Geometry review, part II

Line equations

parametric equation: q(t) = p + vt t = parameter p = point on the line n = unit normal v = unit vector alongimplicit equation: $(n \cdot (q - p)) = 0$

if we know $n = [n_x, n_y]$, then we can take v to be $v = [n_y, -n_x]$, and the other way around.

Line equations

Intersecting two lines:

take one in implicit form: $((q-p^1)\cdot n^1) = 0$ the other in parametric: $q = p^2 + v^2 t$

If $q^i = p^2 + v^2 t^i$ is the intersection point, it satisfies both equations.

Plug parametric into implicit, solve for tⁱ :

$$((p^{2} + v^{2}t^{i} - p^{1}) \cdot n^{2}) = 0$$

If $(v^{2} \cdot n^{1}) \neq 0$, then $t^{i} = -\frac{(p^{2} - p^{1} \cdot n^{1})}{(v^{2} \cdot n^{1})}$

Otherwise, the lines are parallel or coincide.

implicit equation: (q-p)-n =0, exactly like line in 2D!

parametric equation: 2 parameters t₁,t₂

 $q(t_1,t_2) = v_1 t_1 + v_2 t_2$, where v_1 and v_2 are two vectors in the plane.

$$\mathbf{V}_1 \times \mathbf{V}_2 = \mathbf{n}$$

Intersecting a line and a plane

Same old trick: use the parametric equation for the line, implicit for the plane.

- $(p^{1} + vt^{i} p^{2} \cdot n) = 0$
- $t^{i} = -\frac{(p^{1} p^{2} \cdot n)}{(v \cdot n)}$ Do not forget to check for zero in the denominator!

Transformations

Examples of transformations:

Transformations

More examples:

reflection with respect to the y-axis

Transformations

Linear transformations: take straight lines to straight lines.

- All of the examples are linear.
- Affine transformations: take parallel lines to parallel lines.
- All of the examples are affine,
- an example of linear non-affine is perspective projection.
- Orthogonal transformations: preserve distances, move all objects as rigid bodies.
- rotation, translation and reflections are affine.

Composition of transformations

- Order matters! (rotation * translation ≠ translation * rotation)
- Composition of transformations = matrix multiplication: if T is a rotation and S is a scaling, then applying scaling first and rotation second is the same as applying transformation given by the matrix TS (note the order).
- Reversing the order does not work in most cases

Transformations and matrices

Any affine transformation can be written as

$$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} + \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{pmatrix} \qquad \mathbf{p'} = \mathbf{A}\mathbf{p}$$

Images of basis vectors under affine transformations:

$$\mathbf{e}_{\mathbf{x}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{(column form of writing vectors)} \\ \mathbf{A}\mathbf{e}_{\mathbf{x}} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_{11} \\ \mathbf{a}_{21} \end{pmatrix} \quad \mathbf{A}\mathbf{e}_{\mathbf{y}} = \begin{pmatrix} \mathbf{a}_{21} \\ \mathbf{a}_{22} \end{pmatrix}$$

Transformations and matrices

Matrices of some transformations:

 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{shear} \quad \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} \quad \text{scale by factor s}$ $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \quad \text{rotation}$

 $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ reflection with respect to the origin $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ reflection with respect to y-axis

Homogeneous coordinates

Even for affine transformations we cannot write them as a single 2x2 matrix; we need an additional vector for translations.

We cannot write all linear transformations even in the form Ax +b where A is a 2x2 matrix and b is a 2d vector. Example: perspective projection

$$x' = 1$$

 $y' = y/x$

equations not linear!

Homogeneous coordinates

- replace 2d points with 3d points, last coordinate 1
- for a 3d point (x,y,w) the corresponding 2d point is (x/w,y/w) if w is not zero
- each 2d point (x,y) corresponds to a line in 3d; all points on this line can be written as [kx,ky,k] for some k.
- (x,y,0) does not correspond to a 2d point, corresponds to a direction (will discuss later)
- Geometric construction: 3d points are mapped to 2d points by projection to the plane z =1 from the origin

Homogeneous coordinates

From homogeneous to 2d: [x,y,w] becomes [x/w,y/w] From 2d to homogeneous: [x,y] becomes [kx,ky,k] (can pick any nonzero k!)

