
Computer graphics Assignment 4

Ray Tracer
Due date: April 27, 2011

1 Overview
In this assignment you will implement the camera and several primitive objects for a ray tracer, and a basic
ray tracing algorithm.

The input language of the ray tracer will be a subset of the geometry file format of POV-Ray raytracer.

2 What your program should do
Your program should read a file specified on the command line and create an image of the scene described in
the file.

In addition to the name of the file, on the command line you should be able to specify the size of the
output image.

3 File format description
The input file format is a subset of the POV-Ray file format. When in doubt, consult the POV-Ray manual (the
link is posted at the class Web page). Installing POV-Ray on your computer is strongly recommended. The
file in POV-Ray format is a sequence of object descriptions. You should implement the following POV-Ray
objects: box, sphere, cone, cylinder, quadric.

Comments. Two slashes are used for single line comments in the file. Anything on a line after a double
slash // is ignored by the ray tracer. For example:

// This line is ignored
sphere { <0,0,0>, 1 } // a sphere of radius 1 centered at the origin

Objects. The basic syntax of an object is a keyword describing its type, some floats, vectors or other
parameters which further define its location and/or shape and some optional object modifiers such as pigments
or transformations. In this assignment the only modifiers that we consider are transformations.

Sphere. The syntax for a sphere is:

sphere { <CENTER>, RADIUS }

where <CENTER> is a 3d point, and RADIUS is a real value specifying the radius. You can also add
translations, rotations, and scaling to the sphere. For example, this is a sphere of radius 10 centered at
25 on the Y axis:

sphere { <0,0,0>, 1.0
scale 10
translate <0,25,0>

}
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Note that a 3D vector or point is specified using angular brackets, and the components are separated
by commas. Transformations can be also applied to all other objects (see details on transformations
below).

Box. A simple box can be defined by listing two corners of the box like this:

box { <CORNER1>, <CORNER2> }

Where <CORNER1> and <CORNER2> are vectors defining the x,y,z coordinates of opposite corners
of the box. For example:

box { <0, 0, 0>, <1, 1, 1> }

Note that all boxes are defined with their faces parallel to the coordinate axes. They may later be rotated
to any orientation using a rotate parameter.

Each element of <CORNER1> should always be less than the corresponding element in <CORNER2>
.

Cone. A finite length cone or a frustum (a cone with the point cut off) may be defined by

cone { <POINT1>, RADIUS1, <POINT2>, RADIUS2 }

where <POINT1> and <POINT2> are the centers of the end caps of the cone and RADIUS1 and
RADIUS2 are radii of the caps of the cone. For example,

cone { <0,0,0>, 2, <0,3,0>, 0}

is a cone 3 units tall pointing up the y axis. The base has a radius of 2. The other end has a radius of
0 which means it comes to a sharp point. If neither radius is zero then the results look like a tapered
cylinder or a cone with the point cut off.

The ends of a cone are closed by flat planes which are parallel to each other and perpendicular to the
axis of the cone.

Cylinder. A finite length cylinder with end caps may be defined by

cylinder {
<POINT1>, <POINT2>, RADIUS

}

where <POINT1> and <POINT2> are the centers of the end caps, and RADIUS is the cylinder radius.

cylinder { <0,0,0>, <0,3,0>, 2}

is a cylinder of height 3 with a radius of 2, and base centered at the origin in the XZ plane.

The ends of a cylinder are closed by flat planes which are parallel to each other and perpendicular to
the length of the cylinder.

Polygon (extra credit). A polygon with N vertices is defined by:

polygon { N,<VERTEX1>, <VERTEX2>, ..., <VERTEXN> }

where <VERTEXi> is a vector defining the x,y,z coordinates of each corner of the triangle.
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Camera. The camera definition describes a camera used for viewing the scene. If you do not specify a
camera then a default camera is used. The camera is defined by the following parameters: location,
look at, angle, up, right. The location is simply the X, Y, Z coordinates of the camera. The
default location is ¡0,0,0¿. The lookat method of positioning the camera have been discussed at a
previous lecture in the context of OpenGL. In addition to the location (“eye” in the gluLookAt function
call), we specify the the up vector and the look at point (the “center” argument of gluLookAt). When
the look at point is specified, the up vector should be forced to be perpendicular to the viewing direction,
that is, the component of up parallel to the viewing direction should be subtracted from it and it should be
normalized to 1. By default, the look at point is 1 unit in Z direction from the location. The angle
keyword followed by a float expression specifies the (horizontal) viewing angle in degrees. The right
vector plays a limited role: we use the ratio of the length of this vector to the length of the up vector to
determine the aspect ratio of the image. The default values are:

up <0,1,0>
right <1.33333,0,0>

The main use of the camera model in ray tracing is to compute pixel rays. For the simplified model that
we use, formulas are included in the lecture notes. Warning: POV-Ray has a relatively complicated camera
model with many interdependent parameters; we are using a small subset. You may end up confused if you
try to sort out the complete model from the POV-Ray documentation, so I suggest using this description
together with the lecture notes.

