
MeshesMeshes
• polygonal soupp yg p

– polygons specified one-by-one with no explicit information on
shared vertices

• polygonal nonmanifoldp yg
– connectivity information is provided (which vertices are shared)

no restrictions on connections between polygons
• polygonal manifoldpolygonal manifold

– no edge is shared by more than two polygons; the faces
adjacent to a vertex form a single ring (incomplete ring for
boundary vertices)

• triangle manifold
– in addition, all faces are triangles

Mesh elementsMesh elements

faces vertices edgesfaces, vertices, edges

Each mesh element can have informationEach mesh element can have information
associated with it; typical mesh operations
involve visiting (traversing) all vertices, faces, or edgesg (g) g

Mesh descriptionsMesh descriptions
• OBJ format

h li d fi l t (t f) fi teach line defines an element (vertex or face); first
character defines the type
Vertex:

v x, y z
Face with n vertices:

f i1 i2 i3 … in

where i1.. in, are vertex indices; the indices are obtained by
numbering all vertices sequentially as they appear in a g q y y pp
file

Mesh operationsMesh operations
• Types of mesh operationsyp p

– traversals go over all elements of certain type
– collect adjacent elements (e.g. all neighbors of a vertex)
– refinement

– edge flips

– face
addition/deletion

– face merge

Traversal operationsTraversal operations

• Iterate over all vertices faces edgeIterate over all vertices, faces, edge
– visit each only once

iterate over all elements (faces vertices– iterate over all elements (faces, vertices,
edges) adjacent to an element

A simple mesh representationA simple mesh representation

One-to-one correspondence with OBJOne to one correspondence with OBJ
array of vertices
2 arrays for faces

0

1
3

2 arrays for faces
each face is a list of vertex indices
enumerated clockwise

1

2 4enumerated clockwise

0 4 starting indices of face
vertex lists

2 4

0 1 2 3 3 2 4 t i di f0 1 2 3 3 2 4 vertex indices of
all faces

Traversal operationsTraversal operations
Complexity of traversal operations w/o additional data p y p

structures as function of the number of vertices,
assuming constant vertex/face ratio

V E F

d ti d ti li

iterate over

collect
adjacent

V quadratic quadratic linear

E d ti d ti liE quadratic quadratic linear

F d ti d ti liF quadratic quadratic linear

Traversal operationsTraversal operations
Most operations such as collecting all adjacent faces for a p g j

vertex are slow, because the connectivity information is
not explicit: one needs to search the whole list of faces
to find faces with a given vertex; if neighbors areto find faces with a given vertex; if neighbors are
encoded explicitly this can be done in const. time

Half-edge data structureHalf edge data structure
• General manifold polygonal meshesp yg

– Polygons have variable number of vertices
variable size;

– data structures based on faces are inconvenient anddata structures based on faces are inconvenient and
inefficient.

• Solution: use edge-based structures (winged
edge half-edge)edge, half edge).
– Half-edge is currently most common
– Each edge = 2 half edges; can be interpreted either

asas
directed edge or face-edge pair

Half-edge data structureHalf edge data structure
struct HalfEdge {

Verte * erte // the head erte theVertex* vertex; // the head vertex the
//half edge is pointing to

Face* face; // if data stored in faces
HalfEdge* next; // next halfedge in the face

// on the left// on the left
HalfEdge* opp; // the other half edge for

//the same edge
}

struct Vertex {
HalfEdge* halfedge; // one of the half edges

// starting at the vertex
}

Traversal operationsTraversal operations

Vertices adjacent to a vertex v, mesh withoutVertices adjacent to a vertex v, mesh without
boundary
he = v->halfedge;
do {
he = he->opp->next;

// f ti ith... // perform operations with
// he->vertex

} while (he != v->halfedge)} while (he ! v >halfedge)

No “if” statements.

Building a half-edge data structureBuilding a half edge data structure
• Input: a list of vertices, a list of faces, each face is a list of vertex

indices enumerated CCW
• 1 Create arrays of vertices faces and halfedges one half edge• 1. Create arrays of vertices, faces and halfedges, one half-edge

for every seq. pair of vertices of every face; initialize all pointers
to zero.

• 2. For each face f, with n vertices
f f• assign f.halfedge to its first half-edge;

for each vertex v of a face, assign v->halfedge to the halfedge
starting at it if nothing is assigned to it yet;
for each half-fedge he of a face, assigng , g
he.face =f, he->next =next half-edge in the face,
he->vertex = next vertex in the face;
record half-edge pointer he in the edge map:

• edgemap(v[i] v[i+1]) = he• edgemap(v[i],v[i+1]) = he
• 3. Go over all entries of the edge map, assign for half-edges

edgemap(i,j) edgemap(j,i) links to each other, if both
exist

Dealing with boundariesDealing with boundaries

• To minimize implementation effort it is useful to create two
halfedges for boundary edges, one of which has zero face pointer;

• A boundary vertex v should always have v.halfedge
• pointing to a boundary halfedge.p g y g
• Then it is easy e.g. to find two boundary neighbors of a vertex.

Face-based mesh representationFace based mesh representation
Useful primarily for triangle or quad. meshes

Triangle meshes:Triangle meshes:
struct Face {

Face* face[3]; // pointers
//to neighbors

Vertex* vertex[3];
}

struct Vertex {struct Vertex {
Face* face; // pointer to a triangle

//adjacent to the vertex
}
(not really necessary can refer to vertices using a handle (Face ptr(not really necessary, can refer to vertices using a handle (Face ptr,
vertex index)

Traversing faces sharing a vertexTraversing faces sharing a vertex
Assuming a mesh without boundary:

fstart = v->face;
f = fstart;
do {

... // perform operations with *f
// assume that vertex i is across edge i// assume that vertex i is across edge i
if (f->vertex[0]== v)

f = f->face[1]; // crossing edge #1 vert. 0 - vert. 2
else if (f->v[1] == v)

f = f->face[2]; // crossing edge #2 vert. 1 - vert. 0
elseelse

f = f->face[0]; // crossing edge #0 vert. 2 - vert. 1
} while(f ! = fstart);

Similar for edges and vertices.

All such operations can be done in const. time per vertex/face/edge.

Constructing a mesh data structureConstructing a mesh data structure
Construct face-based structure from a list of triangles and vertices
Assume that vertices are listed counterclockwise for each triangle and v i indices of vertices in theAssume that vertices are listed counterclockwise for each triangle and v_i indices of vertices in the

face; other(i1,i2) for i1,i2 = 0..2, i1 ≠ i2 is the third vertex of the triangle i3 ≠ i1,i2
Edgemap is a map (associative array) from pairs of vertices (directed edges) to faces;
in addition to the face, we also record the number of the edge in the face (See C++ STL map details

of use)
This is pseudocode (not using C syntax to emphasize this)This is pseudocode (not using C syntax to emphasize this)

for each face
create face structure f1, initialize neighbors to 0
for each triangle vertex i=0..2

edgemap(v i v {(i+1)%3}) := (f1 other(i (i+1)%3))edgemap(v_i, v_{(i+1)%3}) : (f1, other(i, (i+1)%3))
endfor

endfor
for each entry (i,j) of the map edgemap

edgemap(i,j)
(f2,e2) := edgemap(j,i);
if f2 != 0 then
f1->f[e1] := f2
f2->f[e2] := f1

endif
endfor

