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In this Appendix, we provide the following.

• Background material:

� §7 Derivation of the triangle inequalities
� §8 Discussion of symmetry: flipping, polytope constraints and problem triangles

• The following Sections, which provide key results on the structure of weak and strong down edges, and together
provide complete proofs of Theorems 8, 9 and 11 in the main paper:

� §9 Locking components, and 0 or 1 singleton marginals
� §10 Results on the Structure of Weak and Strong Down Edges in an Almost Attractive Model
� §11 Specification of the Perturbation for all Singleton and Edge Marginals
� §12 Demonstration of Consistency
� §13 Gathering Results and Finalizing Proofs of Theorems 8, 9 and 11

Add a high level overview of the Sections and how they fit together.

7 Derivation of the Triangle Inequalities

Here we show how to derive the inequalities defining TRI, i.e. (9) and (10) together with the standard constraints for LOC
(3), following the lift-and-project method as described in (Wainwright and Jordan, 2008, Example 8.7). We first ‘lift’ to
the space of marginals over three variables, where we require that a well-defined probability distribution exists over every
triplet of variables in the model. Next we ‘project’ the resulting constraints back down to our familiar space of singleton
and pairwise marginals, defined (in the minimal representation) by a vector of dimension d = n + m, where n is the
number of variables, each with a qi term, and m is the number of edges, each with a qij term.

Recall that each set of terms {qi, qj , qij}, provided they are feasible in LOC, defines a valid probability distribution on the
pair of variables qi, qj as shown in (4), which we reproduce here:

(
q(Xi = 0, Xj = 0) q(Xi = 0, Xj = 1)
q(Xi = 1, Xj = 0) q(Xi = 1, Xj = 1)

)
=

(
1 + qij − qi − qj qj − qij

qi − qij qij

)
Observe that 4 terms are required for a distribution over variablesXi andXj , but given {qi, qj}, we have several constraints:
all must sum to 1, which leaves 3 degrees of freedom; then in order to match the singleton marginals given by qi and qj ,
this removes 2 more degrees of freedom leaving just one, which here is specified by qij . Note that enforcing that all terms
are nonnegative yields the LOC inequalities (3).

Similarly, when considering a distribution over 3 variables, say i, j and k, there are 8 terms but given
{qi, qj , qk, qij , qik, qjk}, we must satisfy the following constraints: all must sum to 1, marginalizing out any one vari-
able must give the appropriate pairwise term (3 constraints), and marginalizing out any two variables must give the ap-
propriate singleton term (3 constraints). Thus just one free term remains (in fact, it is not hard to see that for a cluster
of any size, there is always just one degree of freedom, given all lower order terms), which here we shall specify using
α = qijk = q(Xi = 1, Xj = 1, Xk = 1).

Given {qi, qj , qk, qij , qik, qjk, α = qijk}, it is straightforward to see that we may write down the probabilities of all 8 states
as follows:

With k = 0,(
q(Xi = 0, Xj = 0) q(Xi = 0, Xj = 1)
q(Xi = 1, Xj = 0) q(Xi = 1, Xj = 1)

)
=

(
1− qi − qj − qk + qij + qik + qjk − α qj + α− qij − qjk

qi + α− qij − qik qij − α

)
With k = 1,(
q(Xi = 0, Xj = 0) q(Xi = 0, Xj = 1)
q(Xi = 1, Xj = 0) q(Xi = 1, Xj = 1)

)
=

(
qk + α− qik − qjk qjk − α

qik − α α

)
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We have the inequalities that all 8 expressions must be nonnegative. Now to project back down to our original space, α
must be eliminated, which can be achieved using Fourier-Motzkin elimination (Schrijver, 1998) as follows: (i) first express
all inequalities in ≤ form with α (the variable to be eliminated) isolated; then (ii) combine ≤ α constraints with α ≤
constraints in pairs in order to yield a new inequality without α.

Working through this algebra yields exactly the constraints of LOC and TRI, i.e. (3), (9) and (10). As one example, to
obtain the first inequality of (9), which is that qi + qjk ≥ qij + qik, combine the inequality from the bottom left of the
upper matrix, i.e. qi +α− qij − qik ≥ 0 ⇔ qij + qik− qi ≤ α, with the inequality from the top right of the lower matrix,
i.e. qjk − α ≥ 0 ⇔ α ≤ qjk.

8 Symmetry: Flipping, Polytope Constraints and Problem Triangles

The minimal representation can sometimes obscure the underlying symmetry of the system. We demonstrate that the
constraints for each of the local and triplet polytopes may be obtained by starting with just one constraint then flipping
variables and applying the constraint to the flipped models. (This illustrates the symmetry but note that it is not true that
having all constraints is the same as having just one constraint.)

Suppose we have a model including variables Xi and Xj with an edge (i, j) between them, together with a pseudo-
marginal vector q. If Xi is flipped then we consider the model with Yi = 1 − Xi and Yj = Xj . Let the new equivalent
pseudo-marginal vector be q′. Clearly q′i = 1− qi and q′j = qj . For the edge marginal, observe that

Original edge marginal
(
q(Xi = 0, Xj = 0) q(Xi = 0, Xj = 1)
q(Xi = 1, Xj = 0) q(Xi = 1, Xj = 1)

)
=

(
1 + qij − qi − qj qj − qij

qi − qij qij

)
,

New edge marginal
(
q′(Yi = 0, Yj = 0) q′(Yi = 0, Yj = 1)
q′(Yi = 1, Yj = 0) q′(Yi = 1, Yj = 1)

)
=

(
1 + q′ij − q′i − q′j q′j − q′ij

q′i − q′ij q′ij

)
.

To equate terms, note that Yi = 1 or 0 corresponds toXi = 0 or 1, so the row order has been reversed. Hence, q′ij = qj−qij .

The constraints that 0 ≤ qi ≤ 1 ∀i ∈ V , and 0 ≤ qij ≤ 1 ∀(i, j) ∈ E are base constraints that hold without considering
multiple variables.

8.1 Local Polytope LOC

Let us start with the following one constraint (other choices would also work),

qij ≤ qi.
Flipping Xi and applying the above constraint to the new model yields

q′ij ≤ q′i ⇔ qj − qij ≤ 1− qi ⇔ qij ≥ qi + qj − 1.

Now take the last constraint above and flip Xj to obtain

qi − qij ≥ qi + 1− qj − 1 ⇔ qij ≤ qj .
Observe that we have obtained all the local polytope constraints.

8.2 Triplet Polytope TRI

Consider any triplet of variables Xi, Xj , Xk. Let us start with the following one constraint,

qi + qjk ≥ qij + qik.

Flip Xi to obtain

1− qi + qjk ≥ qj − qij + qk − qik ⇔ qij + qjk + qik ≥ qi + qj + qk − 1. (11)

Take the last constraint above and flip Xj to obtain

qi − qij + qk − qjk + qik ≥ qi + 1− qj + qk − 1 ⇔ qj + qik ≥ qij + qjk.

Instead, take (11) and flip Xk to obtain

qij + qj − qjk + qi − qik ≥ qi + qj + 1− qk − 1 ⇔ qk + qij ≥ qik + qjk.

Observe that all the triplet polytope constraints may be obtained.
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Figure 7: A triangle abc with two attractive edges a−b and a−c, and one repulsive edge b−c, together with a graph of the
relevant triangle constraint qa + qbc ≥ qab + qac as qa is varied, holding fixed qb and qc while recomputing LOC-optimum
edge marginals for qab and qac. The constraint is binding where the plot is red, and not where it is black. Here we consider
qb + qc < 1, hence on LOC, qbc = 0, and qab = min(qa, qb), qac = min(qa, qc). Observe that qa = qb + qc is the one
new case that causes trouble (e.g. if just qa is perturbed, the constraint becomes binding just on one side leading to an
asymmetric response). There can also be difficulties at the vertices at qa ∈ {min(qb, qc),max(qb, qc)} but these would
be locking edges from a to b or c, hence are already covered by the LOC cases. When qa = qb + qc, observe that any
sufficiently small perturbation of singleton marginals up and down by a vector within the following two dimensional space
will work symmetrically for edge marginals: (δa, δb, δc) = α(1, 1, 0) + β(1, 0, 1). In particular, this includes a small
perturbation of (δa, δb, δc) = ±ε(0, 1,−1).

8.3 Symmetry of Problem Triangles in TRI

Consider Figure 7. If qb + qc < 1 and qa = qb + qc, with a− b and a− c strong up edges and b− c a strong down edge,
then this is a problem triangle of type (i) as described in §4: it has 3 strong edges with a− b and a− c strong up, and b− c
strong down; in addition, b + c < 1 and a = b + c. We shall show that the other 3 types of problem triangle described in
§4 may be obtained from this one by flipping variables.

The following observations are easily checked:
Flipping a variable flips each of its incident edges between strong up↔ strong down.
Since flipping variables always changes an even number of edges, any flipping of our original problem triangle yields a
triangle with three strong edges including an odd number of strong down edges, i.e. a strong frustrated triangle.