Under many circumstances just two vectors in the camera statement are all you need: location and
look at. For example:

camera {
location <3,5,-10>
look_at <0,2,1>

}

The up vector. The keyword up is used to define a vector for the vertical direction. Before using the vector,
subtract the component parallel to the viewing direction, if any. Also, normalize it to be of unit length. The
default up vector points along the Y axis, unless it is the viewing direction. In the latter case, it points along
the X axis.

In addition to the standard parameters, a camera may have a transformation attached to it; the parser reads
it, if there is one, but you are not required to implement it.

Transformations. Three standard types of transformations can be applied in any order to any object: trans-
late, rotate and scale. Any number of transformations can be applied in any order. The argument of rotate
is a vector with three components, which are angles of rotation around x, y and z axes in degrees. Example

rotate <0,45,0> // rotate around Y axis by degrees

The scale is a nonuniform scale and its argument is a vector of three scale factors in x,y and z directions.
The translate takes the translation vector as an argument. The parser reads all transformations and
converts them to 4 by 4 matrices.

It is possible to transform each object before rendering, and this is the most efficient approach. However,
deriving the necessary transformations of the object parameters may be tricky. A simpler approach is to
transform the ray to the coordiante system in which the object is defined. This means that each time we
intersect a ray with an object that has a transformation attached to it, we need to apply the inverse of the
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transformation to the ray. Thus, it makes sense to store both the transformation matrix and its inverse together
with the object.

Light sources. Light sources have no visible shape of their own. We will use only one type of light sources:
point lights. The syntax for a light source is:

light_source { <X, Y, Z> color rgb<R, G, B> }

Where X, Y and Z are the coordinates of the location and R, G, B are the components of the color in the
range 0 to 1. For example,

light_source { <3, 5, -6> color rgb<0.5, 0.5, 0.5> }

is a 50% white light at X=3, Y=5, Z=-6.

Pigment. The color or pattern of colors for an object is defined by a pigment statement. For example,

sphere { <0,0,0>, 1
pigment {color rgb<1.0, 0.0, 0.0> }

}

defines a red sphere. The color you define is the way you want it to look if fully illuminated. The parameter
is called pigment because we are defining the basic color the object actually is rather than how it looks.

We will implement only the simplest pigment type, which uses the color statement to specify the
pigment. As in the case of light sources, the color statement has the form color rgb<R, G, B>. In
addition, the color statement may have the form color rgbf<R, G, B, F>, where F stands for “filter”,
and determines how transparent the object is; the actual transparency for each color component is determined
by the product of the filter value and the color component value. E.g. <1,0,0,0> means an object that
allows only the red light through. The default filter value is 0, which means that the surface of the object is
not transparent. Transparency implementation is extra-credit, you can ignore it.

Finish. The finish statement, which defines other parameters of the lighting model. In general, the finish
statement contains a number of items, that control ambient, diffuse and specular reflection. A complete finish
statement looks like this:

finish {
ambient 0.2
diffuse 0.7
phong 0.5
phong_size 25
metallic 1
reflection 0.8

}

Any item can be omitted. When it is the case, it is assigned a default value. The default values are listed
below:

4



finish {
ambient 0.1
diffuse 0.6
phong 0.0
phong_size 40
metallic 0
reflection 0.0

}

Thus, finish {} is exactly equivalent to the expanded statement above. The ambient component has
effect only if there is a non-zero ambient light, which is specified using a special statement like this:

global_settings {ambient_light COLOR}

where COLOR is of the form rgb <r,g,b> as for a light source. The default is no ambient light.

Refraction (extra credit). For closed transparent objects (spheres, cones, cylinders, boxes) one can define
the index of refraction. The keyword used to define it is ior, which as to be inside a special object modifier
interior.

sphere{ 1
pigment{ rgbf<1.0,1.0,1.0,0.5> }
interior {ior 1.5}

}

The default ior value of 1.0 will give no refraction. The index of refraction for air is 1.0, water is 1.33, glass
is 1.5, and diamond is 2.4. For the index of refraction to have any effect, the object should be transparent,
that is, the color in the pigment statement should have a “filter” component different from 0.0.

