
Homogeneous coordinates

⎛ ⎞ ⎛
px
⎞regular 3D point to homogeneous:⎛⎝ px

py
p

⎞⎠
⎛⎜⎜⎝

px
py
pz

⎞⎟⎟⎠⎝
pz

⎠ ⎝
1

⎠
homogeneous point to regular 3D:⎛⎜⎜ px

py

⎞⎟⎟ ⎛
px/pw
p /p

⎞⎜⎜⎝ pz
pw

⎟⎟⎠
⎛⎝ py/pw

pz/pw

⎞⎠

Translation and scaling

Similar to 2D; translation by a vector

t = [tx, ty, tz]
⎡⎢⎢ 1 0 0 tx
0 1 0 ty

⎤⎥⎥⎢⎣ 0 0 1 tz
0 0 0 1

⎥⎦
Nonuniform scaling in
three directions

⎡
sx 0 0 0

⎤
three directions

⎡⎢⎢⎣ 0 sy 0 0
0 0 sz 0

⎤⎥⎥⎦⎣
0 0 0 1

⎦

Rotations around coord axes

angle , around X axis: ⎡ ⎤⎡ ⎤θ around Y axis:⎡⎢⎢⎣
cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 cosθ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤⎥⎥⎦ ⎣
0 0 0 1

⎦⎣
0 0 0 1

⎦
note where the minus is!⎡⎢ cos θ − sin θ 0 0

sin θ cos θ 0 0

⎤⎥
around Z axis: note where the minus is!

⎢⎢⎣ sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎥⎥⎦

General rotations

Given an axis (a unit vector) and an angle,
find the matrix

v
v

pk pkp
protated

p⊥
p
θ

p

rotated p⊥
p⊥

Only the component perpendicular to axis changes

General rotations

pk = (p v)vproject p on v:

(rotated vectors are denoted with 0)

pk = (p, v)v

p⊥ = p− (p, v)v

project p on v:

the rest of p is
the other component:

p0 = p0⊥ + pk

p0⊥ = p⊥ cos θ+ (a× p⊥) sin θrotate perp. component:

add back two components:

v

Combine everything, using to simplify:

p = p⊥ + pk

v × p⊥ = v × p

add back two components:

p0 = cos θ p + (1− cos θ)(p, v)v + sin θ(v × p)

General rotations

How do we write all this using matrices?

p0 = cos θ p + (1− cos θ)(p v)v + sin θ(v × p)

(p, v)v =

⎡⎣ vxvxpx + vxvypy + vxvzpz
vyvxpx + vyvypy + vyvzpz
vzvxpx + vzvypy + vzvzpz

⎤⎦ =
⎡⎣ vxvx vxvy vxvz

vyvx vyvy vyvz
vzvx vzvy vzvz

⎤⎦⎡⎣ px
py
pz

⎤⎦
p = cos θ p + (1− cos θ)(p, v)v + sin θ(v × p)

(v × p) =

⎡⎣ −vzpy + vypz
vzpx − vxpz
−vypx + vxpy

⎤⎦ =
⎡⎣ 0 −vz vy

vz 0 −vx
−vy vx 0

⎤⎦⎡⎣ px
py
pz

⎤⎦
⎣

z xpx + z ypy + z zpz

⎦ ⎣
z x z y z z

⎦⎣
pz

⎦
⎣ ⎦ ⎣ ⎦⎣ ⎦

Final result, the matrix for a general rotation around a by angle :θ

cos θ

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦+(1−cos θ)
⎡⎣ vxvx vxvy vxvz

vyvx vyvy vyvz
vzvx vzvy vzvz

⎤⎦+sin θ
⎡⎣ 0 −vz vy

vz 0 −vx
−vy vx 0

⎤⎦⎣ ⎦ ⎣
y

⎦ ⎣
y

⎦

Hirerarchical transformationsHirerarchical transformations

Building the arm

Start: unit square

Step 1: scale to theStep 1: scale to the
correct size

Building the arm
step 2: translate
to the correct
position

step 3: add
another unit
square

step 4: scale the
second box

position square

t 6 t l tstep 5: rotate the
second box

step 6: translate
the second box

Hierarchical transformations

Positioning each part of a complex object
separately is difficultseparately is difficult
If we want to move whole complex objects
consisting of many parts or complex parts of
an object (for example, the arm of a robot)
then we would have to modify
transformations for each part
solution: build objects hierarchically

