
Homogeneous coordinates

⎛ ⎞ ⎛
px
⎞regular 3D point to homogeneous:⎛⎝ px

py
p

⎞⎠
⎛⎜⎜⎝

px
py
pz

⎞⎟⎟⎠⎝
pz

⎠ ⎝
1

⎠
homogeneous point to  regular 3D:⎛⎜⎜ px

py

⎞⎟⎟ ⎛
px/pw
p /p

⎞⎜⎜⎝ pz
pw

⎟⎟⎠
⎛⎝ py/pw

pz/pw

⎞⎠



Translation and scaling

Similar to 2D; translation by a vector 

t = [tx, ty, tz]
⎡⎢⎢ 1 0 0 tx
0 1 0 ty

⎤⎥⎥⎢⎣ 0 0 1 tz
0 0 0 1

⎥⎦
Nonuniform scaling in
three directions

⎡
sx 0 0 0

⎤
three directions

⎡⎢⎢⎣ 0 sy 0 0
0 0 sz 0

⎤⎥⎥⎦⎣
0 0 0 1

⎦



Rotations around coord axes

angle    ,  around X axis: ⎡ ⎤⎡ ⎤θ around Y axis:⎡⎢⎢⎣
cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 cosθ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤⎥⎥⎦ ⎣
0 0 0 1

⎦⎣
0 0 0 1

⎦
note where the minus is!⎡⎢ cos θ − sin θ 0 0

sin θ cos θ 0 0

⎤⎥
around Z axis: note where the minus is!

⎢⎢⎣ sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎥⎥⎦



General rotations

Given an axis (a unit vector) and an angle, 
find the matrix 

v
v

pk pkp
protated 

p⊥
p
θ

p

rotated p⊥
p⊥

Only the component perpendicular to axis changes



General rotations

pk = (p v)vproject p on v:

(rotated vectors are denoted with 0 )

pk = (p, v)v

p⊥ = p− (p, v)v

project  p on  v:

the rest of p is
the other component:

p0 = p0⊥ + pk

p0⊥ = p⊥ cos θ+ (a× p⊥) sin θrotate perp. component:

add back two components:

v

Combine everything, using                                      to simplify: 

p = p⊥ + pk

v × p⊥ = v × p

add back two components:

p0 = cos θ p + (1− cos θ)(p, v)v + sin θ(v × p)



General rotations

How do we write all this using matrices?

p0 = cos θ p + (1− cos θ)(p v)v + sin θ(v × p)

(p, v)v =

⎡⎣ vxvxpx + vxvypy + vxvzpz
vyvxpx + vyvypy + vyvzpz
vzvxpx + vzvypy + vzvzpz

⎤⎦ =
⎡⎣ vxvx vxvy vxvz

vyvx vyvy vyvz
vzvx vzvy vzvz

⎤⎦⎡⎣ px
py
pz

⎤⎦
p = cos θ p + (1− cos θ)(p, v)v + sin θ(v × p)

(v × p) =

⎡⎣ −vzpy + vypz
vzpx − vxpz
−vypx + vxpy

⎤⎦ =
⎡⎣ 0 −vz vy

vz 0 −vx
−vy vx 0

⎤⎦⎡⎣ px
py
pz

⎤⎦
⎣

z xpx + z ypy + z zpz

⎦ ⎣
z x z y z z

⎦⎣
pz

⎦
⎣ ⎦ ⎣ ⎦⎣ ⎦

Final result, the matrix for a general rotation around a  by angle    :θ

cos θ

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦+(1−cos θ)
⎡⎣ vxvx vxvy vxvz

vyvx vyvy vyvz
vzvx vzvy vzvz

⎤⎦+sin θ
⎡⎣ 0 −vz vy

vz 0 −vx
−vy vx 0

⎤⎦⎣ ⎦ ⎣
y

⎦ ⎣
y

⎦



Hirerarchical transformationsHirerarchical transformations



Building the arm

Start: unit square

Step 1: scale to theStep 1: scale to the
correct size



Building the  arm
step 2: translate 
to the correct 
position

step 3: add 
another unit 
square

step 4: scale the
second box

position square

t 6 t l tstep 5: rotate the
second box

step 6: translate
the second box



Hierarchical transformations

Positioning each part of a complex object 
separately is difficultseparately is difficult
If we want to move whole complex objects 
consisting of many parts or complex parts of 
an object (for example, the arm of a robot) 
then we would have  to modify 
transformations for each part
solution: build objects hierarchically



