Ray tracing

## Ray casting/ray tracing

Iterate over pixels, not objects.
Effects that are difficult with Z-buffer, are easy with ray tracing: shadows, reflections, transparency, procedural textures and objects.

Assume image plane is placed in the virtual space (e.g. front plane of the viewing frustum).

Algorithm:
for each pixel
shoot a ray $r$ from the camera to the pixel intersect with every object
find closest intersection

## Ray tracing

For each pixel shoot a ray $R$ from camera; pixel = TraceRay(R)

The recursive ray tracing procedure:
RGBvalue TraceRay(Ray R)
shoot rays to all light sources; for all visible sources, compute RGB values $r_{i}$ shoot reflected ray $R_{\text {refi }} ; r_{\text {refl }}=T r a c e R a y\left(R_{\text {refl }}\right)$ shoot refracted ray $R_{\text {trans }} ; r_{\text {trans }}=\operatorname{TraceRay}\left(R_{\text {trans }}\right)$ compute resulting RGB value from $r_{i}, r_{\text {refl }}, r_{\text {trans }}$ using the lighting model

## Some primitives

Finite primitives:

- polygons

■ spheres, cylinders, cones

- parts of general quadrics

Infinite primitives:
■ planes
■ infinite cylinders and cones

- general quadrics

A finite primitive is often an intersection of an infinite with an area of space

## Intersecting rays with objects

General approach:
Use whenever possible the implicit equation $\mathrm{F}(\mathrm{q})=$ 0 of the object or object parts. Use parametric equation of the line of the ray, $q=p+v t$.

Solve the equation $F(p+v t)=0$ to find possible values of $t$. Find the minimal nonnegative value of $t$ to get the intersection point (checking that $t$ is nonegative is important: we want intersections with the ray starting from $p$, not with the whole line!

## Scene Language

## POV ray input language example example

```
camera {
    location <0, 0, -8>
look_at <0, 0,0>
}
sphere { <0.0, 0.0, 0.0>, 2
    finish {
    ambient 0.2
    diffuse 0.8
    phong 1
}
pigment { color red 1 green 0 blue 0 }
}
box {<-2.0, -0.2, -2.0>, <2.0, 0.2, 2.0>
    finish {
        ambient 0.2
        diffuse 0.8
    }
    pigment { color red 1 green 0 blue 1 }
    rotate <-20,30,0>
}
```

light_source $\{<-10,3,-20>$ color red 1 green 1 blue 1 \}

## Intersecting a line and a plane

Same old trick: use the parametric equation for the line, implicit for the plane. In the case of a pixel ray, $b=p(i, j)-c$

$\mathbf{t}^{\mathbf{i}}=-\frac{((\mathbf{c}-\mathrm{p}) \cdot \mathbf{n})}{(b \cdot n)}$
Check for zero in the denominator; $t^{i}$ should be positive for the intersection to be in front of the camera.

## Intersecting a ray with a sphere

Sphere equation: $(q-c)^{2}-r^{2}=0$
For a ray $q=p+v t$, we get $((p-c)+v t)^{2}-r^{2}=0$
$(p-c)^{2}+2(p-c) \cdot v t+v^{2}+t^{2}-r^{2}=0$
This quadratic equation in t may have no solutions
(no intersection) or two (possibly coinciding)
solutions (entry and exit points).
The correct point to return is the one that is
closest to ray origin.

## Pixel rays

Goal: Find direction of the ray to the center of the pixel (i,j). Let camera parameters be
c position
$\alpha \quad$ horizontal field of view
v viewing direction
u up direction
s aspect ration


Then the image half-width in the "virtual world" units is

$$
\mathbf{w}=\mathbf{n} \boldsymbol{\operatorname { t g }} \frac{\alpha}{2}
$$

The half-height is $\mathbf{h}=\mathbf{s n} \operatorname{tg} \frac{\alpha}{2}$


## Pixel rays

From coordinates in pixel units to virtual world coordinates in image plane:

Pixel size:

$$
\frac{2 \mathbf{w}}{\mathbf{N}} \times \frac{2 \mathbf{h}}{\mathbf{M}}
$$



Displacements of the pixel from the image center in virtual space units:

$$
\mathbf{h}-\left(\mathbf{j}+\frac{1}{2}\right) \frac{2 \mathbf{h}}{\mathbf{M}},\left(\mathbf{i}+\frac{1}{2}\right) \frac{2 \mathbf{w}}{\mathbf{N}}-\mathbf{w}
$$

## Pixel rays

Virtual world coordinates of pixel (i,j): image center + displacements.

Image center: c + vn

$$
\begin{aligned}
& \text { pixel }(\mathbf{i}, \mathbf{j})=\mathbf{c}+\mathbf{v n}+ \\
& \left(\mathbf{h}-\left(\mathbf{j}+\frac{1}{2}\right) \frac{2 \mathbf{h}}{\mathbf{M}}\right) \mathbf{u}+\left(\left(\mathbf{i}+\frac{1}{2}\right) \frac{2 \mathbf{w}}{\mathbf{N}}-\mathbf{w}\right) \mathbf{v} \times \mathbf{u}
\end{aligned}
$$