First, flip a to yield a triangle with 3 strong down edges and singleton marginals a′ = 1 − a, b′ = b, c′ = c. Now
a = b + c ⇔ a′ + b′ + c′ = 1, i.e. problem triangle type (iii). Note that we have b′ + c′ = a < 1; also a = b + c hence
a > b and a > c, which implies that a′ + b′ < 1 and a′ + c′ < 1.

Now flip all variables to give a′′ = 1−a′, b′′ = 1−b′, c′′ = 1−c′. This again yields a triangle with 3 strong down edges but
now a′′+b′′ = 1−a′+1−b′ > 1, and similarly a′′+c′′ > 1, b′′+c′′ > 1. We have a′′+b′′+c′′ = 1−a′+1−b′+1−c′ = 2,
i.e. problem triangle type (iv).

Finally, flip a′′ to yield a′′′ = 1−a′′, b′′′ = 1− b′′, c′′′ = 1− c′′ forming a strong triangle with edges incident to a′′′ strong
up and b′′′− c′′′ strong down. Now a′′+ b′′+ c′′ = 2⇔ 1−a′′′+ b′′′+ c′′′ = 2⇔ a′′′ = b′′′+ c′′′−1, with b′′′+ c′′′ > 1,
i.e. problem triangle type (ii).

9 Locking Components, and 0 or 1 Singleton Marginals

We first analyze locking components, see §9.2 for variables with 0 or 1 singleton marginals.

9.1 Locking Components

On TRI, given marginals qi, qj , qij , we say that variables i and j are locked up if qi = qj and qij = min(qi, qj), i.e. they
have the same singleton marginal and there is a strong up edge between them. Similarly, we say that variables i and j are
locked down if qi = 1 − qj and qij = max(0, qi + qj − 1), i.e. they have ‘opposite’ singleton marginals and there is a
strong down edge between them. In either case, we say that the edge (i, j) is locking (either up or down).
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We say that a cycle is strong frustrated if it is composed of strong edges with an odd number of strong down edges.

Define a locking component to be a component of the model that is connected when considering only locking edges. This
means that between any 2 variables in the locking component, there exists some path between them composed only of
locking edges. In general, this path might be long but the next result shows that in TRI, in fact it is always of length 1. In
addition, we see that a locking component contains no strong frustrated cycle.

Lemma 14. In TRI, within any locking component, all pairs of variables are adjacent via locking edges; further, there are
no strong frustrated triangles, and hence no strong frustrated cycles.

Proof. For the first part, the following result is sufficient, since given a path between any 2 variables in the component, this
will allow us iteratively to find a path shorter by one edge, until we get the edge directly between them:

Suppose variable A is adjacent to B which is adjacent to C, each via a locking edge. We shall show that A is adjacent to
C via a locking edge so as always to avoid a strong frustrated triangle. Let B have singleton marginal x. We shall consider
all marginals, where A means singleton marginal for A etc., AB means edge marginal for edge A − B etc. There are 3
cases:

1. A − B is locking up, B − C is locking up. A : x,B : x,C : x,AB : x,BC : x. Now triangle inequality
B +AC ≥ AB +BC gives AC = x, i.e. A− C is locking up.

2. A−B is locking up, B − C is locking down. A : x,B : x,C : 1− x,AB : x,BC : 0. Now A+BC ≥ AB + AC
gives AC = 0, i.e. A− C is locking down.

3. A−B is locking down,B−C is locking down. A : 1−x,B : x,C : 1−x,AB : 0, BC : 0. NowAB+BC+AC ≥
A+B + C − 1 gives AC = 1− x, i.e. A− C is locking up.

We have shown that all variables in the locking component are adjacent via locking edges, and that no triangle is strong
frustrated. To demonstrate that there are no strong frustrated cycles (of any length): Suppose toward contradiction that there
exists such a cycle, and let us pick one with minimum length composed of variables v1, v2, . . . , vn, so n ≥ 4 is minimal.
Now ‘break’ the cycle into two pieces: {v1, v2, . . . , vn−1} and {vn−1, vn, v1}. Since the second piece is a triangle, by the
above it is not strong frustrated, i.e. the number of strong down edges in it is 0 mod 2. Edge v1− vn−1 is either strong up
or strong down, either way, twice the number of its strong down edges is 0 mod 2. Let r be the number of strong down
edges in cycle v1, v2, . . . , vn−1 mod 2, then we have r + 0 = 1 mod 2, contradiction since n was minimal.

9.1.1 Edge marginals from locking components

In TRI, suppose i and j are any two variables in a locking component, and k is any other variable.

Lemma 15. Given qik, qjk is uniquely known. If one moves symmetrically, so too does the other. Specifically, if i and j
are locked up then qjk = qik; if i and j are locked down then qjk = qk − qik.

Proof. This follows by applying the TRI inequalities to the triangle i, j, k. We show the case where i and j are locked up.
Let x = qi = qj . Let y = qik and r = qjk. The singleton and edge marginals are shown in Figure 8. We must show that
r = y.

First, qi + qjk ≥ qij + qik, i.e. x + r ≥ x + y, hence r ≥ y. Next, qj + qik ≥ qij + qjk, i.e. x + y ≥ x + r, hence
r ≤ y.

9.1.2 A problem triangle cannot have more than one variable in a specific locking component

This follows directly from the relevant definitions (see §4) and Lemma 14 since a problem triangle has no locking edges.

9.2 0 or 1 Singleton Marginals

We consider any variable Xi with singleton marginal qi ∈ {0, 1}.
Lemma 16. If a variable has singleton marginal 0 or 1, then its incident edge marginals are forced and will move sym-
metrically (on LOC or TRI). For any triplet containing the variable, all TRI inequalities are always satisfied for any (LOC
valid) opposite edge marginal.
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Figure 8: Marginals for variables i and j that are locked up in TRI. We show that r = y, see §9.1.1.

Proof. If variable Xi has singleton marginal qi = 0, then for any incident edge (i, j), by the LOC constraint qij ≤ qi,
we have qij = 0. If instead Xi has singleton marginal qi = 1, then for any incident edge (i, j), by the LOC constraint
qij ≥ qi + qj − 1, we have qij = qj .

Consider any triplet formed by Xi together with any variables Xj and Xk, which have singleton marginals qj and qk. Let
qjk be the LOC-valid edge marginal for the edge Xj −Xk (i.e. qjk, qj , qk satisfy (3)). It is straightforward to check that
all TRI constraints (given by (9)-(10)) are satisfied. We demonstrate this for the case qi = 0:

qi + qjk − qij − qik = 0 + qjk − 0− 0 = qjk ≥ 0

qj + qik − qij − qjk = qj + 0− 0− qjk = qj − qjk ≥ 0

qk + qij − qik − qjk = qk + 0− 0− qjk = qk − qjk ≥ 0

qij + qjk + qik − qi − qj − qk + 1 = 0 + qjk + 0− 0− qj − qk + 1 = qjk − (qj + qk − 1) ≥ 0

10 Results on the Structure of Weak and Strong Down Edges in an Almost Attractive Model

Throughout this Section, we assume an almost attractive model, where edge marginals have been optimized over TRI given
singleton marginals. Further, as justified by §9, we assume no locking edges or variables that have singleton marginal 0 or
1.

Lemma 17. In every triplet of variables, at most one triplet constraint is tight.

Proof. If any two triplet constraints hold, it is easily seen that this implies a locking edge.

Lemma 18. Any weak edge uv must be tight in some triplet constraint, that is there must exist some variable w s.t. there
is a tight triplet constraint in u, v, w.

Proof. If not, then the edge marginal uv may be perturbed up and down by a sufficiently small ε without violating any
LOC or TRI constraints, hence we cannot be at a vertex.

Lemma 19 (When 2 strong edges in a triangle force the 3rd edge to be strong). Consider triangle abc where edges ab and
ac are strong. The following cases force the edge bc (all cases may be regarded as flippings of the first case):

(i) ab, ac up and a ∈ [b, c] (a is in the middle)⇒ bc = min(b, c) is strong up;

(ii) ab, ac down where one is 0 and the other is > 0⇒ bc is strong up (with marginal equal to the end of the 0 edge from
a);

(iii) ab up with a > b, and ac down with ac = 0⇒ bc = 0 strong down;

(iv) ab up with a < b, and ac down with ac > 0⇒ bc = b+ c− 1 strong down.

Proof. These are easily shown by applying TRI constraints to abc. We demonstrate the first case by applying the inequality
a+ bc ≥ ab+ ac: if b ≤ a ≤ c then the inequality is a+ bc ≥ b+ a⇒ bc = b; similarly, c ≤ a ≤ b⇒ bc = c.
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Figure 9: An illustration of the situation considered in Lemma 21. If wx → xz → xy is a thistle, then so too is wx → xy. Broken
wavy edges indicate edges which are either strong down or weak (but not strong up), i.e. they are dw edges.
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Figure 10: An illustration of the 2 structures which cannot occur in an almost attractive model if edge marginals are optimized; see
Theorem 23. Solid blue edges are strong up, wavy red edges are strong down, and dashed green edges are weak. The right structure is
equivalent to the left by a flipping of s.