Hierarchical transformations

Idea: group parts hierarchically,
associate transforms with eachassociate transforms with each
group.

whole robot = head + body +whole robot  head  body 
legs + arms
leg = upper part + lower part
head = neck + eyes + ...y



Hierarchical transformations

Hierarchical representation of an object is a 
treetree.
The non-leaf nodes are groups of objects.
The leaf nodes are primitives (e g polygons)The leaf nodes are primitives  (e.g. polygons)
Transformations are assigned to each node,
and represent the relative transform of the p
group or primitive with respect to the parent 
group
As the tree is traversed the transformationsAs the tree is traversed,  the  transformations 
are combined into one



Hierarchical transformations

robot S1 , T1

h d b d i ht l fti ht l ft

Thead

head body right 
arm

left
arm

right 
leg

left
legTnose

upper
part

lower
part

nose eyes



Transformation stack

To keep track of the current transformation,
the transformation stack is maintained. 
Basic operations on the stack:

push: create a copy of the matrix on the top 
and put it on the top
pop: remove the matrix on the toppop: remove the matrix on the top
multiply: multiply the top by the given matrix
l d l th t t i ith iload: replace the top matrix with a given 
matrix



Transformation stack example

TO draw the robot, we use manipulations with the 
transform stack to get the correct transform fortransform stack to get the correct transform for 
each part. For example,  to draw the nose and 
the eyes:

load S1
mult. T1

stack empty

1

S1 S1T1

stack empty



Transformation stack example

push mult Th dS T S T Tpush mult. Thead

S1T1S1T1 S1T1

S1T1 S1T1Thead

mult. TnoseS1T1Theadpush

S1T1Thead

S1T1Thead

S1T1TheadTnose

Draw the nose

S1T1 S1T1



Transformation stack example

S1T1TheadTeyesS1T1Thead

push

S1T1

S1T1Theadpop

S1T1

S1T1Thead

S1T1

S1T1Thead
mult. Teyes

Draw the
eyes pop

S1T1

S1T1Theadpop

S1T1

Draw
body etc... 

1 1



Transformation stack example
Sequence of operations in the (pseudo)code:
load S1 ; mult T1; 1 ; 1;

push; mult. Thead; 

push;push; 

mult Tnose; draw nose; 

pop;pop; 

push; 

mult T ; draw eyes;mult. Teyes;  draw eyes; 

pop;

pop;

...



Animation

The advantage of hierarchical transformations is 
that everything can be animated with little effortthat everything can be animated with little effort.

General idea:  before doing a mult. or load, compute
transform as a function of timetransform as a function of time.
time = 0;
main loop {

draw( time ) {
main loop { 

draw(time);
i t ti

...
compute Rarm(time)
mult. Rarm
...increment time;

}

...
}



P ti t f tiPerspective transformations



Transformation pipeline

Modelview: model (position objects) + view (position the camera)

Projection:  map viewing volume to a standard cube

Perspective division: project 3D to 2D

Viewport: map the square [-1,1]x[-1,1]
in normalized device coordinates to the screen



Coordinate systems

z

x

x
Eye coordinates

z
Eye coordinates

World coordinates

World coordinates - fixed initial coord system; 
everything is defined with respect to it

E di t di t t tt h d tEye coordinates - coordinate system attached to 
the camera; in this system camera looks down 
negative Z-axis



Positioning the camera

Modeling transformation: reshape the object,  
orient the object position the object withorient the object, position the object with 
respect to  the world coordinate system
Viewing transformation: transform world 
coordinates to eye coordinates
Viewing transformation is the inverse of the 
camera positioning transformationcamera positioning transformation
Viewing transformation should be rigid: 
rotation + translation
Steps to get the right transform: first, orient 
the camera correctly, then translate it



Positioning the camera
Viewing transformation is the inverse of the camera 

positioning transformation:

zworld

xworld
zeyexeye

Camera positioning: translate by (tx, tz)Ca e a pos t o g t a s ate by
Viewing transformation (world to eye):

( x, z)

xeye = xworld − tz

zeye = xworld − tx



Look-at positioning

Find the viewing transform given the eye (camera) 
position point to look at and the up vectorposition, point to look at, and the up vector