Complete lighting formula. We state the complete formula for one component (red); the formulas for the
other two components are obtained by replacing red with green or blue. Assume that for a given point there
are M visible lights, with colors ri,gi,bi, i = 1 . . .M. Assume that the pigment for the object was given by
pigment { color rgbf <mr,mg,mb,m f>}, and the finish is

finish {
ambient kamb
diffuse kdi f f
phong kspec
phong size p
reflection kre f l

}

Further, assume that the direction ti the i-th light source is Li, the direction to the eye (or, in the case of a
recursive ray, the incoming direction) is V , the normal is N, and the reflected direction is R.

The total red intensity at the point is given by

(1−m f )kambmrramb +
M

∑
i=1

(1−m f )ri

(
kdi f f mr(N ·Li)+ kspec{mr or ri}(R ·Li)p

)
+ kre f lrre f l +m f mrrtrans
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In the formula above rre f l and rtrans are the red components of the recursively traced reflected and refracted
rays. Note that for a transparent object (m f 6= 0) the ambient component and the diffuse component are
attenuated and the specular and reflected components are not. This is a peculiar POV-Ray feature and this
may be not true in other ray tracers. In addition for the the specular component is scaled by either mr (the
material red) if metallic keyword is present in the finish, or by ri (the light red) if it is not.

4 Ray tracing
Implement the basic ray tracing algorithm described in class; for each point, shoot rays to all light sources,
the reflected ray if reflection is not zero) and the refracted ray (if the “filter” component of the pigment
is not zero). Refraction implementation is extra credit, and is not required.

The recursive spawning of rays is terminated when the user-specified maximal depth is reached, or when
the ray weight is below a threshold. The weight is computed as follows: for pixel rays (the rays starting at the
camera) it is set to 1. Each reflected or refracted ray is assigned a weight equal to the product of its current
weight with the coefficient with which its contribution enters the summation in the lighting equation.

5 What to turn in
Create test images from the file that is provided on the Web page.

6 Implementation Suggestions
General organization. Your ray tracer will consist of two main parts: the rendering engine and a set of
modules to manage the parameters of the camera, databases of shapes, light sources and materials. These
suggestions are for C++ programming. However, similar style can be maintained in C code.

It is convenient to represent each shape with a class derived from a base shape class, and use virtual meth-
ods for operations like intersecting the object with a ray. You will need to perform a lot of vector arithmetics.
Unless you already have it, write a small library of standard vector functions (addition, multiplication by a
constant, dot product, cross product etc.) using the code provided with the parser as the starting point.

Parsing the geometry file. To simplify your task, a parser is provided. Currently, the parser simply prints
out the parameters of the objects that are parsed. You need to add code to it to create the objects. The parser
uses a standard approach: there is a function getToken, that skips the comments and returns the next token
in the input file. A token is either a reserved keyword, a floating point number, a comma, or one of the
symbols {, }, <, >. Numbers and identifiers have to be separated from each other by whitespace characters
(space, tab, newline), but need not be separated from the comma or {, }, <, >.

The parser calls getToken, determines the object type from the first token and calls the function that
parses the object definition for each object. These functions, in turn, may call functions for parsing transform
definitions, vectors etc. Only simple error processing is done: if there is a syntax error in the file, the parser
prints a message and aborts.

In general, each object type (sphere, cone, cylinder, polygon, quadric) should correspond to a class in
your program. Any object may have a transformation attached; assemble all transformations for each object
into a single matrix, and transform the ray into the object’s coordinate system when computing intersections.
For this, you need to multiply both the direction and the origin of the ray by the inverse of the transformation
matrix.

Create a data structure to describe rays. Initially, it should contain at least three fields:
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double[3] orig; // origin of the ray
double[3] dir; // direction of the ray
float[3] color;

Note that we use doubles for all fields except color. In the geometric calculations, double precision is
preferable, although the geometry itself can be described by floats. In lighting calculations single precision
is sufficient. Feel free to use your 3D vector classes for the fields instead of double[3].

Implement the intersection algorithms for polygons and quadrics described in class. Boxes can be treated
as collections of polygons.

Dummy lighting. It is advisable not to debug the initial code with lighting and recursive ray tracing com-
putations turned on. For simple pseudo-lighting, if the ray did not hit any object, use a background color
(e.g. blue), otherwise, use a function of coordinates of the intersection point to set the ray color. The simplest
choice would be simply Z-coordinate with appropriate scaling, so that the resulting value is 255 for the points
closest to the camera and 0 for the most distant points, but you can be more creative, provided that your
choice allows to distinguish the shapes in the picture. Another simple approach is to assign a color to each
shape.
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