We say that any edge which is strong down or weak is a dw edge. Thus, any edge which is not strong up is dw.

In an almost attractive model, any dw edge xy not incident to s must be being held down by some TRI constraint, say in
triplet wxy. This must have one of two forms, either (i) x+ wy = wx+ xy, or (ii) y + wx = wy + xy. (The other 2 TRI
inequalities, if tight, would hold up xy.) In case (i), we say that wy is holding down xy and write wy → xy. In case (ii),
wx is holding down xy and we write wx→ xy.

Note that wy → xy is equivalent to wy → wx; both mean that x+ wy = wx+ xy.

Definition 20. A thistle from edge e1 to edge ek of length k is a sequence of edges e11 − e12 → e21 − e22 → . . .→ ek1 − ek2
where there is one variable in common between successive edges, that is |{ei1, ei2} ∩ {ei+1

1 , ei+1
2 }| = 1 and each edge is

holding down the next for all i = 1, . . . , k − 1.

An example thistle might be of the form uv → vw → wx→ xy. Note though that in general, a thistle may not be a direct
path. For example, a thistle could take the form uv → vw → vx → xy. In this example, we think of vw as a ‘thorn’ that
sticks out to the side, which is why we call these structures thistles. We next provide two Lemmas which show that thistles
of length 3 can be ‘contracted’ to length 2.

Lemma 21. If xw → xz → xy is a thistle (note this has a thorn), then so too is xw → xy.

Proof. Consider Figure 9. We know that xw is holding down xz and xz is holding down xy. Further we have an inequality
for triangle wxy. Hence we have

z + xw = xz + wz (12)
y + xz = xy + yz (13)
y + xw ≥ wy + xy (14)

Now (12) + (13) gives xw = xy+ yz+wz− y− z. Substituting into (14) gives yz+wz ≥ z+wy. But now observe that
we have z+wy ≥ wz+ yz as a triplet constraint in wyz, hence (14) must hold with equality, which proves the result.

Lemma 22. If wx→ xy → yz is a thistle (note this follows a path with no thorn), then so too is wz → yz.
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Proof. The proof is similar to that of Lemma 21. We have thatwx is holding down xy, and xy is holding down yz. Further,
we use an inequality for the triangle wyz:

y + wx =wy + xy (15)
z + xy =xz + yz (16)
y + wz ≥wy + yz (17)

Now (15) + (16) yields yz = y+ z+wx−wy−xz. Substituting into (17) and rearranging gives wz+xz ≥ z+wx. But
we have the TRI inequality z + wx ≥ wz + xz, so equality must be attained in wz + xz ≥ z + wx, and so we must have
equality in 17, which yields the result.

Notice that in both Lemmas 21 and 22, the w variable in the first edge features exactly once in the conditions of the
Lemmas, and then again features as one of the ends of the edge holding down the other in the conclusion of the result.

Using these earlier Lemmas, we show the following key structural result on dw edges.

Theorem 23 (dw edges away from s). Every dw edge xy which is not incident to s is pulled down by an edge incident to
s, i.e. either sx→ xy or sy → xy.

Proof. Any dw edge xy not incident to s is attractive, hence must be held down by another edge (i.e. xy must be in a
triplet where there is a binding TRI constraint which upper bounds xy), which WLOG we may assume is ux for some u.
If u = s then we are done. Otherwise ux is attractive, and must be dw (since if ux were strong up, it is easily checked that
it could not hold down xy, i.e. y+ux ≥ uy+xy will always hold, even if xy is strong up) and we may keep repeating the
argument to grow a thistle back from xy: . . .→ ux→ xy. As we work back, since the graph is finite, one of the following
two cases must occur:

1. We eventually hit an edge incident to s. The result then follows by repeatedly applying Lemmas 21 or 22.

2. We have a sub-thistle, the edges of which form a chordless cycle in the graph of length k ≥ 3, a1a2 → a2a3 →
· · · aka1. Now repeatedly apply Lemmas 21 or 22 alternately to the sub-thistle given by the first three edges until we
obtain either: a1ak → ak−1ak → aka1 (if k is even) or a1ak−1 → ak−1ak → aka1 (if k is odd). In either case, this
implies two tight triangle inequalities in a1ak−1ak (this follows directly from the definition above of the→ notation;
for example, a1ak → ak−1ak → aka1 means ak−1 + a1ak = a1ak−1 + ak−1ak (from a1ak → ak−1ak) and also
a1 + ak−1ak = a1ak−1 + a1ak (from ak−1ak → aka1)), which is a contradiction by Lemma 17.

Note that as a consequence of this Theorem, the two configurations shown in Figure 10 cannot occur.

We show a strengthening of the result if the dw edge is strong down.

Lemma 24 (Strong down edges away from s). If xy = 0 is a strong down edge with s /∈ {x, y}, then either: sx = x is
strong up and sy = 0 is strong down; or sx = 0 is strong down and sy = y is strong up.
If xy > 0 is a strong down edge with s /∈ {x, y}, then either: sx = s is strong up and sy > 0 is strong down; or sx > 0 is
strong down and sy = s is strong up.

Proof. By Theorem 23, we have sx → xy or sy → xy. The remainder of the statement of the proof follows as a
straightforward application of the relevant TRI constraint. We show the case xy = 0 and sx → xy: We have y + sx =
sy + xy = sy. Rewrite this as (y − sy) + sx = 0. Both terms are ≥ 0 hence must both be exactly zero.

11 Specification of Complete Symmetric Perturbation (including all edges)

Throughout this Section, we assume an almost attractive model with special variable s, where edge marginals have been
optimized over TRI given singleton marginals. Further, as justified by §9, we assume no locking edges or variables that
have singleton marginal 0 or 1.

We shall specify a perturbation for all singleton and all edge marginals with a number which is -1, 0 or 1 for each marginal.
The perturbation up is formed by taking the vector of all these numbers and multiplying by a small ε. The perturbation
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down is exactly the negative of the perturbation up. ε is to be chosen sufficiently small s.t. any constraint (this includes all
TRI constraints, all LOC constraints, and all constraints on a marginal being ≥ 0 and ≤ 1) which was not tight initially,
remains so after either perturbation. In order for both perturbations to remain in TRI, we shall demonstrate that all tight
TRI constraints (and also all LOC constraints, see §11.2.1) are exactly maintained in all cases.

11.1 Rule for Singleton Marginals

The perturbation for the singleton marginal of the variable s is 0. For any other variable v ∈ V \ {s}, its perturbation
depends on its edge marginal to s, i.e. sv, according to the following exhaustive options (recall that we are assuming no
locking edges):

v moves by + 1 if v is strong up to s and v > s, or v is strong down to s and v + s < 1

v moves by − 1 if v is strong up to s and v < s, or v is strong down to s and v + s > 1

v moves by 0 if v has a weak edge to s.
(18)

We remark that this perturbation has the appealing property that it maps to itself (actually it maps to the negative of itself,
but that is equivalent since we perturb up and down) under a flipping of s (if a perturbation works for all almost attractive
models, then the version obtained from it by flipping s must also work for all almost attractive models, since flipping s is a
bijection from the set of all almost attractive models to itself).

11.2 Rule for Edge Marginals

Given the changes in (18) for singleton marginals, we now show the perturbation for edge marginals.

11.2.1 Strong Edges

If an edge is strong (i.e. a LOC constraint is tight), we may immediately determine the perturbation required in order that
LOC constraints are respected for both perturbations up and down. Specifically:{

uv moves with min(u, v) if uv is strong up
uv moves with max(0, u+ v − 1) if uv is strong down.

(19)

11.2.2 Note on Consistency, Remaining within TRI

The above rules clearly ensure that our perturbed marginals remain in LOC. Note that for any edge that had a tight LOC
constraint, i.e. was strong, the above rules exactly maintain this constraint when perturbed. We adopt this idea to ensure
that we shall also remain in TRI. That is, for our perturbed marginals to be in TRI, it is clearly sufficient if we ensure that
every TRI constraint that was tight, is exactly maintained for the perturbed marginals. In order to demonstrate that our
perturbation satisfies this condition, we shall explicitly prescribe all perturbations for all weak edges, and show that our
prescribed perturbation exactly maintains all TRI constraints that are tight. In order to do this, we shall have to demonstrate
that our prescribed changes for edges are consistent with the change that is necessary in all other triplets to preserve tight
TRI constraints. This is what we mean by consistency, which we explore fully in §12.

11.2.3 Weak Edges Incident to s

The perturbation for a weak edge sw incident to s is -1. This is chosen since it is necessary to ensure consistency for any
TRI constraint involving the weak edge and any 2 strong edges, as we show in §12.2.1.

Note that we have now specified all edges (weak and strong) incident to s.

