
Scan Conversion of LinesScan Conversion of Lines

Raster devices

Most device that are used to produce images are
raster devices that is use rectangular arrays ofraster devices, that is, use rectangular arrays of
dots (pixels) to display the image. This includes
CRT monitors, LCDs, laser and dot-matrix
printersprinters.

Examples of non-raster output devices include
vector displays (not used anymore) and plotters
still widely used.

Scan conversion = converting a continuous object
such as a line or a circle into discrete pixels

Scan conversion of lines

Given two points with integer coordinates
p1 =[x1 y1] and p2 =[x2 y2] the algorithm has top1 [x1, y1], and p2 [x2, y2] the algorithm has to
find a sequence of pixels approximating the line.

Slope: (y2 -y1)/(x2- x1)
We can always reorder p1 and p2 so that x2- x1

is nonnegative. It is convenient to look at only g y
nonnegative slopes; if the slope is negative,

change the sign of y.

Slope

Slope reduction: it is convenient to have the slope
of the line between 0 and 1; then we are able toof the line between 0 and 1; then we are able to
step along x axis.

slope > 1, cannot step
along x

slope < 1, can step
along x

To handle slope > 1, swap x and y

DDA

Assume that the slope is between 0 and 1
Simplest algorithm (pompously called differential

digital analyzer):
Step along x increment y by slope at each stepStep along x, increment y by slope at each step.
Round y to nearest pixel.
float y = y1;float y = y1;

float slope = (y2-y1)/(float)(x2-x1);

int x;

for(x = x1; x <= x2; x++) {

drawpixel(x, floor(y));

y += slope;

}

Bresenham Algorithm

What is wrong with DDA?
It requires floating-point operations.
These operations are expensive to implement in

hardwarehardware.
They are not really necessary if the endpoints are

integers. g
Idea: instead of incrementing y and rounding it at

each step, decide if we just go to the right, or to
the right and up using only integer quantitiesthe right and up using only integer quantities.

Increment decision

pixel corners on pixel corners onpixel corners on
different sides of the line
increment both x and y

pixel corners on
the same side of the line
increment only x

Need: fast way to determine on which side of a line
a point is.p

Half-plane test

Implicit equation can be used to perform the test.

0>−))pq(·n(0<−))pq(·n(

the point on the same side the point on the other sidethe point on the same side
with the normal

the point on the other side

n n

pq

n

p

qq

Implicit line equation

The implicit equation of the line through
p1 =[x1, y1], and p2 =[x2, y2] is
(n,q-p1) = 0, with n = [y2,-y1, x1,-x2]

We need to test on which side of the line is the point
q+d1 = [x,y] +[1/2,1/2]

d To do this we need to determine the sign of

[x,y]

d1
To do this, we need to determine the sign of
F = (n,2q+2d1 -2p1)
Note that multiplication by two makes

thi i t i !everything integer again!
Key idea: compute this quantity incrementally.

Incremental computation

At each step q = [x,y] changes either to [x+1,y]
(step to the right) or to [x+1,y+1] (step to the right and

up); in vector form, the new value of q is
either q +D or q+D with D =[1 0] and D =[1 1]either q +D1 or q+D2, with D1=[1,0] and D2=[1,1]
Fnext = (n,2q+2D + 2d1 -2p1) = (n,2q+ 2d1 -2p1) + 2(n,D)
= F + 2(n D) where D is D or D= F + 2(n,D), where D is D1 or D2

At each step, to get new F we have to increment
ld F ith b (D) (D)old F either by (n,D1) or (n,D2)

(n,D1) = y2-y1

(n,D2) = (y2-y1) - (x2-x1)

Bresenham algorithm

Assume the slope to be between 0 and 1.
i t 1 i t d 2 1int y = y1; int dy = y2-y1;

int dxdy = y2-y1+x1-x2;

int F = y2-y1+x1-x2; int x;int F y2 y1+x1 x2; int x;

for(x = x1; x < =x2; x++) {

drawpixel(x,y);

if(F < 0) {

F += dy;

} else {

y++; F+= dxdy;

}}

}

Bresenham algorithm

In your implementation you need to handle all
slopes!slopes!

First, reorder endpoints so that x1, <= x2

Then consider 4 cases:Then consider 4 cases:
y2,-y1 >= 0, x2,-x1 >= y2,-y1 positive slope <= 1
y y >= 0 x x < y y positive slope > 1y2,-y1 >= 0, x2,-x1 < y2,-y1 positive slope > 1
y2,-y1 < 0, x2,-x1 >= y1,-y2 negative slope >= -1

< 0 < ti l < 1y2,-y1 < 0, x2,-x1 < y1,-y2 negative slope < -1
In each case, make appropriate substitutions in
the algorithm.