Homogeneous transformations

Any linear transformation can be written in matrix form in homogeneous coordinates.

Example 1: translations

[x,y] in hom. coords is [x,y,1]

Homogeneous transformations

Example 2: perspective projection

Matrices of basic transformations

Homogeneous line equation

Implicit line equation in 2D: $(n \cdot (q-p)) = 0$,

n = 2D vector, p = 2D point on the line.

Goal: rewrite in homogeneous coordinates.

2D point corresponds to a 3D line through origin; 2D line corresponds to a plane through origin

In other words, the 2D line is intersection of a plane through origin with the plane z=1.

Homogeneous line equation

Rewrite the line equation:

 $(n,q-p) = n_x x + n_y y + (n,-p) = ([n_x,n_y,-(n,p)],[x,y,1]) = (N,\overline{q})$

where N=[n_x , n_y ,-(n,p)] is the normal to the plane corresponding to the line, and \overline{q} is the homogeneous form of q=[x,y]: \overline{q} =[x,y,1]

Homogeneous form of the line equation:

 $(\mathbf{N} \cdot \overline{\mathbf{q}}) = \mathbf{0}$

Homogeneous coordinates

regular 3D point to homogeneous:

homogeneous point to regular 3D:

Translation and scaling

Similar to 2D; translation by a vector

$$t = [t_x, t_y, t_z]$$

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Nonuniform scaling in three directions

$$\begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotations around coord axes

around Z axis:

$\int \cos \theta$	$-\sin heta$	0	0]
$\sin heta$	$\cos heta$	0	0
0	0	1	0
0	0	0	1

note where the minus is!

General rotations

Given an axis (a unit vector) and an angle, find the matrix

Only the component perpendicular to axis changes

General rotations

(rotated vectors are denoted with ')

 $\begin{array}{ll} \text{project }p \text{ on }v \colon &p_{||}=(p,v)v\\ \text{the rest of }p \text{ is} &p_{\perp}=p-(p,v)v\\ \text{rotate perp. component:} &p_{\perp}'=p_{\perp}\cos\theta+(v\times p_{\perp})\sin\theta\\ \text{add back two components:} &p'=p_{\perp}'+p_{||} \end{array}$

Combine everything, using $v imes p_{\perp} = v imes p$ to simplify:

$$p' = \cos\theta \ p + (1 - \cos\theta)(p, v)v + \sin\theta(v \times p)$$

General rotations

How do we write all this using matrices?

$$p' = \cos \theta \ p + (1 - \cos \theta)(p, v)v + \sin \theta(v \times p)$$
$$(p, v)v = \begin{bmatrix} v_x v_x p_x + v_x v_y p_y + v_x v_z p_z \\ v_y v_x p_x + v_y v_y p_y + v_y v_z p_z \\ v_z v_x p_x + v_z v_y p_y + v_z v_z p_z \end{bmatrix} = \begin{bmatrix} v_x v_x & v_x v_y & v_x v_z \\ v_y v_x & v_y v_y & v_y v_z \\ v_z v_x & v_z v_y & v_z v_z \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$
$$(v \times p) = \begin{bmatrix} -v_z p_y + v_y p_z \\ v_z p_x - v_x p_z \\ -v_y p_x + v_x p_y \end{bmatrix} = \begin{bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

Final result, the matrix for a general rotation around a by angle θ :

$$\cos\theta \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + (1 - \cos\theta) \begin{bmatrix} v_x v_x & v_x v_y & v_x v_z \\ v_y v_x & v_y v_y & v_y v_z \\ v_z v_x & v_z v_y & v_z v_z \end{bmatrix} + \sin\theta \begin{bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{bmatrix}$$

Composition of transformations

- Order matters! (rotation * translation ≠ translation * rotation)
- Composition of transformations = matrix multiplication: if T is a rotation and S is a scaling, then applying scaling first and rotation second is the same as applying transformation given by the matrix TS (note the order).
- Reversing the order does not work in most cases

Transformation order

When we write transformations using standard math notation, the closest transformation to the point is applied first:

$$T R S p = T(R(Sp))$$

- first, the object is scaled, then rotated, then translated
- This is the most common transformation order for an object (scale-rotate-translate)