11.2.4 Weak Edges Not Incident to s, δ Notation

Given the above specifications, we may now use Theorem 23 to prescribe the change necessary for any weak edge uv not
incident to s in order to maintain consistency. We adopt the notation δ(v) ∈ {−1, 0,+1} for the perturbation of a singleton
marginal v, and δ(uv) ∈ {−1, 0,+1} for the perturbation of an edge marginal uv. There are exactly 7 possible cases to
consider. In each case, it is straightforward to compute the required perturbation for the weak edge not incident to s, as
shown in Figure 11. We provide more detail below.
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δ(uv) = −1

(g) su = s+ u− 1 and sv = v

Figure 11: Cases where a weak edge uv is not incident to s. By Theorem 23, there must be a tight TRI constraint in
suv. Here we show the possible forms with the implied perturbation for the weak edge. Note that the forms in the lower
row may each by obtained from an appropriate form in the upper row by flipping s, so need not be considered separately.
Specifically, under flipping s we have a↔ a, b↔ e, c↔ f, d↔ g.
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v0

(a) su = 0 and sv = v

s

u v

ss+u-1

(b) su = s+u− 1 and sv = s

Figure 12: Cases which are not possible when suv has a tight TRI constraint since each implies that uv is strong down.

If a weak edge uv is not incident to s, then by Theorem 23 it lies in a tight triangle with s, and as described in §11.2.4,
we may deduce its necessary edge perturbation by considering the tight TRI constraint in the triangle suv. The 7 possible
cases are shown in Figure 11(a)-(g).

Note that by Lemma 19, the two configurations shown in Figure 12 cannot have a tight TRI constraint without contra-
dicting the weakness of uv. Thus, these are omitted from Figure 11 and may be excluded from further analysis. Observe
that a configuration of the form given in Figure 11g may be obtained by flipping the variable s in Figure 11d, and the
configurations shown in Figures 11e and 11f may similarly be obtained from those in Figures 11b and 11c by flipping s.
We may therefore exclude these cases from our analysis too, and need only show here that the perturbations defined for the
weak edges in Figures 11a, 11b, 11c, and 11d are consistent.

The perturbations for the weak edge uv that are indicated in the various configurations of Figure 11 may be derived
straightforwardly by considering the tight TRI constraint in each case, using the prescribed perturbation for the other edges
as given by §11.1 and §11.2.1, and observing what perturbation of the weak edge is implied in order to maintain tightness
of the relevant TRI constraint. We go through cases:

• In Figure 11a, the tight TRI constraint must be either u + sv = su + uv or v + su = uv + sv. In either case, by
noting that δ(u) = δ(v) = 0 and δ(su) = δ(sv) = −1, as prescribed in §11.2.3, it follows that to maintain tightness
of the TRI constraint, we must have δ(uv) = 0.

• In Figure 11b, the tight TRI constraint must be u + sv = su + uv. Noting that δ(u) = −1, δ(sv) = −1, and
δ(su) = δ(u) = −1, we must have δ(uv) = −1.

• In Figure 11c, the tight TRI constraint must be u + sv = su + sv. Noting that δ(u) = 1, δ(sv) = −1 and
δ(su) = δ(s) = 0, we must have δ(uv) = 0.

• In Figure 11d, the tight TRI constraint must be v + su = sv + uv. Noting that δ(v) = 1, δ(su) = 0, and δ(sv) =
δ(s) = 0, we must have δ(uv) = 1.
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12 Demonstrating Consistency

We shall show that the perturbation prescribed in §11.2 maintains all tight TRI constraints, which is sufficient for us to stay
within TRI after perturbing both up and down.

We must consider all cases of a triplet with a tight TRI constraint. We divide the cases up into 4 exhaustive classes:

(i) The triplet contains 0 weak edges (hence 3 strong edges), we call this 0-wedge consistency. See §12.1.

(ii) The triplet contains 1 weak edge (hence 2 strong edges), we call this 1-wedge consistency. See §12.2.

(iii) The triplet contains 2 weak edges (hence 1 strong edge), we call this 2-wedge consistency. See §12.3.

(iv) The triplet contains 3 weak edges (hence 0 strong edges), we call this 3-wedge consistency. See §12.4.

12.1 0-wedge consistency

In this Section we consider a triangle with 3 strong edges. Recall that by construction, our perturbation maintains the
nature of all strong edges (strong up stay strong up, strong down stay strong down). We make the following observation.

Lemma 25. In a triangle with three strong edges including an even number of strong down edges (so the triangle is not
strong frustrated), all TRI constraints are always satisfied.

Proof. This follows by straightforward checking of the TRI constraints (9)-(10). We demonstrate one case. Suppose abc
is a triangle with 3 strong up edges. We shall show that a+ bc ≥ ab+ ac. Consider f = a+ bc− ab− ac, we shall show
f ≥ 0. We have f = a + min(b, c) − min(a, b) − min(a, c), clearly symmetric in b and c, thus we may consider just 3
subcases:

a ≤ b ≤ c ⇒ f = a+ b− a− a = b− a ≥ 0

b ≤ a ≤ c ⇒ f = a+ b− b− a = 0

b ≤ c ≤ a ⇒ f = a+ b− b− c = a− c ≥ 0.

Hence we need consider only triangles that are strong frustrated. We may rule out 3 strong down edges.

Lemma 26. A triangle with 3 strong down edges cannot occur.

Proof. Lemma 24 shows that s cannot be in such a triangle. Now applying Lemma 24 to each edge in turn around the
triangle yields a contradiction: we must alternate between strong up and strong down edges to s, yet this is not possible
since we have an odd number of edges (if an edge is both strong up and strong down, one end must have marginal of 0 or
1, which we are assuming cannot occur).

Thus we need consider only the case of a strong frustrated triangle abc that has 1 strong down edge bc and 2 strong up
edges ab, ac, where a TRI constraint is tight. By Lemma 19, we must have a < b, c or a > b, c. It is easily checked that the
only TRI constraint of concern is where a+ bc = ab+ ac, hence we may assume that this holds. These are called problem
triangles of type (i) and (ii) in the main paper §4. Note that s could be b or c (in which case, we assume b WLOG) but not
a by Lemma 24. See Figure 13 for illustrations of the four possibilities.

Considering first the cases where s is in the triangle. If a > s, c then we have δ(a) = +1, δ(sc) = 0, δ(sa) = δ(s) =
0, δ(ac) = δ(c) = +1 ⇒ δ(a + sc − sa − ac) = 1 + 0 − 0 − 1 = 0 so we have consistency. If a < s, c then
δ(a) = −1, δ(sc) = δ(c) = −1, δ(sa) = δ(a) = −1, δ(ac) = δ(a) = −1⇒ δ(a+ sc− sa− ac) = −1− 1 + 1 + 1 = 0
as required.

If s is not in the triangle then we may use Lemma 24 to give the edges from s to b and c, which determine their perturbations.
WLOG we shall assume that sb is strong down and sc is strong up. It remains to determine the perturbation change to a,
which we shall do by considering the edge sa.

If a > s, c (case c in Figure 13) then we have sb = 0, sc = c, ac = c. Also a+ bc = ab+ ac⇒ a = b+ c. From triangle
sca we have c+ sa ≥ sc+ ac⇒ sa ≥ c+ c− c = c while from sba we have a+ bs ≥ ab+ sa⇒ sa ≤ a+ 0− b = c.
Hence sa = c a weak edge. Now δ(a+ bc− ab− ac) = 0 + 0− 1 + 1 = 0 as required.
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Figure 13: The four possible types of triangles abc with one strong down edge bc and two strong up edges to consider for
0-wedge consistency. We have a+ bc = ab+ ac, either a > bc with bc = 0, or a < b, c with bc > 0. On the left we have
the cases where s is in the triangle. See §12.1.
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Figure 14: The two possible types of triangles with one weak edge incident to s

If a < s, c (case d in Figure 13) then we have sb > 0, sc = s, ac = ab = a. Also a + bc = ab + ac ⇒ a =
b + c − 1. Applying the same TRI inequalities as in the last case, we obtain sa = s + b − 1, again a weak edge. Now
δ(a+ bc− ab− ac) = 0 + 0− 0 + 0 = 0 as required.

12.2 1-wedge consistency

We split the 1-wedge class into subclasses. We first consider in §12.2.1 the case that the 1 weak edge is incident to s. Then
in the following Sections, we demonstrate consistency exhaustively for all possible configurations of weak edges that are
not incident to s. These are illustrated in Figure 11. We need consider only cases shown in 11a to 11d, since the remaining
cases may be obtained from these by flipping s.

12.2.1 Perturbation of a weak edge incident to s consistent with a TRI including 2 strong edges

As in §11.2.3, let sw be a weak edge incident to s. Recall that we prescribed δ(sw) = −1. Here we shall consider any
possible triangle involving a third variable v with sv and vw strong, and demonstrate consistency.

By Lemma 24, vw cannot be a strong down edge, hence vw must be strong up. There are therefore two cases to consider:
(i) both sv and vw are strong up; and (ii) sv is strong down, and vw is strong up. See Figure 14.

