Support vector machines (SVMs)
Lecture 5

David Sontag
New York University
So5

margin
SVM

\[w \cdot x + b = +1 \]
\[w \cdot x + b = -1 \]
\[w \cdot x + b = 0 \]

Slack penalty \(C > 0 \):
- \(C=\infty \) \(\rightarrow \) minimizes upper bound on 0-1 loss
- \(C\approx0 \) \(\rightarrow \) points with \(\xi_i=0 \) have big margin
- Select using cross-validation

Support vectors:
Data points for which the constraints are binding

\[
\arg\min_{w,\xi_i \geq 0} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i \\
\text{s.t. } \forall i, \ y_i \langle w, x_i \rangle \geq 1 - \xi_i
\]

“slack variables”
Soft margin SVM

QP form:

$$\arg\min_{\mathbf{w}, \xi_i \geq 0} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} \xi_i$$

s.t. \(\forall i, y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1 - \xi_i \)

More “natural” form:

$$\arg\min_{\mathbf{w}} f(\mathbf{w}) \quad \text{where:}$$

$$f(\mathbf{w}) \overset{\text{def}}{=} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle\}$$

Equivalent if

$$C = \frac{1}{m\lambda}$$

Regularization term

Empirical loss
Subgradient
(for non-differentiable functions)
(Sub)gradient descent of SVM objective

\[f(w) \stackrel{\text{def}}{=} \frac{\lambda}{2} \|w\|^2 + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_i \langle w, x_i \rangle \} \]

\[\nabla F(w) = \lambda \hat{w} - \frac{1}{m} \sum_{i \in S_t} \frac{y_i}{x_i} \]

\[\vec{w}^0 = 0 \]

\[\text{for } t = 1, \ldots, \]

\[\vec{w}^{t+1} = \vec{w}^t - \eta_t \nabla F(w^t) \]

Step size:

\[\eta_t = \frac{1}{t \lambda} \]
The Pegasos Algorithm

General framework

Initialize: $w_1 = 0$, $t=0$

While not converged
- $t = t+1$
- Choose a stepsize, η_t
- Choose a direction, p_t
- Go!
- Test for convergence

Output: w_{t+1}

Pegasos Algorithm (from homework)

Initialize: $w_1 = 0$, $t=0$

For iter = 1,2,...,20

For $j=1,2,...,|\text{data}|$
- $t = t+1$
- $\eta_t = 1/(t \lambda)$
- If $y_j(w_t x_j) < 1$
 - $w_{t+1} = (1-\eta_t \lambda) w_t + \eta_t y_j x_j$
- Else
 - $w_{t+1} = (1-\eta_t \lambda) w_t$

Output: w_{t+1}
The Pegasos Algorithm

General framework

Initialize: \(w_1 = 0, \ t=0 \)

While not converged
 \(t = t+1 \)
 Choose a stepsize, \(\eta_t \)
 Choose a direction, \(p_t \)
 Go!
 Test for convergence

Output: \(w_{t+1} \)

Pegasos Algorithm (from homework)

Initialize: \(w_1 = 0, \ t=0 \)

For iter = 1,2,...,20
 For j=1,2,...,|data|
 \(t = t+1 \)
 \(\eta_t = 1/(t\lambda) \)
 If \(y_j(w_t x_j) < 1 \)
 \(w_{t+1} = w_t - \eta_t(\lambda w_t - y_jx_j) \)
 Else
 \(w_{t+1} = w_t - \eta_t\lambda w_t \)

Output: \(w_{t+1} \)
The Pegasos Algorithm

General framework
Initialize: $w_1 = 0$, $t=0$

While not converged
 $t = t+1$
 Choose a stepsize, η_t
 Choose a direction, p_t
 Go!
 Test for convergence

Output: w_{t+1}

Pegasos Algorithm (from homework)
Initialize: $w_1 = 0$, $t=0$
For iter = 1,2,...,20
 For j=1,2,...,|data|
 $t = t+1$
 $\eta_t = 1/(t\lambda)$
 If $y_j(w_t x_j) < 1$
 $w_{t+1} = w_t - \eta_t(\lambda w_t - y_j x_j)$
 Else
 $w_{t+1} = w_t - \eta_t \lambda w_t$

Output: w_{t+1}

Convergence choice: Fixed number of iterations
$T=20*|\text{data}|$
The Pegasos Algorithm

General framework

Initialize: $w_1 = 0$, $t=0$

While not converged

 $t = t+1$

 Choose a stepsize, η_t

 Choose a direction, p_t

 Go!