Hierarchical transformations

Idea: group parts hierarchically,
associate transforms with eachassociate transforms with each
group.

whole robot = head + body +whole robot head body
legs + arms
leg = upper part + lower part
head = neck + eyes + ...y

Hierarchical transformations

Hierarchical representation of an object is a
treetree.
The non-leaf nodes are groups of objects.
The leaf nodes are primitives (e g polygons)The leaf nodes are primitives (e.g. polygons)
Transformations are assigned to each node,
and represent the relative transform of the p
group or primitive with respect to the parent
group
As the tree is traversed the transformationsAs the tree is traversed, the transformations
are combined into one

Hierarchical transformations

robot S1 , T1

h d b d i ht l fti ht l ft

Thead

head body right
arm

left
arm

right
leg

left
legTnose

upper
part

lower
part

nose eyes

Transformation stack

To keep track of the current transformation,
the transformation stack is maintained.
Basic operations on the stack:

push: create a copy of the matrix on the top
and put it on the top
pop: remove the matrix on the toppop: remove the matrix on the top
multiply: multiply the top by the given matrix
l d l th t t i ith iload: replace the top matrix with a given
matrix

Transformation stack example

TO draw the robot, we use manipulations with the
transform stack to get the correct transform fortransform stack to get the correct transform for
each part. For example, to draw the nose and
the eyes:

load S1
mult. T1

stack empty

1

S1 S1T1

stack empty

Transformation stack example

push mult Th dS T S T Tpush mult. Thead

S1T1S1T1 S1T1

S1T1 S1T1Thead

mult. TnoseS1T1Theadpush

S1T1Thead

S1T1Thead

S1T1TheadTnose

Draw the nose

S1T1 S1T1

Transformation stack example

S1T1TheadTeyesS1T1Thead

push

S1T1

S1T1Theadpop

S1T1

S1T1Thead

S1T1

S1T1Thead
mult. Teyes

Draw the
eyes pop

S1T1

S1T1Theadpop

S1T1

Draw
body etc...

1 1

Transformation stack example
Sequence of operations in the (pseudo)code:
load S1 ; mult T1; 1 ; 1;

push; mult. Thead;

push;push;

mult Tnose; draw nose;

pop;pop;

push;

mult T ; draw eyes;mult. Teyes; draw eyes;

pop;

pop;

...

Animation

The advantage of hierarchical transformations is
that everything can be animated with little effortthat everything can be animated with little effort.

General idea: before doing a mult. or load, compute
transform as a function of timetransform as a function of time.
time = 0;
main loop {

draw(time) {
main loop {

draw(time);
i t ti

...
compute Rarm(time)
mult. Rarm
...increment time;

}

...
}

P ti t f tiPerspective transformations

Transformation pipeline

Modelview: model (position objects) + view (position the camera)

Projection: map viewing volume to a standard cube

Perspective division: project 3D to 2D

Viewport: map the square [-1,1]x[-1,1]
in normalized device coordinates to the screen

Coordinate systems

z

x

x
Eye coordinates

z
Eye coordinates

World coordinates

World coordinates - fixed initial coord system;
everything is defined with respect to it

E di t di t t tt h d tEye coordinates - coordinate system attached to
the camera; in this system camera looks down
negative Z-axis

Positioning the camera

Modeling transformation: reshape the object,
orient the object position the object withorient the object, position the object with
respect to the world coordinate system
Viewing transformation: transform world
coordinates to eye coordinates
Viewing transformation is the inverse of the
camera positioning transformationcamera positioning transformation
Viewing transformation should be rigid:
rotation + translation
Steps to get the right transform: first, orient
the camera correctly, then translate it

Positioning the camera
Viewing transformation is the inverse of the camera

positioning transformation:

zworld

xworld
zeyexeye

Camera positioning: translate by (tx, tz)Ca e a pos t o g t a s ate by
Viewing transformation (world to eye):

(x, z)

xeye = xworld − tz

zeye = xworld − tx

Look-at positioning

Find the viewing transform given the eye (camera)
position point to look at and the up vectorposition, point to look at, and the up vector

