
Ray tracingRay tracing

Ray casting/ray tracing

Iterate over pixels, not objects.
Effects that are difficult with Z-buffer, are easy with

ray tracing: shadows, reflections, transparency,
procedural textures and objects.

Assume image plane is placed in the virtual space
(e.g. front plane of the viewing frustum).

Algorithm:
for each pixel

shoot a ray r from the camera to the pixelshoot a ray r from the camera to the pixel
intersect with every object
find closest intersection

Ray tracing

For each pixel shoot a ray R from camera;
pixel = TraceRay(R)

RGB l T R (R R)

The recursive ray tracing procedure:

RGBvalue TraceRay(Ray R)
shoot rays to all light sources;
for all visible sources, compute RGB values rii
shoot reflected ray Rrefl; rrefl=TraceRay(Rrefl)
shoot refracted ray Rtrans;rtrans= TraceRay(Rtrans)
compute resulting RGB value fromcompute resulting RGB value from
ri, rrefl, rtrans using the lighting model

Some primitives

Finite primitives:
polygons
spheres, cylinders, cones
parts of general quadrics

Infinite primitives:
planes
infinite cylinders and cones
general quadrics

A finite primitive is often an intersection of an
infinite with an area of space

Intersecting rays with objects

General approach:
Use whenever possible the implicit equation F(q) =

0 of the object or object parts. Use parametric
equation of the line of the ray, q = p+vt.

Solve the equation F(p+vt) = 0 to find possible
values of t. Find the minimal nonnegative value
of t to get the intersection point (checking that tof t to get the intersection point (checking that t
is nonegative is important: we want intersections
with the ray starting from p, not with the whole
line!line!

Scene Language

POV ray input language example example
camera {

location <0, 0, -8>
look_at <0, 0, 0>

}
sphere { <0.0, 0.0, 0.0>, 2

finish {finish {
ambient 0.2
diffuse 0.8
phong 1

}
pigment { color red 1 green 0 blue 0 }

}
box { <-2.0, -0.2, -2.0>, <2.0, 0.2, 2.0>

finish {
ambient 0 2ambient 0.2
diffuse 0.8

}
pigment { color red 1 green 0 blue 1 }
rotate <-20, 30, 0>

}

light_source { <-10, 3, -20> color red 1 green 1 blue 1 }

Intersecting a line and a plane

Same old trick: use the parametric equation for the
line implicit for the plane In the case of a pixelline, implicit for the plane. In the case of a pixel
ray, b = p(i,j)-c

b n

qi

c b

pqi

0)n)pbtc((i =⋅−+

)nb(
)n)pc((ti

⋅
⋅−

−=
Check for zero in the denominator;
ti should be positive for the
i t ti t b i f t f thintersection to be in front of the
camera.

Intersecting a ray with a sphere

Sphere equation: (q-c)2 – r2 = 0
2 2For a ray q = p+ vt, we get ((p-c) + vt) 2 – r2 = 0

(p-c)2 + 2(p-c)·v t + v2 +t2 – r2 = 0
This quadratic equation in t may have no solutions
(no intersection) or two (possibly coinciding)
solutions (entry and exit points).
The correct point to return is the one that is
closest to ray origin.

Pixel rays

Goal: Find direction of the ray to the center of the
pixel (i,j). Let camera parameters be

c position
α horizontal field of view
v viewing direction
u up direction
s aspect ration

u

v
s aspect ration

Then the image half-width in the
“ i l ld” i i

w

“virtual world” units is

α
View from2

αtgnw = n
The half-height is v

View from
above2

αtgsnh =

Pixel rays
From coordinates in pixel units to virtual world
coordinates in image plane:

Pixel center of pixel (i,j)
in pixel coords

⎟
⎠
⎞

⎜
⎝
⎛ ++

2
1

2
1 j,i2

1
+j

1

pixels
Pixel size: ⎠⎝ 22

2
1

+i pixelsPixel size:

M
h

N
w 22

×

wN

Displacements of the pixel from the image center
in virtual space units:

wh
⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛ 2121 w

N
wi,

M
hjh −⎟

⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ +−

2
2
12

2
1

Pixel rays

Virtual world coordinates of pixel (i,j):
image center + displacements.

u

v
Image center: c + vn

uv ×

wh
vnc)j,i(pixel

⎞⎛ ⎞⎛⎞⎛ ⎞⎛

++=

2121 uvw
N
wiu

M
hjh ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

2
2
12

2
1