We first consider case (ii). By Lemma 19, because sw is weak, we must have one of the 2 subcases shown in Figure 15.
The only possible tight TRI constraint, which must therefore apply, is w + sv = sw + vw.

In order to maintain this TRI constraint through the perturbations, we must have

δ(w) + δ(sv) = δ(sw) + δ(vw).

Using our rules for perturbation from §11.1 and §11.2.1, in both subcases this gives δ(sw) = −1 which is consistent with
our rule in §11.2.3.

We now consider case (i) where sv and sw are both strong up. The only possible tight TRI constraint, which must hold, is
v+ sw = sv+ vw. By Lemma 19, we must have either v < s,w or v > s,w, see Figure 16. In either case, to preserve the

s

w

v

0

v

s

w

v

s+v-1

w

Figure 15: Possible cases where there is a weak edge incident to s in a triangle with one strong up and one strong down
edge, with a tight TRI constraint
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Figure 16: Possible cases where there is a weak edge incident to s in a triangle with two strong up edges, with a tight TRI
constraint
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Figure 17: The consistency case to be analysed in this section. Black zigzag lines indicate generic strong edges.

tightness of the TRI constraint, following our rules for perturbation from §11.1 and §11.2.1, we must have δ(sw) = −1,
which is consistent with our rule in §11.2.3.

12.2.2 1-wedge Consistency of Weak Edge Perturbations Defined in Figure 11a

Here we prove that for any weak edge uv of the form appearing in Figure 11a, if there exists another variable x such that
uvx is a triangle with a tight TRI constraint, and ux, vx are strong edges, then the tight TRI constraint is maintained the
prescribed perturbation for uv. This scenario is illustrated in Figure 17.

First note that by Lemma 24, ux and vx cannot be strong down. Therefore the only scenario to consider in this case is
when ux and vx are strong up. Recall from Lemma 19, we must have either x < u, v or x > u, v. Note also that we have
the prescribed perturbations δ(u) = δ(v) = δ(uv) = 0. Since the only possible tight TRI constraint in uvx that doesn’t
contradict the weakness of uv is x + uv = ux + vx, this equality must hold. By considering Figure 18, note that in each
case, we must prove that δ(x) = 0 in order for tightness of this constraint to be maintained. Thus, it is sufficient in each
case to prove that sx is weak.

First, we consider x > u, v - see Figure 18a. In the tight triangle suv, one of the TRI constraints u + sv ≥ su + uv and
v + su ≥ sv + uv must be tight; without loss of generality, we take u + sv = su + uv. In the tight triangle uvx, it must
be the case that the tight TRI constraint is x + uv = ux + vx. From these two equations, we obtain x = v − sv + su.
Now considering TRI inequalities in svx, we note v + sx ≥ sv + vx, so v + sx ≥ sv + v, and so sx ≥ sv. We also have
x+ sv ≥ sx+ vx, which leads to su ≥ sx (by using the fact that x = v + su− sv). So we obtain

min(s, x) ≥ min(s, u) > su ≥ sx ≥ sv > 0

Therefore if we can show that sx 6= s+ x− 1, we have that sx is weak, so that δ(x) = 0, and so the tight TRI constraint
x + uv = ux + vx is maintained under the perturbation, as we set out to show. To show this, suppose sx = s + x − 1,
and consider the TRI constraint u + sx ≥ su + ux. Substituting in our expression for x, we obtain s + v − 1 ≥ sv,
contradicting weakness of sv. Therefore sx is weak, and δ(x) = 0, as required.

Next, we consider x < u, v, as in Figure 18b. Again, for the tight TRI constraint in suv we may assume without loss of
generality that u + sv = su + uv. The only TRI constraint that can be tight in uvx (without contradicting weakness of
uv) is x+ uv = ux+ vx, which implies uv = x, so x = u+ sv − su. Considering the TRI constraint u+ sx ≥ su+ ux
gives sx ≥ sv, and considering the TRI constraint x+ sv ≥ sx+ vx gives sv ≥ sx. Therefore we have sv = sx, and so
immediately we have sx > 0 and sx < s. We now just need to rule out sx = s + x − 1 and sx = x. If sx = s + x − 1,
then by considering the TRI constraint v + sx ≥ vx + sv, we obtain sv ≤ s + v − 1, contradicting weakness of sv. If
sx = x, then we obtain su = u is strong up, a contradiction.
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Figure 18: The possible configurations of the model shown in Figure 17
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Figure 19: The consistency case to be analysed in this section. Black zigzag lines indicate generic strong edges.

12.2.3 1-wedge Consistency of Weak Edge Perturbations Defined in Figure 11b

Here we prove that for any weak edge uv of the form appearing in Figure 11b, if there exists another variable x such that
uvx is a triangle with a tight TRI constraint, and ux, vx are strong edges, then the tight TRI constraint is maintained the
prescribed perturbation for uv. This scenario is illustrated in Figure 19.

First, we note that xv cannot be strong down, by Lemma 24. Therefore we take xv strong up. Note also that since u < s,
if ux is strong down, then it has edge marginal 0 and sx is strong down with edge marginal 0 too. Recall also that if ux is
strong up, then by Lemma 19 we have x > u, v or x < u, v. Figure 20 illustrates these cases.

In Figure 20a, note that the tight TRI constraint in uvx must be v + ux = uv + vx. Noting that in this case, we have
δ(v) = 0, δ(ux) = 0, δ(uv) = −1, if v > x, then δ(vx) = δ(x) = −1 (so the tightness of the TRI constraint is
maintained). If v < x, then the TRI constraint v + sx ≥ xv + sv, implies sv = 0, a contradiction.

In Figure 20b, note that the only possible tight TRI constraint in uvx is x+ uv = ux+ vx (all other contradict weakness
of uv). Note also that u+ sv = su+ uv is the only possible tight TRI constraint in suv, so sv = uv. Lastly, we have the
TRI constraint x+ sv ≥ sx+ vx. But x+ sv = u+ v, so u ≥ sx. But considering the TRI constraint u+ sx ≥ su+ ux
gives sx ≥ u. So sx = u is weak. So we have δ(x) = 0, δ(u) = −1, δ(v) = 0, and δ(uv) = −1, so the tightness of
x+ uv = ux+ vx is maintained.

In Figure 20c, note that by considering the TRI constraint u+sx ≥ ux+su, we obtain sx = x. We then note that the tight
TRI constraint in uvxmust be x+uv = ux+vx (all others contradict the weakness of uv). Note that we have δ(x) = −1,
δ(uv) = −1, δ(ux) = −1, and δ(vx) = −1, so the tightness of the TRI constraint is maintained.
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Figure 20: The possible configurations of the model shown in Figure 19
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Figure 21: The consistency case to be analysed in this section. Black zigzag lines indicate generic strong edges.
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Figure 22: The possible configurations of the model shown in Figure 21

12.2.4 1-wedge Consistency of Weak Edge Perturbations Defined in Figure 11c

Here we prove that for any weak edge uv of the form appearing in Figure 11c, if there exists another variable x such that
uvx is a triangle with a tight TRI constraint, and ux, vx are strong edges, then the tight TRI constraint is maintained by
the prescribed perturbation for uv. This scenario is illustrated in Figure 21.

First, we note that xv cannot be strong down, by Lemma 24. Therefore we take xv strong up. Note also that since u < s,
if ux is strong down, then it has edge marginal u+ x− 1 and sx is strong down with edge marginal 0 too. Recall also that
if ux is strong up, then by Lemma 19 we have x > u, v or x < u, v. Figure 22 illustrates these cases.

In Figure 22a, note that if vx = x, then by considering the TRI constraint v + sx ≥ sv + xv implies that sv is strong
down, a contradiction. So vx = v. Note that the only possible tight TRI constraint in uvx is v + ux = uv + vx, and we
have δ(v) = 0, δ(uv) = 0, δ(vx) = 0, and δ(ux) = 0, so the TRI constraint remains tight.

In Figure 22b, note that from the TRI constraint u+ sx ≥ su+ ux, we obtain sx ≥ s, and so sx = s. The only possible
tight TRI constraint in uvx is x+uv = ux+vx (all others contradict the weakness of uv). But then note we have δ(x) = 1,
δ(ux) = 1, δ(vx) = 0 and δ(uv) = 0, so the TRI constraint remains tight.

In Figure 22c, note that the only possible tight TRI constraint in uvx is x + uv = ux + vx (all others contradict the
weakness of uv), so we obtain uv = x. Note that u + sx ≥ su + ux, so sx ≥ s + x − u. Also, x + sv ≥ sx + vx,
so sv ≥ sx. But the only possible tight TRI constraint in suv is u + sv = su + uv, and this yields s + x − u ≥ sx, so
sx = s+ x− u. Note this quantity is less than s and x, so sx not strong up; it is greater than s+ x− 1, and if it is equal to
0, then we have sv = 0, a contradiction. Therefore sx is weak. From this, note that δ(x) = 0, δ(ux) = 0, δ(vx) = 0 and
δ(uv) = 0, so the TRI constraint in uvx remains tight.