Need to specify two transforms: rotation and
translation.
translation is easy
natural rotation: define implicitly using a p y g
point at which we want to look and a vector
indicating the vertical in the image (up vector)

can easily convert the eye point to the directioncan easily convert the eye point to the direction
vector of the camera axis; can assume up vector
perpendicular to view vector

Look-at positioning

Problem: given two pairs of perpendicular unit
vectors find the transformation mapping thevectors, find the transformation mapping the
first pair into the second

uu
c

l − c World coords

Eye coords

l

v =
l c

|l − c|
World coords

Look-at positioning

Determine rotation first,
looking how coord vectors change:

⎡
0
⎤ ⎡

1
⎤ ⎡

0
⎤

looking how coord vectors change:

R

⎡⎣ 0
−1

⎤⎦ = v R

⎡⎣ 0
0

⎤⎦ = v × u R

⎡⎣ 1
0

⎤⎦ = u

R

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ = R = [v × u u − v], ,⎣
0 0 1

⎦

Look-at positioning

⎡
1 0 0 cx

⎤Recall the matrix for translation:

T =

⎡⎢⎢⎣
1 0 0 cx
0 1 0 cy
0 0 1 cz
0 0 0 1

⎤⎥⎥⎦⎣
0 0 0 1

⎦
Now we have the camera positioning matrix, TR

() 1 1 1To get the viewing transform, invert: (TR)−1 = R−1T−1

For rotation the inverse is the transpose!

R−1 = [v × u u − v]T =

⎡⎣ (v × u)T

uT

⎤⎦⎣
−vT

⎦

Look-at viewing transformation

1

⎡
1 0 0 −cx
0 1 0 c

⎤
T−1 =

⎡⎢⎢⎣ 0 1 0 −cy
0 0 1 −cz
0 0 0 1

⎤⎥⎥⎦ = [ex ey ez − c]

V = R−1T−1 =

⎡⎢⎢ (v × u)T − (v × u .

c)

uT −(u.

c)

T ()

⎤⎥⎥V R T ⎢⎣ −vT (v.

c)

[0, 0,0] 1

⎥⎦

Positioning the camera in OpenGL

imagine that the camera is an object and
write a sequence of rotations and translationswrite a sequence of rotations and translations
positioning it
change each transformation in the sequence
to the opposite
reverse the sequence
Camera positioning is done in the code
before modeling transformations
OpenGL does not distinguish betweenOpenGL does not distinguish between
viewing and modeling transformation and
joins them into the modelview matrix

Space to plane projection

c =

⎡⎣ 00
⎤⎦ v =

⎡⎣ 0
0

⎤⎦In eye coordinate system ⎣
0

⎦ ⎣
−1

⎦In eye coordinate system
y

z c projecting to the plane
p

v
Image plane

projecting to the plane
z = -1

⎡
1 0 0 0

⎤⎡
px
⎤⎡

/
⎤

Proj(p) =

⎡⎢⎢⎣ 0 1 0 0
0 0 1 0
0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

p
py
pz
1

⎤⎥⎥⎦

P r o j (p) =

⎡⎣

− p x / p z

− p y / p z

−1

⎤⎦

Visibility

Objects that are closer to the camera occlude the
objects that are further awayobjects that are further away

All objects are made of planar polygons
A polygon typically projects 1 to 1A polygon typically projects 1 to 1
idea: project polygons in turn ; for each
pixel, record distance to the projected
polygon
when writing pixels, replace the old color with
the new one only if the new distance tothe new one only if the new distance to
camera for this pixel is less then the
recorded one

Z-buffering idea

Problem: need to compare distances for each
projected pointprojected point
Solution: convert all points to a coordinate
system in which (x,y) are image plane coords
and the distance to the image plane increases
when the z coordinate increases
In OpenGL this is done by the projectionIn OpenGL, this is done by the projection
matrix

Z buffer

Assumptions:
each pixel has storage for a z-value, in addition
to RGB
all objects are “scanconvertible” (typically areall objects are scanconvertible (typically are
polygons, lines or points)

Algorithm:g
initilize zbuf to maximal value
for each object

for each pixel (i j) obtained by scan conversionfor each pixel (i,j) obtained by scan conversion
if znew(i,j) < zbuf(i,j)

zbuf(i,j) = znew(i,j) ;
write pixel(i j)write pixel(i,j)

Z buffer

What are z values?
Z values are obtained by applying the projection

transform, that is, mapping the viewing frustum
to the standard cube.