Scan converting polygonsScan converting polygons

Polygons

with self intersections
convex

with self-intersections

non-convex

We focus on the convex case
with holes

Scan Conversion of Convex Polygons

General idea:
decompose polygon into tiles
scan convert each tile, moving along one edge

Convex Polygons
Scan convert a convex polygon:
void ScanY(Vertex2D v[], int num_vertices, int bottom_index)

array of vertices
in counterclockwise

array size number of the vertex
ith i di tin counterclockwise

order
with min. y coordinate

1. Find left edge of a tile:
f f•go around clockwise, starting from v[bot], until find an

edge such that it is not contained inside a scan line:

2. Similarly, find the right edge of a tile.
3 Scan convert all scan lines going from left to right edges3. Scan convert all scan lines going from left to right edges

Convex Polygons
void ScanY(Vertex2D v[], int num_vertices, int bottom_index) {

Initialize variables
remaining_vertices = num_vertices;
hil (i i ti > 0)while(remaining_vertices > 0)
{

Find the left top row candidate
Determine the slope and starting x location for the left tile edgeDetermine the slope and starting x location for the left tile edge
Find the right top row candidate
Determine the slope and starting x location for the right tile edge
for(row = bottom row; row < left top row && (_ ; _ p_

row < right_top_row; row++)
{

ScanX(ceil(left_pos),ceil(right_pos),row);
l ft + l ft tleft_pos += left_step;
right_pos += right_step;

}
bottom_row = row;_

}
}

Initialization
Keep track of the numbers of the vertices on the left and on the right:

int left_edge_end = bottom_index;
int right_edge_end= bottom_index;

This is the first row of a tile:
int bottom_row = ceil(v[bottom_index].y);

These are used to store the candidates for the top row of a tile:These are used to store the candidates for the top row of a tile:
int left_top_row = bottom_row;
int right_top_row = bottom_row;

Keep track of the intersections of left and right edges of a tile with
h i t l i t lihorizontal integer lines:
float left_pos, right_pos, left_step, right_step;

Number of remaining vertices:
int remaining_vertices;

A couple of auxilary variables: int edge_start; int row;

Find a tile
Compute increment in y direction and starting/ending
(left/right) point for the first scan of a tile

v[left edge end]v[left_edge_end]

l f

unit

left_pos

length
scanlinesv[edge_start]

bottom rowbottom_row

left_step

Find a tile
Find the left top row candidate
while(left_top_row <= bottom_row && remaining_vertices > 0)
{ Move to next edge:
edge_start = left_edge_end;_ _ _
Be careful with C % operator, (N-1) % M will give -1 for

N = 0, need to use (N+M-1) % M to get (N-1) mod M = N-1
left_edge_end = (left_edge_end+num_vertices-1)%num_vertices;
left top row = ceil(v[left edge end] y);left_top_row = ceil(v[left_edge_end].y);
remaining_vertices--;

We found the first edge that sticks out over bottom_row
d t i th l d t ti l ti f th l ft til ddetermine the slope and starting x location for the left tile edge.
if(left_top_row > bottom_row)
{
left step = (v[left edge end].x - v[edge start].x)/left_step (v[left_edge_end].x v[edge_start].x)/

(v[left_edge_end].y - v[edge_start].y);
left_pos = v[edge_start].x +

(bottom_row-v[edge_start].y)*left_step;
}}

}

Find a tile

Find the right top row candidate;
determine the slope and starting x location for the right tile edge.g g g
Exactly as for the left edge.

Scan convert a single row:
void ScanX(int left_col, int right_col, int row, int R,

int G, int B) {

if(left_col < right_col) {

for(int x = left_col; x < right_col; x++) {

draw_pixel(x,y);

}}

}

}

Texture mapping

Texture slides are based on E. Angel’s slides

y

xz
geometry screengeometry screen

image

Sampling texture maps

Texture map
Polygon far from the viewer
i ti j ti

Rasterized and textured

the back row is a very poor representation of the true
image

in perspective projection

Texture Example

The texture (below) is a
256 x 256 image that has been256 x 256 image that has been
mapped to a rectangular
polygon which is viewed in
perspectiveperspective