12.2.5 1-wedge Consistency of Weak Edge Perturbations Defined in Figure 11d

In this section, we prove that for any weak edge uv of the form appearing in Figure 11d, if there exists another variable
x such that uvx is a triangle with a tight TRI constraint, and ux, vx are strong edges, then the tight TRI constraint is
maintained the prescribed perturbation for uv. This scenario is illustrated in Figure 23.

There are three separate realisations of the scenario in Figure 23 to consider; see Figure 24.

Firstly, the case where ux is strong down - this is illustrated in Figure 24a. Since ux is incident to us, which has edge
marginal 0, ux = 0 too, by Lemma 24. Again by Lemma 24, sx is strong up and equal to x. Applying the TRI constraint
s+ xv ≥ sx+ sv yields vx ≥ x, so vx = x and is strong up. Finally, checking which TRI constraint can hold in the tight
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Figure 23: The consistency case to be analysed in this section. Black zigzag lines indicate generic strong edges.
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Figure 24: The possible configurations of the model shown in Figure 23

triangle uvx, we note that the only possibility not contradicting the weakness of uv is v + ux = uv + vx, which leads to
s = x, so we have a locking component and need not consider this example further.

Secondly, we consider ux, vx strong up; see Figures 24b-24c. Recall from Lemma 19 that we need only consider x < u, v
and x > u, v. First consider x < u, v. The only TRI constraint in uvx that can be tight without contradicting the weakness
of uv is x+ uv = xu+ xv, so uv = x. But from the tight TRI constraint in usv, we get uv = v − s, so x = v − s. Now
considering the TRI constraint v + sx ≥ vs + vx gives sx = 0. Therefore we have δ(x) = 1, δ(uv) = 1, δ(xv) = 1,
δ(xu) = 1, and verify that the constraint x + uv = xu + xv remains tight under the perturbation. If x > u, v, then
considering v + sx ≥ vs+ vx gives sx = s, so again we obtain δ(x) = 1, δ(uv) = 1, δ(xv) = 1, δ(xu) = 1, and verify
that the TRI constraint remains tight under the perturbation.

Finally, we consider ux strong up and vx strong down; see Figure 24d. vx strong down implies that sx strong down, and
sv = s implies that both sx and vx are strong down with edge marginal greater than 0. The only TRI constraint in uvx that
can be tight without contradicting the weakness of uv is u+ vx = uv+ ux. This implies ux = x+ (u+ v− 1− uv) < x
(as uv not strong down), so ux = u, and so uv = x+ v − 1. But note since v + su = sv + uv, we have uv = v − s, and
so s = 1− x. Thus we have a locking component and need not consider this case further.

12.3 2-wedge consistency

12.3.1 The case where the 2 weak edges are both incident to s

This case is shown in Figure 25. The two possible tight TRI constraints are s + sv = uv + su or v + su = uv + sv. In
either case, it is clear that we obtain a consistent conclusion that δ(uv) = 0 (consistent with δ(u) = δ(v) = 0 and hence
the strong edge uv does not move).

s

u v
δ(uv) = 0

Figure 25: su, sv weak and uv strong (of any type)
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12.3.2 All other cases of 2-wedge consistency

For all these cases, we consider a tight triangle xyz away from s, with xy, yz, weak and xz strong. We note that by earlier
arguments, sxy and syz must be triangles from Figure 11. Therefore it is sufficient to consider all pairs of triangles sxy
and syz from Figure 11, and show that the tight TRI constraint in xyz remains tight under the perturbation. A priori this
gives 7 × 7 = 49 cases to check. However, by flipping s if necessary, sxy may always be taken to be one of a)-d) from
Figure 11, reducing the burden to 28 cases. We further note that by symmetry we always take sxy to be a triangle listed
no later in Figure 11 than triangle syz - this rules out a further 6 cases to check. The remaining cases are exhaustively
examined below.

Note that the nature of the edge xz is not specified explicitly by the triangles sxy and syz. However, since in this section
we consider triangles xyz with exactly two weak edges, we do not consider the cases where xz is weak - these are covered
in §12.4.

In some cases, we will want to argue that certain combinations of tight TRI constraints and strong edges contradict our
assumptions that we have no locking edges, and/or our assumptions about which edges are weak. It is possible, but
laborious, to prove these contradictions of our assumptions algebraically; here we briefly explain a MATLAB script written
to verify these contradictions automatically, in the context of its use in §12.3.4. In this case, we wish to show that it cannot
be the case that sz = z, xz = z, all other edges weak, and z + sy = sz + yz, z + xy = xz + yz and y + sx = sy + xy
without our assumptions of no locking edges, or the weakness of the other edges, being contradicted. To do this, we run
the script shown at the top of Listing 1.

Listing 1: Example script used in this section
>> equalities = {’z=sz’,’z=xz’,’z+sy’,’z+xy’,’y+sx’};

% Test weak edges:
testWeakness(equalities, ’sx’)
testWeakness(equalities, ’sy’)
testWeakness(equalities, ’xy’)
testWeakness(equalities, ’yz’)
% Test whether strong edges lock:
testLocking(equalities, ’sz’, ’up’)
testLocking(equalities, ’sx’, ’up’)

The variables equalities is a cell containing strings, which code for which LOC and TRI constraints we would like
to take to be tight. This gives rise to a new polytope, the restricted polytope given by intersecting TRI with all of these
constraints. The function testWeakness examines a particular input edge uv in the graph to see whether it is always
strong. This is implemented by checking whether any of the equations uv = 0, uv = u + v − 1, uv = u, uv = v always
hold in the restricted polytope. All four equations are checked in a similar way; for example, to check whether uv = u at
all points in the restricted polytope, two linear programs are set up to maximise and minimise the quantity uv− u over the
restricted polytope. If the maximum and minimum are both found to be 0 (in practice, we use a threshold of 1e− 6), then
we deduce that uv = u at all points in the polytope, and so we deduce that edge uv is forced to be strong, given the set
of constraints assumed in the equalities variable. Similarly, the function testLocking checks whether a particular
edge is locking up or down, by checking whether the two incident edge marginals are always equal (in the case of locking
up) or always sum to 1 (in the case of locking down) at all points in the restricted polytope; again, this is achieved by
setting up two linear programs to maximise and minimise a particular objective, and checking whether the maximum and
minimum attained are equal.

Listing 2: Output generated by Listing 1
Warning: The edge sy is actually strong up, with value y
> In testWeakness (line 26)
Warning: The edge xy is actually strong up, with value y
> In testWeakness (line 26)
Warning: The edge yz is actually strong up, with value y
> In testWeakness (line 21)
Warning: The edge yz is actually strong up, with value z
> In testWeakness (line 26)
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Figure 27: Model configuration for case a)-b)

The output (see Listing 2) to the script listed in Listing 1 indicates which tested edges the program found to be lock-
ing/strong. In particular, our assumption that sy is weak is shown to be contradicted by the set of TRI constraints we
assumed to be tight; the program indicates that sy = y at all points in the restricted polytope, and so sy is actually implied
to be strong, a contradiction. This means we need not consider the case where our assumed set of TRI constraints holds. As
a point of interest, note that the output states that yz is forced to be equal to y and z at all points in the restricted polytope;
this implies that yz is locked up, and this can indeed be verified, as demonstrated in Listing 3.

Listing 3: Demonstration of an edge which is noted to be forced into being locked up
>> testLocking(equalities, ’yz’, ’up’)
Warning: y and z are locked up
> In testLocking (line 22)

This general approach allows us to deal efficiently with several of the checks described below. The code is available from
the authors’ websites.

We indicate where this approach has been used below with the comment (verified via MATLAB program).

12.3.3 Case a)-a)

Consider the case where sxy and syz are both triangles of type 11a; see Figure 26 for an illustration. Note that xz cannot
be strong down, by Lemma 24. Therefore we may take xz strong up. Note that as sx, sy, sz are all weak, we have
δ(x) = δ(y) = δ(z) = 0. We also note from Figure 11a that δ(xy) = δ(yz) = 0. Finally, note also that δ(xz) = 0, as it
strong up and its incident variables do not move. Therefore whatever TRI constraint is tight in xyz, it remains tight after
the perturbation, as all singleton and edge marginals do not move.

12.3.4 Case a)-b)

Consider the case where sxy is of type 11a and syz is of type 11b (so sz is the strong edge of the triangle syz); see Figure
27 for an illustration. xz can’t be strong down by Lemma 24. So we may take xz strong up. We have δ(x) = 0, δ(y) = 0,
δ(z) = −1, and δ(xy) = 0, δ(yz) = −1.

