Geometry review, part I

Geometry review I

Vectors and points

- points and vectors

■ Geometric vs. coordinate-based (algebraic) approach
■ operations on vectors and points
Lines

- implicit and parametric equations

■ intersections, parallel lines
Planes
■ implicit and parametric equations
■ intersections with lines

Geometry vs. coordinates

Geometric view: a vector is a directed line segment, with position ignored.

different line segments (but with the same length and direction) define the same vector

A vector can be thought of as a translation.

Algebraic view: a vector is a pair of numbers

Vectors and points

Vector $=$ directed segment with position ignored

Operations on points and vectors:
point - point = vector
point + vector $=$ point

Dot product

Dot product: used to compute projections, angles and lengths.

Notation: $(w \cdot v)=\operatorname{dot}$ product of vectors w and v.

$$
\begin{aligned}
& (w \cdot v)=|w||v| \cos \alpha, \\
& |v|=\text { length of } v
\end{aligned}
$$

Properties:
if w and v are perpendicular, $(w \cdot v)=0$
$(w \cdot w)=|w|^{2}$
angle between w and $v: \cos \alpha=(w \cdot v) /|w||v|$ length of projection of w on $v:(w \cdot v) /|v|$

Coordinate systems

For computations, vectors can be described as pairs (2D), triples (3D), ... of numbers.

Coordinate system (2D) = point (origin) + 2 basis vectors.

Orthogonal coordinate system: basis vectors perpendicular.

Orthonormal coordinate system: basis vectors perpendicular and of unit length.
Representation of a vector in a coordinate system:
2 numbers equal to the lengths (signed) of projections on basis vectors.

Operations in coordinates

$$
v=\underbrace{\left(v \cdot e_{x}\right)}_{v_{x}} e_{x}+\underbrace{\left(v \cdot e_{y}\right)}_{v_{y}} e_{y}
$$

works only for orthonormal coordinates!

$$
v=v_{x} e_{x}+v_{y} e_{y}=\left[v_{x}, v_{y}\right]
$$

Operations in coordinate form:
$\mathrm{v}+\mathrm{w}=\left[\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}\right]+\left[\mathrm{w}_{\mathrm{x}}, \mathrm{w}_{\mathrm{y}}\right]=\left[\mathrm{v}_{\mathrm{x}}+\mathrm{w}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}+\mathrm{w}_{\mathrm{y}}\right]$
$-w=\left[-w_{x},-w_{y}\right]$
$\alpha w==\left[\alpha w_{x}, \alpha w_{y}\right]$

Dot product in coordinates

Linear properties become obvious:
$((v+w) \cdot u)=(v \cdot u)+(w \cdot u)$
$(a v \cdot w)=a(v \cdot w)$

3D vectors

Same as 2D (directed line segments with position ignored), but we have different properties.

In 2D, the vector perpendicular to a given vector is unique (up to a scale).

In 3D, it is not.
Two 3D vectors in 3D can be multiplied to get a vector (vector or cross product).

Dot product works the same way, but the coordinate expression is

$$
(v \cdot w)=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}
$$

Vector (cross) product

$(\mathbf{v}+\mathbf{w}) \times \mathbf{u}=\mathbf{v} \times \mathbf{u}+\mathbf{w} \times \mathbf{u}$ Direction (up or down) is determined by the right-hand rule.
$\mathbf{V} \times \mathbf{W}=-\mathbf{W} \times \mathbf{V}$ unlike a product of numbers or dot product, vector product is not commutative!

Vector product

Coordinate expressions
$\mathbf{v} \times \mathbf{w}$ is perpendicular to \mathbf{v}, and \mathbf{w} :

$$
(u \cdot v)=0 \quad(u \cdot w)=0
$$

the length of \mathbf{u} is $|\mathbf{v} \| \mathbf{w}| \sin \alpha$:

$$
\begin{aligned}
& (\mathbf{u} \cdot \mathbf{u})=|\mathbf{v}|^{2}|\mathbf{w}|^{2} \sin ^{2} \alpha=|\mathbf{v}|^{2}|\mathbf{w}|^{2}\left(1-\cos ^{2} \alpha\right) \\
& =|\mathbf{v}||\mathbf{w}|(|\mathbf{v}||\mathbf{w}|-(\mathbf{v}, \mathbf{w}))
\end{aligned}
$$

Solve three equations for u_{x}, u_{y}, u_{z}

Vector product

Physical interpretation: torque

$$
\text { torque }=r \times F
$$

r

Vector product

Coordinate expression:
$\operatorname{det}\left[\begin{array}{ccc}e_{x} & e_{y} & e_{z} \\ \mathbf{v}_{x} & \mathbf{v}_{y} & \mathbf{v}_{z} \\ \mathbf{w}_{x} & \mathbf{w}_{y} & \mathbf{w}_{z}\end{array}\right]=\left[\operatorname{det}\left[\begin{array}{cc}\mathbf{v}_{y} & \mathbf{v}_{z} \\ \mathbf{w}_{y} & w_{z}\end{array}\right],-\operatorname{det}\left[\begin{array}{cc}\mathbf{v}_{x} & \mathbf{v}_{z} \\ \mathbf{w}_{x} & w_{z}\end{array}\right], \operatorname{det}\left[\begin{array}{cc}\mathbf{v}_{x} & \mathbf{v}_{y} \\ \mathbf{w}_{x} & \mathbf{w}_{y}\end{array}\right]\right]$

Notice that if $\mathrm{v}_{\mathrm{z}}=\mathrm{w}_{\mathrm{z}}=0$, that is, vectors are 2 D , the cross product has only one nonzero component (z) and its length is the determinant

$$
\operatorname{det}\left[\begin{array}{cc}
\mathbf{v}_{\mathrm{x}} & \mathbf{v}_{\mathrm{y}} \\
\mathbf{w}_{\mathrm{x}} & \mathbf{w}_{\mathrm{y}}
\end{array}\right]
$$

Vector product

More properties

$$
(a \cdot(b \times c))=b(a \cdot c)-c(a \cdot b)
$$

$((a \times b) \cdot(c \times d))=(a \cdot c)(b \cdot d)-(b \cdot c)(a \cdot d)$