Applying Textures I

Three steps
specify texture

read or generate image
assign to textureassign to texture

assign texture coordinates to vertices
specify texture parametersspecify texture parameters

wrapping, filtering

Applying Textures II

specify textures in texture objects
set texture filter
set texture function
set texture wrap mode
set optional perspective correction hint
bind texture object
enable texturing
supply texture coordinates for vertex

coordinates can also be generated

Texture Objects

Like display lists for texture images
one image per texture objectone image per texture object

may be shared by several graphics contexts
Generate texture namesGenerate texture names

glGenTextures(n, *texIds);

Bind textures before usingBind textures before using

glBindTexture(target, id);

Specify Texture Image

Define a texture image from an array of
texels in CPU memorytexels in CPU memory

glTexImage2D(target, level, components,
w, h, border, format, type, *texels);

dimensions of image must be powers of 2
Texel colors are processed by pixel pipeliney

pixel scales, biases and lookups can be
done

Converting A Texture Image

If dimensions of image are not power of 2
gluScaleImage(format, w_in, h_in,

type in, *data in, w out, h out,type_ , data_ , _out, _out,
type_out, *data_out);

*_in is for source image

*_out is for destination image
Image interpolated and filtered during scaling

Specifying a Texture:Other Methods

Use frame buffer as source of texture image
t b ff iuses current buffer as source image

glCopyTexImage2D(...)glCopyTexImage2D(...)

l 1 ()l 1 ()glCopyTexImage1D(...)glCopyTexImage1D(...)

Modify part of a defined texture

22glTexSubImage2D(...)glTexSubImage2D(...)

glTexSubImage1D(...)glTexSubImage1D(...)

Do both with glCopyTexSubImage2D(...), etc.

Mapping a Texture

Based on parametric texture coordinates
lT C d*() ifi d t h tglTexCoord*() specified at each vertex

t 1, 1 (s, t) = (0.2, 0.8)
Texture Space Object Space

,
0, 1

(,) (,)
A

a

(0.4, 0.2)

B C
b

c

s0, 0 1, 0 (0.8, 0.4)

Generating Texture Coordinates

Automatically generate texture coords

glTexGen{ifd}[v]()

specify a plane

generate texture coordinates based upon
distance from plane

0DCBAgeneration modes
GL_OBJECT_LINEAR

0=+++ DCzByAx

GL_EYE_LINEAR

GL_SPHERE_MAP

Texture Application Methods

Filter Modes
minification or magnification
special mipmap minification filters

Wrap Modes
clamping or repeating

Texture Functions
how to mix primitive’s color with texture’s

lcolor
blend, modulate or replace texels

Filter Modes

Example:
glTexParameteri(glTexParameteri(target, type, modetarget, type, mode););

Texture Polygon PolygonTexture
Magnification Minification

Mipmapped Textures

Mipmap allows for prefiltered texture maps of
decreasing resolutionsdec eas g eso ut o s

Lessens interpolation errors for smaller textured objects
Declare mipmap level during texture definitionp p g

glTexImage*D(glTexImage*D(GL_TEXTURE_*D, level, …GL_TEXTURE_*D, level, …))

GLU mipmap builder routinesp p
gluBuild*DMipmaps(…)gluBuild*DMipmaps(…)

OpenGL 1.2 introduces advanced LOD controls

Wrapping Mode

Example:
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,
GL TEXTURE WRAP T GL REPEAT)GL_TEXTURE_WRAP_T, GL_REPEAT)

t

GL REPEAT GL CLAMP
s

texture GL_REPEAT
wrapping

GL_CLAMP
wrapping

Texture Functions

Controls how texture is applied
()glTexEnv{fi}[v](GL_TEXTURE_ENV, prop, param)

GL_TEXTURE_ENV_MODE modes
GL_MODULATE

GL_BLEND

GL_REPLACE

Set blend color with GL_TEXTURE_ENV_COLOR

Perspective Correction Hint

Texture coordinate and color interpolation
either linearly in screen space
or using depth/perspective values (slower)

Noticeable for polygons “on edge”
glHint(GL_PERSPECTIVE_CORRECTION_HINT, hint)

where hint is one of
GL_DONT_CARE

GL NICESTGL_NICEST

GL_FASTEST

Bump Mapping

Displacement Mapping

Bump mapped normals are inconsistent with actual geometry.
Problems arise (shadows).Problems arise (shadows).

Displacement mapping actually affects the surface geometry

Mipmaps

multum in parvo -- many things in a small place
A texture LOD technique
Prespecify a series of prefiltered texture maps of

decreasing resolutionsdecreasing resolutions
Requires more texture storage
Eliminates shimmering and flashing as objectsEliminates shimmering and flashing as objects

move

MIPMAPS

Arrange different versions into one block of
memorymemory

MIPMAPS

With versus without MIPMAP