If z < x, note that this implies δ(xz) = δ(z) = −1. There are two possible TRI inequalities that could be tight in xyz.
If x + yz = xy + xz, then note that this TRI constraint remains tight. If z + xy = xz + yz, then note in sxy, either
x+ sy ≥ sx+ xy is tight - but then sx = x is strong up (verified via MATLAB program) - or y + sx ≥ sy + xy is tight -
but then sy = y is strong up (verified via MATLAB program), so we need not consider these cases further.

If z > x, then consider triangle szx: x < z < s implies sx strong up by Lemma 19, so we need not consider this case
further.
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12.3.5 Case b)-b)

There are two ways in which triangles sxy and syz may be of type 11b; they may share either a weak edge incident to s,
or a strong edge incident to s.

For the former, we consider sxy of type 11b (with sx strong), and syz of type 11b (with sz strong). xz can’t be strong
down by Lemma 24, so we may take xz strong up. We have δ(x) = −1, δ(y) = 0, δ(z) = −1, and δ(xy) = −1,
δ(yz) = −1. Note that δ(xz) = −1 whether xz = x or xz = z. The two possible tight TRI inequalities in xyz are
x + yz = xy + xz and z + yx = xz + yz. By symmetry of this case in x and z, it suffices to consider one of these
equations, and by substituting in the perturbations for each variable and edge, note that it remains tight.

For the latter, we consider sxy of type 11b and syz of type 11b, (with sy the strong edge in both triangles). xz cannot be
strong down by Lemma 24, so we may take xz strong up. We have δ(x) = 0, δ(y) = −1, δ(z) = 0, and δ(xy) = −1,
δ(yz) = −1. Whether xz = x or xz = z, we have δ(xz) = 0. The two possible tight TRI inequalities in xyz are
x + yz = xy + xz and z + yx = xz + yz. By symmetry of this case in x and z, it suffices to consider one of these
equations, and by substituting in the perturbations for each variable and edge, note that it remains tight.

12.3.6 Case a)-c)

We consider sxy of type 11a, syz of type 11c (so sz is the strong edge of the triangle). We have δ(x) = 0, δ(y) = 0,
δ(z) = 1, and δ(xy) = 0, δ(yz) = 0. xz can’t be strong down by Lemma 24, so take xz strong up.

If xz = z, then consider triangle sxz, and note that s < z < x, implying sx strong up by Lemma 19, so we don’t need to
consider this case further.

If xz = x, then δ(xz) = δ(x) = 0. There are two possible tight TRI constraints in xyz. If x+yz = xy+xz, then plugging
in our singleton and edge perturbations immediately verifies this remains tight under the perturbation. If z+yx = yz+xz,
then considering triangle sxy, we either have x + sy = xy + sx - in which case sx is strong up (verified via MATLAB
program) - or y+ sx = sy+ xy - in which case sy is strong up (verified via MATLAB program), so we need not consider
these cases further.

12.3.7 Case b)-c)

We consider sxy of type 11b (with sx strong) and syz of type 11c (with sz strong). We have δ(x) = −1, δ(y) = 0,
δ(z) = 1, and δ(xy) = −1 and δ(yz) = 0. Note that xz cannot be strong down by Lemma 24, so take xz strong up.

If xz = z, then s >= x >= z >= s, so sx is locked up be Lemma 19, so we need not consider this case further.

IF xz = x, then δ(xz) = δ(x) = −1. There are two possible tight TRI constraints in xyz. If z+xy = yz+xz, then s and
x are locked up (verified via MATLAB program). If x+ yz = xy+ xz, then s and z are locked up (verified via MATLAB
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program), so we need not consider these cases further.

12.3.8 Case c)-c)

There are two ways in which triangles sxy and syz may be of type 11c; they may share either a weak edge incident to s,
or a strong edge incident to s.

For the former, take sxy, syz of type 11c, with sx, sz strong. Note that xz cannot be strong down by Lemma 24, so take
xz strong up. Either xz = x or xz = z. By symmetry of the model in x and z, it suffices to deal with xz = x. Then we
have δ(x) = 1, δ(y) = 0, δ(z) = 1, and δ(xy) = 0, δ(yz) = 0, and δ(xz) = 1. The tight TRI constraint in xyz is either
x+ yz = xy + xz or z + xy = xz + yz, and in both cases the perturbation keeps the TRI constraint tight.

For the latter, take sxy, syz of type 11c, with sy = s strong. Note that xz cannot be strong down by Lemma 24, so take
xz strong up. Either xz = x or xz = z. Again by symmetry of the problem in x and z, we need only consider xz = x.
Then we have δ(x) = 0, δ(y) = 1, δ(z) = 0, and δ(xy) = 0, δ(yz) = 0, and δ(xz) = 0. There are two possible tight TRI
constraints, x + zy = xz + yz and z + xy = xz + xz - in both cases, no terms are perturbed, so the constraints remain
tight.

12.3.9 Case a)-d)

It is not possible for triangles of type 11a and 11d to share an edge incident to s, so we need not consider this case.

12.3.10 Case b)-d)

It is not possible for triangles of type 11b and 11d to share an edge incident to s, so we need not consider this case.

12.3.11 Case c)-d)

We consider sxy of type 11c (with sy = s strong up) and syz of type 11d (with sz = 0 strong down). Note that xz cannot
be strong down by Lemma 24, so take xz strong up.

If xz = x, then by considering the TRI constraint x+ sz ≥ xz + sx, we obtain sx = 0 strong down, a contradiction.

If xz = z, then note that we have δ(x) = 0, δ(y) = 1, δ(z) = 1, and δ(xy) = 0, δ(yz) = 1, δ(xz) = 1. There are two
possible tight TRI constraints in xyz. If x + yz = xy + xz, then the above perturbation maintains the tightness of this
constraint. If z + xy = xz + yz, this implies sx = 0 strong down (verified via MATLAB program), a contradiction.

12.3.12 Case d)-d)

There are two ways in which triangles sxy and syz may be of type 11d; they may share either a strong up edge incident to
s, or a strong down incident to s.

For the former, we consider sxy, syz of type 11d (with sy the strong up edge). Note that xz cannot be strong down by
Lemma 24, so take xz strong up. So xz = x or xz = z; by symmetry in x and z, it suffices to consider xz = x. We have
δ(x) = δ(y) = δ(z) = 1, and δ(xy) = δ(yz) = δ(xz) = 1, so immediately it follows that any tight TRI constraint in xyz
remains tight after the perturbation.

For the latter, we consider sxy, syz of type 11d (with sy the strong down edge). Again, we must have xz strong up, and
by symmetry in x and z, it suffices to consider xz = x. Note that we have δ(x) = δ(y) = δ(z) = 1, and δ(xy) = δ(yz) =
δ(xz) = 1, so immediately it follows that any tight TRI constraint in xyz remains tight after the perturbation.

12.3.13 Case a)-e)

We consider sxy of type 11a, and syz of type 11e (with sz the strong down edge). Note that under a flipping of s, this case
is the same as case a)-b).

12.3.14 Case b)-e)

We consider sxy of type 11b (with sx = x strong up), and syz of type 11e (With sz = 0 strong down). By considering
the TRI inequality x + sz ≥ sx + xz, we note that xz = 0, and this TRI constraint is tight. The only possible tight TRI
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constraint in xyz is y + xz = xy + yz (x + zy = xy + xz implies xy strong, z + xy = xz + yz implies yz strong,
and xy + xz + yz = x + y + z − 1 implies s, x, z are locking (verified via MATLAB program)). We have δ(x) = −1,
δ(y) = 0, δ(z) = 1, and δ(xy) = −1, δ(yz) = 1, δ(xz) = 0. Substituting these perturbations into the tight TRI constraint
y + xz = xy + yz, we note tightness is maintained.

12.3.15 Case c)-e)

We consider sxy of type 11c (with sx = s strong up) and syz of type 11e (with sz = 0 strong down). Note that xz cannot
be strong down by Lemma 24, so take xz strong up.

If xz = x, then the TRI inequality x+ sz ≥ xs+ xz implies s = 0, so we need not deal with this case.

If xz = z, then the only possible tight TRI constraints are x + yz = xy + xz and z + xy = xz + yz, which both imply
that sy is strong (verified via MATLAB program), so we need not deal with this case.

12.3.16 Case d)-e)

We consider sxy of type 11d (with sx = s strong up and sy = 0 strong down) and syz of type 11e (with sz = 0 strong
down). Note that xz cannot be strong down by Lemma 24, so take xz strong up.

If xz = x, then s < x < z, so so be Lemma 19 sx = s is strong up, so we need not consider this case further.

If xz = z, then we have δ(x) = 1, δ(y) = 1, δ(z) = 0, and δ(xy) = 1, δ(yz) = 1, δ(xz) = 0. There are two possible
tight TRI constraints in xyz. If z+xy = xz+yz, then the perturbations described above maintain the tightness of the TRI
constraint. If x+ yz = xy + xz, this forces sz to be strong up (verified via MATLAB program), so we need not consider
this case further.

12.3.17 Case a)-f)

We consider sxy of type 11a, and syz of type 11f (with sz the strong down edge). Note that under a flipping of s, this case
is the same as case a)-c).