Need to specify two transforms: rotation and 
translation.
translation is easy
natural rotation: define implicitly using a p y g
point at which we want to look and a vector 
indicating the vertical in the image (up vector)

can easily convert the eye point to the directioncan easily convert the eye point to the direction 
vector of the camera axis; can assume up vector 
perpendicular to view vector



Look-at positioning 

Problem: given two pairs of perpendicular unit 
vectors find the transformation mapping thevectors, find the transformation mapping the 
first pair into the second

uu
c

l − c World coords

Eye coords

l

v =
l c

|l − c|
World coords



Look-at positioning

Determine rotation first, 
looking how coord vectors change:

⎡
0
⎤ ⎡

1
⎤ ⎡

0
⎤

looking how coord vectors change:

R

⎡⎣ 0
−1

⎤⎦ = v R

⎡⎣ 0
0

⎤⎦ = v × u R

⎡⎣ 1
0

⎤⎦ = u

R

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ = R = [v × u u − v],   ,⎣
0 0 1

⎦



Look-at positioning

⎡
1 0 0 cx

⎤Recall the matrix for translation:

T =

⎡⎢⎢⎣
1 0 0 cx
0 1 0 cy
0 0 1 cz
0 0 0 1

⎤⎥⎥⎦⎣
0 0 0 1

⎦
Now we have the camera positioning matrix, TR

( ) 1 1 1To get the viewing transform, invert: (TR)−1 = R−1T−1

For rotation the inverse is the transpose!

R−1 = [v × u u − v]T =

⎡⎣ (v × u)T

uT

⎤⎦⎣
−vT

⎦



Look-at viewing transformation

1

⎡
1 0 0 −cx
0 1 0 c

⎤
T−1 =

⎡⎢⎢⎣ 0 1 0 −cy
0 0 1 −cz
0 0 0 1

⎤⎥⎥⎦ = [ex ey ez − c]

 

V = R−1T−1 =

⎡⎢⎢ (v × u)T − (v × u .
 
c)

uT −(u.
 
c)

T ( )

⎤⎥⎥V  R T ⎢⎣ −vT (v.
 
c)

[0, 0,0] 1

⎥⎦



Positioning the camera in OpenGL

imagine that the camera is  an object and 
write a sequence of rotations and translationswrite a sequence of rotations and translations 
positioning it
change each transformation in the sequence 
to the opposite 
reverse the sequence
Camera positioning is done in the code 
before modeling transformations
OpenGL does not distinguish betweenOpenGL does not distinguish between 
viewing and modeling transformation and 
joins them into the modelview matrix



Space  to plane projection

c =

⎡⎣ 00
⎤⎦ v =

⎡⎣ 0
0

⎤⎦In eye coordinate system ⎣
0

⎦ ⎣
−1

⎦In eye coordinate system
y

z c projecting to the plane
p

v
Image plane

projecting to the plane
z = -1

⎡
1 0 0 0

⎤⎡
px
⎤⎡ 

/
⎤

Proj(p) =

⎡⎢⎢⎣ 0 1 0 0
0 0 1 0
0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

p
py
pz
1

⎤⎥⎥⎦
 

P r o j ( p ) = 

⎡⎣ 

− p x / p z 

− p y / p z 

−1 

⎤⎦



Visibility

Objects that are closer to the camera occlude the 
objects that are further awayobjects that are further away

All objects are made of planar polygons
A polygon typically projects 1 to 1A polygon typically projects 1 to 1
idea: project  polygons in turn ; for each 
pixel, record distance to the projected 
polygon
when writing pixels, replace the old color with 
the new one only if the new distance tothe new one  only if the  new distance to 
camera for this pixel  is  less then the 
recorded one



Z-buffering idea

Problem: need to compare distances for each 
projected pointprojected point
Solution: convert all points to a coordinate 
system in which (x,y) are image plane coords 
and the distance to the image plane increases  
when the z coordinate increases
In OpenGL this is done by the projectionIn OpenGL, this is  done by the projection 
matrix



Z buffer

Assumptions:
each pixel has storage for a z-value, in addition 
to RGB
all objects are “scanconvertible” (typically areall objects are scanconvertible  (typically are 
polygons, lines or points)

Algorithm:g
initilize zbuf to maximal value
for each  object

for each pixel (i j) obtained by scan conversionfor each pixel (i,j) obtained by scan conversion
if znew(i,j) < zbuf(i,j)

zbuf(i,j) = znew(i,j) ;
write pixel(i j)write pixel(i,j)



Z buffer

What are z values? 
Z values are obtained by applying the projection 

transform, that is, mapping the viewing frustum 
to the standard cube.

