Geometry review, part II

Line equations

if we know $\mathrm{n}=\left[\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}\right]$, then we can take v to be $\mathrm{v}=\left[\mathrm{n}_{\mathrm{y}},-\mathrm{n}_{\mathrm{x}}\right]$, and the other way around.

Line equations

Intersecting two lines:
take one in implicit form: $\left(\left(q-p^{1}\right) \cdot n^{1}\right)=0$
the other in parametric: $q=p^{2}+v^{2} t$
If $q^{i}=p^{2}+v^{2} t^{i}$ is the intersection point, it satisfies both equations.
Plug parametric into implicit, solve for $\mathrm{t}^{\mathbf{i}}$:

$$
\left(\left(p^{2}+v^{2} t^{i}-p^{1}\right) \cdot n^{2}\right)=0
$$

If $\left(v^{2} \cdot n^{1}\right) \neq 0$, then $t^{i}=-\frac{\left(p^{2}-p^{1} \cdot n^{1}\right)}{\left(v^{2} \cdot n^{1}\right)}$
Otherwise, the lines are parallel or coincide.

Plane equations

implicit equation: (q-p)•n =0, exactly like line in 2D!

parametric equation: 2 parameters $\mathrm{t}_{1}, \mathrm{t}_{2}$
$q\left(t_{1}, t_{2}\right)=v_{1} t_{1}+v_{2} t_{2}$, where v_{1} and v_{2} are two vectors in the plane.

$$
\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}}=\mathbf{n}
$$

Intersecting a line and a plane

Same old trick: use the parametric equation for the line, implicit for the plane.

Transformations

Examples of transformations:

Transformations

More examples:

reflection with respect to the y-axis

reflection with respect to the origin

Transformations

Linear transformations: take straight lines to straight lines.

All of the examples are linear.
Affine transformations: take parallel lines to parallel lines.

All of the examples are affine,
an example of linear non-affine is perspective projection.

Orthogonal transformations: preserve distances, move all objects as rigid bodies.
rotation, translation and reflections are affine.

Composition of transformations

■ Order matters! (rotation * translation \neq translation * rotation)
■ Composition of transformations = matrix multiplication:
if T is a rotation and S is a scaling, then applying scaling first and rotation second is the same as applying transformation given by the matrix TS (note the order).
■ Reversing the order does not work in most cases

Transformations and matrices

Any affine transformation can be written as

$$
\binom{x^{\prime}}{\mathbf{y}^{\prime}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x}{y}+\binom{\mathbf{b}_{1}}{b_{2}} \quad p^{\prime}=A p
$$

Images of basis vectors under affine transformations:
$\mathbf{e}_{\mathrm{x}}=\binom{1}{0} \quad$ (column form of writing vectors)
$\mathbf{e}_{\mathrm{y}}=\binom{0}{1} \quad A \mathbf{e}_{\mathrm{x}}=\left(\begin{array}{ll}\mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22}\end{array}\right)\binom{1}{0}=\binom{\mathbf{a}_{11}}{\mathbf{a}_{21}} \quad \mathbf{A} \mathbf{e}_{\mathrm{y}}=\binom{\mathbf{a}_{21}}{\mathbf{a}_{22}}$

Transformations and matrices

Matrices of some transformations:
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ shear $\left(\begin{array}{ll}s & 0 \\ 0 & s\end{array}\right)$ scale by factor s
$\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \quad$ rotation
$\left(\begin{array}{cc}-1 & 0\end{array}\right) \quad$ reflection with respect to the origin
$\left(\begin{array}{ll}0 & -1\end{array}\right)$

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \begin{aligned}
& \text { reflection with respect to } \\
& y \text {-axis }
\end{aligned}
$$

Homogeneous coordinates

Problem

Even for affine transformations we cannot write them as a single 2×2 matrix; we need an additional vector for translations.

We cannot write all linear transformations even in the form $A x+b$ where A is $a 2 x 2$ matrix and b is a 2d vector. Example: perspective projection

$$
\begin{aligned}
& x^{\prime}=1 \\
& y^{\prime}=y / x
\end{aligned}
$$

equations not linear!

Homogeneous coordinates

■ replace $2 d$ points with $3 d$ points, last coordinate 1

■ for a 3d point (x, y, w) the corresponding 2d point is ($x / w, y / w$) if w is not zero
$■$ each 2d point (x, y) corresponds to a line in 3d; all points on this line can be written as [kx,ky,k] for some k.
■ ($x, y, 0$) does not correspond to a 2d point, corresponds to a direction (will discuss later)
■ Geometric construction: 3d points are mapped to 2d points by projection to the plane $z=1$ from the origin

Homogeneous coordinates

From homogeneous to 2d: $[x, y, w]$ becomes [$x / w, y / w]$ From 2d to homogeneous: [x, y] becomes [kx,ky,k] (can pick any nonzero k!)

