face/edge.

Constructing a mesh data structure

Construct face-based structure from a list of triangles and vertices
Assume that vertices are listed counterclockwise for each triangle and v i indices of vertices in the face; other (i1,i2) for $\mathrm{i} 1, \mathrm{i} 2=0 . .2, \mathrm{i} 1 \neq \mathrm{i} 2$ is the third vertex of the triangle $\mathrm{i} 3 \neq \mathrm{i} 1, \mathrm{i} 2$
Edgemap is a map (associative array) from pairs of vertices (directed edges) to faces;
in addition to the face, we also record the number of the edge in the face (See C++ STL map details of use)
This is pseudocode (not using C syntax to emphasize this)

```
for each face
    create face structure f1, initialize neighbors to 0
    for each triangle vertex i=0..2
        edgemap(v_i, v_{(i+1)%3}) := (f1, other(i, (i+1)%3) )
    endfor
endfor
for each entry (i,j) of the map edgemap
    edgemap(i,j)
    (f2,e2) := edgemap(j,i);
    if f2 != 0 then
        f1->f[e1] := f2
        f2->f[e2] := f1
    endif
endfor
```