Z value increases with th distance to the camera.
Z values for each pixel are computed for each pixel p p p

covered by a polygon using linear interpolation 
of z values at vertices.

Typical Z buffer size: 24 bits (same as RGBTypical Z buffer size: 24 bits (same as RGB 
combined). 



Camera specification

Define the dimensions of the viewing volume (frustum)
most general glFrustum(left right bottom top near far)most general glFrustum(left,right,bottom,top,near,far)

(sl,st,-f)

In the picture:
l = left
r = right

(sr,st,-f)

(sl,sb,-f)

b = bottom
t = top
n = near
f = far

(r,b,-n)
(l,b,-n)

(l,t,-n)
(r,t,-n)

(sr,sb,-f)

f  far
s = far/near



Camera specification

Less general but more convenient: 
gluPerspective(field of view aspect ratiogluPerspective(field_of_view,aspect_ratio, 
near,far)

In the picture:
fov = field of view,
h/w = a=aspect ratio

fov

h/w = a=aspect ratio 

Relationship to frustum:
left         = -a*near*tan(fov/2)

w

h
right       =  a*near*tan(fov/2)
bottom   = -a*near*tan(fov/2)
top         =  a*near*tan(fov/2)

gluPerspective requires fov 
in degrees, not radians!



Viewing frustum

Volume in space that will be visible in the image

r is the aspect ratio of 
the image width/height

y

α n f

y

zz



Projection transformation

Maps the viewing frustum into a standard cube 
extending from -1 to 1 in each coordinateextending from 1 to 1 in each coordinate

(normalized device coordinates) 

3 t3 steps:  
change the matrix of projection to keep z:

result is a parallelepiped
translate:

parallelepiped centered at 0
scale in all directions:scale in all directions:

cube of of size 2 centered at 0



Projection transformation

Proj(p) =

⎡⎢⎢ 1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥
⎡⎢⎢ px

py

⎤⎥⎥change so that we keep z:j(p) ⎢⎣ 0 0 1 0
0 0 −1 0

⎥⎦⎢⎣ pz
1

⎥⎦g p

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

px
py
pz

⎤⎥⎥⎦ =
⎡⎢⎢⎣

px
py
1

⎤⎥⎥⎦⎣ 0 0 0 1
0 0 −1 0

⎦⎣ pz
1

⎦ ⎣ 1
−pz

⎦
⎡
−px/pz

⎤
the homogeneous result corresponds to 

⎡⎣−p y/pz
−1/pz

⎤⎦

the last component increases monotonically  with z!



Projection transformation
⎡⎢ 1 0 0 0
0 1 0 0

⎤⎥ maps the frustum to an ⎢⎢⎣ 0 1 0 0
0 0 0 1
0 0 −1 0

⎥⎥⎦ p
axis-aligned parallelepiped

t
α

z1/n
1/f

α

tan
2

r tan
α

2

already centered in (x,y), center in z-direction and scale:

T =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0

0 0 1 −
1

2

µ
1

f
+
1

n

¶
⎤⎥⎥⎥⎥⎦ S =

⎡⎢⎢⎢⎢⎢⎢⎢
1

r tan α
2

0 0 0

0
1

tan α
2

0 0

0 0
2³ ´ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎣ 2

µ
f n

¶
0 0 0 1

⎦ ⎢⎢⎢⎣ 0 0 ³
1
n −

1
f

´ 0

0 0 0 1

⎥⎥⎥⎦



Projection transformation

Combined matrix, mapping frustum to a cube: 

P = ST

⎡⎢⎢ 1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥ =
⎡⎢⎢⎢⎢

1

r tan α
2

0 0 0

0
1

tan α
2

0 0

⎤⎥⎥⎥⎥
P ST ⎢⎣ 0 0 0 1

0 0 −1 0

⎥⎦ ⎢⎢⎢⎢⎣
tan 2

0 0
f + n

n− f
2

fn

n − f
0 0 −1 0

⎥⎥⎥⎥⎦

To get  normalized image plane coordinates 
(valid range  [-1,1] both) , just drop z in the result 
and convert from homogeneous to regular.
To get pixel coordinates, translate by 1, 
and scale x and y (Viewport transformation)and scale x and y (Viewport transformation)