12.3.18 Case b)-f)

We consider sxy of type 11b (with sx strong up), and syz of type 11f (with sz the strong down edge). Note that under a
flipping of s, this case is the same as case c)-e).

12.3.19 Case c)-f)

We consider sxy of type 11c (with sx = s strong up), and syz of type 11f (with sz = s+ z − 1 strong down). If xz = x,
then TRI inequality x + sz ≥ sx + sz implies that sz is strong up, a contradiction. By Lemma 24, xz cannot be strong
down and equal to 0. So the cases to consider are xz = z and xz = x+ z − 1.

If xz = z, then note δ(x) = 1, δ(y) = 0, δ(z) = −1, and δ(xy) = 0, δ(yz) = 0, δ(xz) = −1. There are two possible tight
TRI constraints in xyz. If z + xy = xz + yz, then the perturbation described above maintains tightness of the constraint.
If x+ yz = xy + xz, then xy is implied to be strong up (verified via MATLAB program), a contradiction.

If xz = x + z − 1, then the only TRI constraint that can be tight in xyz is y + xz = xy + yz (verified via MATLAB
program). This is maintained by the perturbation described above.

12.3.20 Case d)-f)

It is not possible for triangles of type 11d and 11f to share an edge incident to s, so we need not consider this case.

12.3.21 Case a)-g)

It is not possible for triangles of type 11a and 11g to share an edge incident to s, so we need not consider this case.
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Figure 30: The five cases to consider

12.3.22 Case b)-g)

We consider sxy of type 11b (with sy = y strong up), and syz of type 11g (with sz = s+ z − 1 strong down). Note that
δ(x) = 0, δ(y) = −1, δ(z) = −1, and δ(xy) = −1, δ(yz) = −1. Note that xz cannot be strong down by Lemma 24, so
take xz strong up.

If xz = x, then δ(xz) = δ(x) = 0. The two possible tight TRI constraints in xyz are x+ yz = xy + xz (for which it can
be checked that the constraint remains tight with the perturbations specified above), and z + xy = xz + yz, which implies
sx is strong down (verified via MATLAB program), a contradiction.

If xz = z, then δ(xz) = δ(z) = −1. The two possible tight TRI constraints in xyz are z+xy = xy+xz (for which it can
be checked that the constraint remains tight with the perturbations specified above), and x+ yz = xy+ xz, which implies
sx is strong down (verified via MATLAB program), a contradiction.

12.3.23 Case c)-g)

It is not possible for triangles of type 11c and 11g to share an edge incident to s, so we need not consider this case.

12.3.24 Case d)-g)

It is not possible for triangles of type 11d and 11g to share an edge incident to s, so we need not consider this case.

12.4 3-wedge consistency

We now consider the case where a triangle xyz not incident to s has a tight TRI constraint, and demonstrate that this TRI
constraint remains tight when all singleton and edge marginals are perturbed according to the description given in §11.

We begin by arguing that we need check only 5 cases. First, the case where all edges sx, sy, sz are weak (Case 1). If two
of the edges sx, sy, sz are weak, then without loss of generality we make take sx strong. Note also that if sx strong down,
this is obtained from a case where sx strong up by flipping s, so we only need to consider cases where sx is strong up
(Cases 2 and 3). If exactly one of the edge sx, sy, sz are weak, then without loss of generality we may take sx, sy strong.
It cannot be the case that both sx, sy are strong up or both strong down, as this would contradict Theorem 23, so without
loss of generality we take sx strong up and sy strong down. As noted in §11.2.4, there are only two cases to consider;
sx = s , sy = 0, and sx = x, sy = s+y−1; these form Cases 4 and 5. It cannot be the case that all three edges sx, sy, sz
are strong, since again this would contradict Theorem 23.

12.5 Case 1

All singleton and edge marginals have 0 perturbation, so any tight TRI constraint is preserved.

12.6 Case 2

We take sx = s, all other edges weak. We note that we have x + sz = sx + xz and x + sy = sx + xy. There must also
be a tight constraint in syz holding yz down, by symmetry in y and z we may take it to be y + sz = sy + yz. We then
consider the four possible TRI constraints that could be tight in xyz. If y+ xz = xy+ yz, then the perturbation maintains
the tightness of this constraint. The other three constraints lead to contradictions of tight (verified via MATLAB program).
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12.7 Case 3

We take sx = x, all other edges weak. We note that we have x+ sz = sx+ xz and x+ sy = sx+ xy. There must also
be a tight constraint in syz holding yz down; by symmetry in y and z we may take it to be y + sz = sy + yz. There is
also a tight constraint in xyz by assumption. If it is y + xz = xy + yz, then the perturbation given for the singletons and
edge marginals maintains the tightness of this constraint. The other three constraints lead to contradictions (verified via
MATLAB program).

12.8 Case 4

We take sx = s, sy = 0, and all other edges weak. We must have x + sz = sx + xz, x + sy = xy + sx, and
z + sy = sz + yz. We consider the four possible TRI constraints that could be tight in xyz. If z + xy = xz + yz, then
the perturbation given for the singletons and edge marginals maintains the tightness of this constraint. The other three
constraints lead to contradictions (verified via MATLAB program).

12.9 Case 5

We take sx = x, sy = s + y − 1, and all other edges weak. We must have the TRI constrains x + sz = sx + xz,
x + sy = xy + sx, and z + sy = sz + yz. We consider the four possible TRI constraints that could be tight in xyz. If
z + xy = xz + yz, then the prescribed perturbation works. The other three constraints lead to contradictions (verified via
MATLAB program).

13 Gathering Earlier Results to Provide Proofs of Theorems 8, 9 and 11

We gather together earlier results and use them to prove the following Theorems from the main paper.
Theorem 8. For an almost balanced model, LP+TRI (the LP relaxation over TRI) is tight.
Theorem 9. For an almost balanced model with special variable s, F sTRI(x) is a linear function.
Theorem 11. In an almost balanced model with special variable s, if we fix qs = x ∈ [0, 1] and optimize in TRI over all
other marginals, then an optimum is achieved with: qj ∈ {0, x, 1− x, 1} ∀j; all edges (other than to variables which have
0 or 1 singleton marginal) are locking or anti-locking, with no strong frustrated cycles.

We shall first prove Theorem 11 then use it to derive Theorem 9, after which Theorem 8 will easily follow.

Proof of Theorem 11, uses another simple perturbation. As before, we assume an almost attractive model and as justified
by §9, we assume no locking edges or variables that have singleton marginal 0 or 1. We shall prove the result by showing
that, given these assumptions, the graph must have no variables other than s.

Given the results in §11-12, we have shown that if s is fixed while other marginals are optimized, then an optimum vertex
cannot occur unless the perturbation defined in §11 does not exist, i.e. we know that all other variables have a weak edge
to s.

Hence, at an optimum vertex, there are no strong edges incident to s. In particular, there are no strong down edges incident
to s, and hence there are no strong down edges anywhere in the graph (by Lemma 24).

Since there are no strong down edges, it is now easily checked that the following perturbation (times a sufficiently small ε
s.t. all constraints which were not tight remain so) up and down preserves all tight LOC and TRI constraints:

s 0

v ∈ V \ {s} +1

sv edge, with v ∈ V \ {s} + 1
2

uv edge, with u, v ∈ V \ {s} +1.

Thus, it must be that at a vertex, all variables are either 0, 1 or in a locking component. This completes the proof of
Theorem 11.
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Proof of Theorem 9. This is similar to the proof of Theorem 6. As there, we need only prove that F sTRI(x) is convex, then
linearity follows from Lemma 5.

For any y ∈ [0, 1], consider an arg max of F iTRI(y) as given by Theorem 11. Partition the variables into 4 exhaustive
sets: Ay = {j : qj = 0}, By = {j : qj = y}, Cy = {j : qj = 1 − y} and Dy = {j : qj = 1}. Define the function
fy : [0, 1]→ R given by fy(x) = f(q(x; y)) where q(x; y) is defined explicitly for singleton and edge marginals by:

qj(x; y) =


0 j ∈ Ay
x j ∈ By
1− x j ∈ Cy
1 j ∈ Dy

, qij(x; y) =



0 i ∈ Ay or j ∈ Ay
qi j ∈ Dy

qj i ∈ Dj

x i, j ∈ By
1− x i, j ∈ Cy
0 i ∈ By and j ∈ Cy; or i ∈ Cy and j ∈ By.

It is straightforward to check that always q(x; y) ∈ TRI (all edges are strong and there are no strong frustrated cycles).
Observe that fy(x) is the linear function achieved by holding fixed the partition of variables Ay, By, Cy, Dy that was
determined for the arg max of the constrained optimum at qi = y. Now F iTRI(x) = supy∈[0,1] fy(x), hence is convex.

Proof of Theorem 8. Given Theorem 9, it must be the case that a global optimum occurs at s = 0 or s = 1. If we condition
on either case, the remaining model is balanced, and the result follows from Theorem 2.
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