Homogeneous transformations

Any linear transformation can be written in matrix form in homogeneous coordinates.
Example 1: translations
[x, y] in hom. coords is $[x, y, 1]$

Homogeneous transformations

Example 2: perspective projection

$$
\begin{array}{ll}
x^{\prime}=1 & \text { Can multiply all three components } \\
y^{\prime}=y / x & \text { by the same number -- the 2D point } \\
w^{\prime}=1 & \text { won't change! Multiply by } x .
\end{array}
$$

Matrices of basic transformations

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \text { rotation }\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \text { translation }} \\
{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array} \text { scaling }\left[\begin{array}{ccc}
1 & s & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { skew }\right] \text { general affine transform }
$$

Homogeneous line equation

Implicit line equation in 2D: ($\mathrm{n} \cdot(\mathrm{q}-\mathrm{p})$) $=0$,
$\mathrm{n}=2 \mathrm{D}$ vector, $\mathrm{p}=2 \mathrm{D}$ point on the line.
Goal: rewrite in homogeneous coordinates.

2D point corresponds to a 3D line through origin; 2D line corresponds to a plane through origin

In other words, the 2D line is intersection of a plane through origin with the plane $\mathrm{z}=1$.

Homogeneous line equation

Rewrite the line equation:

$$
(n, q-p)=n_{x} x+n_{y} y+(n,-p)=\left(\left[n_{x}, n_{y,}-(n, p)\right],[x, y, 1]\right)=(N, \bar{q})
$$

where $N=\left[n_{x}, n_{y},-(n, p)\right]$ is the normal to the plane corresponding to the line, and \bar{q} is the homogeneous form of $q=[x, y]: \quad \bar{q}=[x, y, 1]$

Homogeneous form of the line equation:

$$
(\mathbf{N} \cdot \overline{\mathbf{q}})=0
$$

Homogeneous coordinates

regular 3D point to homogeneous:

$$
\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right) \longrightarrow\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)
$$

homogeneous point to regular 3D:

$$
\left(\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z} \\
p_{w}
\end{array}\right) \longrightarrow\left(\begin{array}{c}
p_{x} / p_{w} \\
p_{y} / p_{w} \\
p_{z} / p_{w}
\end{array}\right)
$$

Translation and scaling

Similar to 2D; translation by a vector

$$
t=\left[t_{x}, t_{y}, t_{z}\right] \quad\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Nonuniform scaling in three directions

$$
\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotations around coord axes

angle θ, around X axis: around Y axis:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

note where the minus is!

around Z axis:

$$
\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

General rotations

Given an axis (a unit vector) and an angle, find the matrix

Only the component perpendicular to axis changes

General rotations

(rotated vectors are denoted with ')
project p on $v: \quad p_{\|}=(p, v) v$
the rest of p is
the other component:

$$
p_{\perp}=p-(p, v) v
$$

rotate perp. component: $\quad p_{\perp}^{\prime}=p_{\perp} \cos \theta+\left(v \times p_{\perp}\right) \sin \theta$
add back two components: $p^{\prime}=p_{\perp}^{\prime}+p_{\|}$

Combine everything, using $\quad v \times p_{\perp}=v \times p$ to simplify:
$p^{\prime}=\cos \theta p+(1-\cos \theta)(p, v) v+\sin \theta(v \times p)$

General rotations

How do we write all this using matrices?

$$
\begin{aligned}
& p^{\prime}=\cos \theta p+(1-\cos \theta)(p, v) v+\sin \theta(v \times p) \\
&(p, v) v= {\left[\begin{array}{c}
v_{x} v_{x} p_{x}+v_{x} v_{y} p_{y}+v_{x} v_{z} p_{z} \\
v_{y} v_{x} p_{x}+v_{y} v_{y} p_{y}+v_{y} v_{z} p_{z} \\
v_{z} v_{x} p_{x}+v_{z} v_{y} p_{y}+v_{z} v_{z} p_{z}
\end{array}\right]=\left[\begin{array}{lll}
v_{x} v_{x} & v_{x} v_{y} & v_{x} v_{z} \\
v_{y} v_{x} & v_{y} v_{y} & v_{y} v_{z} \\
v_{z} v_{x} & v_{z} v_{y} & v_{z} v_{z}
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right] } \\
&(v \times p)=\left[\begin{array}{c}
-v_{z} p_{y}+v_{y} p_{z} \\
v_{z} p_{x}-v_{x} p_{z} \\
-v_{y} p_{x}+v_{x} p_{y}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
-v_{y} & v_{x} & 0
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right]
\end{aligned}
$$

Final result, the matrix for a general rotation around a by angle θ :
$\cos \theta\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+(1-\cos \theta)\left[\begin{array}{ccc}v_{x} v_{x} & v_{x} v_{y} & v_{x} v_{z} \\ v_{y} v_{x} & v_{y} v_{y} & v_{y} v_{z} \\ v_{z} v_{x} & v_{z} v_{y} & v_{z} v_{z}\end{array}\right]+\sin \theta\left[\begin{array}{ccc}0 & -v_{z} & v_{y} \\ v_{z} & 0 & -v_{x} \\ -v_{y} & v_{x} & 0\end{array}\right]$

Composition of transformations

■ Order matters! (rotation * translation \neq translation * rotation)
■ Composition of transformations = matrix multiplication:
if T is a rotation and S is a scaling, then applying scaling first and rotation second is the same as applying transformation given by the matrix TS (note the order).
■ Reversing the order does not work in most cases

Transformation order

■ When we write transformations using standard math notation, the closest transformation to the point is applied first:

$$
T R S p=T(R(S p))
$$

■ first, the object is scaled, then rotated, then translated

■ This is the most common transformation order for an object (scale-rotate-translate)