Z value increases with th distance to the camera.
Z values for each pixel are computed for each pixel p p p

covered by a polygon using linear interpolation
of z values at vertices.

Typical Z buffer size: 24 bits (same as RGBTypical Z buffer size: 24 bits (same as RGB
combined).

Camera specification

Define the dimensions of the viewing volume (frustum)
most general glFrustum(left right bottom top near far)most general glFrustum(left,right,bottom,top,near,far)

(sl,st,-f)

In the picture:
l = left
r = right

(sr,st,-f)

(sl,sb,-f)

b = bottom
t = top
n = near
f = far

(r,b,-n)
(l,b,-n)

(l,t,-n)
(r,t,-n)

(sr,sb,-f)

f far
s = far/near

Camera specification

Less general but more convenient:
gluPerspective(field of view aspect ratiogluPerspective(field_of_view,aspect_ratio,
near,far)

In the picture:
fov = field of view,
h/w = a=aspect ratio

fov

h/w = a=aspect ratio

Relationship to frustum:
left = -a*near*tan(fov/2)

w

h
right = a*near*tan(fov/2)
bottom = -a*near*tan(fov/2)
top = a*near*tan(fov/2)

gluPerspective requires fov
in degrees, not radians!

Viewing frustum

Volume in space that will be visible in the image

r is the aspect ratio of
the image width/height

y

α n f

y

zz

Projection transformation

Maps the viewing frustum into a standard cube
extending from -1 to 1 in each coordinateextending from 1 to 1 in each coordinate

(normalized device coordinates)

3 t3 steps:
change the matrix of projection to keep z:

result is a parallelepiped
translate:

parallelepiped centered at 0
scale in all directions:scale in all directions:

cube of of size 2 centered at 0

Projection transformation

Proj(p) =

⎡⎢⎢ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥
⎡⎢⎢ px

py

⎤⎥⎥change so that we keep z:j(p) ⎢⎣ 0 0 1 0
0 0 −1 0

⎥⎦⎢⎣ pz
1

⎥⎦g p

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

px
py
pz

⎤⎥⎥⎦ =
⎡⎢⎢⎣

px
py
1

⎤⎥⎥⎦⎣ 0 0 0 1
0 0 −1 0

⎦⎣ pz
1

⎦ ⎣ 1
−pz

⎦
⎡
−px/pz

⎤
the homogeneous result corresponds to

⎡⎣−p y/pz
−1/pz

⎤⎦

the last component increases monotonically with z!

Projection transformation
⎡⎢ 1 0 0 0
0 1 0 0

⎤⎥ maps the frustum to an ⎢⎢⎣ 0 1 0 0
0 0 0 1
0 0 −1 0

⎥⎥⎦ p
axis-aligned parallelepiped

t
α

z1/n
1/f

α

tan
2

r tan
α

2

already centered in (x,y), center in z-direction and scale:

T =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0

0 0 1 −
1

2

µ
1

f
+
1

n

¶
⎤⎥⎥⎥⎥⎦ S =

⎡⎢⎢⎢⎢⎢⎢⎢
1

r tan α
2

0 0 0

0
1

tan α
2

0 0

0 0
2³ ´ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎣ 2

µ
f n

¶
0 0 0 1

⎦ ⎢⎢⎢⎣ 0 0 ³
1
n −

1
f

´ 0

0 0 0 1

⎥⎥⎥⎦

Projection transformation

Combined matrix, mapping frustum to a cube:

P = ST

⎡⎢⎢ 1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥ =
⎡⎢⎢⎢⎢

1

r tan α
2

0 0 0

0
1

tan α
2

0 0

⎤⎥⎥⎥⎥
P ST ⎢⎣ 0 0 0 1

0 0 −1 0

⎥⎦ ⎢⎢⎢⎢⎣
tan 2

0 0
f + n

n− f
2

fn

n − f
0 0 −1 0

⎥⎥⎥⎥⎦

To get normalized image plane coordinates
(valid range [-1,1] both) , just drop z in the result
and convert from homogeneous to regular.
To get pixel coordinates, translate by 1,
and scale x and y (Viewport transformation)and scale x and y (Viewport transformation)