 Test for convergence

Output: w_{t+1}

Pegasos Algorithm (from homework)

Initialize: $w_1 = 0$, $t=0$

For iter = 1,2,...,20

 For j=1,2,...,|data|

 $t = t+1$

 $\eta_t = 1/(t\lambda)$

 If $y_j(w_t x_j) < 1$

 $w_{t+1} = w_t - \eta_t (\lambda w_t - y_j x_j)$

 Else

 $w_{t+1} = w_t - \eta_t \lambda w_t$

Output: w_{t+1}

Stepsise choice: - Initialize with $1/\lambda$
- Decays with $1/t$
The Pegasos Algorithm

General framework

Initialize: \(w_1 = 0, \ t=0 \)

While not converged
 \(t = t+1 \)
 Choose a stepsize, \(\eta_t \)
 Choose a direction, \(p_t \)
 Go!
 Test for convergence

Output: \(w_{t+1} \)

Pegasos Algorithm (from homework)

Initialize: \(w_1 = 0, \ t=0 \)

For iter = 1,2,...,20
 For j=1,2,...,|data|
 \(t = t+1 \)
 \(\eta_t = 1/(t\lambda) \)
 If \(y_j(w_t x_j) < 1 \)
 \(w_{t+1} = w_t - \eta_t(\lambda w_t - y_j x_j) \)
 Else
 \(w_{t+1} = w_t - \eta_t \lambda w_t \)

Output: \(w_{t+1} \)

Direction choice: Stochastic approx to the subgradient
Subgradient calculation

Objective: $$\frac{\lambda}{2} \|w\|^2 + \frac{1}{m} \sum_i \max\{0, 1 - y_i w \cdot x_i\}$$

Stochastic Approx: $$\frac{\lambda}{2} \|w\|^2 + \max\{0, 1 - y_i w \cdot x_i\}$$

For a randomly chosen data point i

(in the assignment the choice of i is not random - easier to debug and compare between students).
Subgradient calculation

Objective: \[\frac{\lambda}{2} \| w \|^2 + \frac{1}{m} \sum_i \max\{0, 1 - y_i w \cdot x_i\} \]

Stochastic Approx: \[\frac{\lambda}{2} \| w \|^2 + \max\{0, 1 - y_i w \cdot x_i\} \]

(sub)gradient: \[\lambda \| w \| + \frac{d}{dw} \max\{0, 1 - y_i w \cdot x_i\} \]
Subgradient calculation

Objective:
\[\frac{\lambda}{2} ||w||^2 \]

Stochastic Approx:
\[\frac{\lambda}{2} ||w|| + \frac{d}{dw} \max\{0, 1 - y_i w \cdot x_i\} \]

(sub)gradient:
\[\lambda ||w|| + \frac{d}{dw} \max\{0, 1 - y_i w \cdot x_i\} \]

Diagram:
- \(y_i w \cdot x_i < 1 \)
- \(y_i w \cdot x_i = 1 \)
- \(y_i w \cdot x_i > 1 \)
- \(-y_i x_i \)
- \(0 \)
Subgradient calculation

Objective:
\[
\frac{\lambda}{2} ||w||^2
\]

Stochastic Approx:
\[
\frac{\lambda}{2} ||w||^2 + \frac{d}{dw} \max \{0, 1 - y_i w \cdot x_i\}
\]

{(sub)gradient}:
\[
\lambda ||w|| + \frac{d}{dw} \max \{0, 1 - y_i w \cdot x_i\}
\]

- \(y_i w \cdot x_i < 1\):
 - \(-y_i x_i\)
- \(y_i w \cdot x_i = 1\):
 - \(0\)
- \(y_i w \cdot x_i > 1\):
 - \(0\)
Subgradient calculation

Objective:

\[
\frac{\lambda}{2} \|w\|^2 + \frac{1}{m} \sum_{i} \max\{0, 1 - y_i w \cdot x_i\}
\]

Stochastic Approx:

\[
\frac{\lambda}{2} \|w\|^2 + \max\{0, 1 - y_i w \cdot x_i\}
\]

(sub)gradient:

if \(y_i w \cdot x_i < 1 \) \(\lambda w - y_i x_i \)

else \(\lambda w + 0 \)
The Pegasos Algorithm

General framework

Initialize: \(w_1 = 0, \ t=0 \)

While not converged
 \(t = t+1 \)
 Choose a stepsize, \(\eta_t \)
 Choose a direction, \(p_t \)
 Go!
 Test for convergence

Output: \(w_{t+1} \)

Pegasos Algorithm (from homework)

Initialize: \(w_1 = 0, \ t=0 \)

For iter = 1,2,...,20
 For \(j=1,2,\ldots,|\text{data}| \)
 \(t = t+1 \)
 \(\eta_t = 1/(t\lambda) \)
 If \(y_j(w_t \cdot x_j) < 1 \)
 \(w_{t+1} = w_t - \eta_t(\lambda w_t - y_jx_j) \)
 Else
 \(w_{t+1} = w_t - \eta_t(\lambda w_t + 0) \)

Output: \(w_{t+1} \)

Direction choice: Stochastic approx to the subgradient

\[
\text{if } y_i w \cdot x_i < 1 \quad \lambda w - y_i x_i \\
\text{else} \quad \lambda w + 0
\]
The Pegasos Algorithm

General framework

Initialize: \(w_1 = 0, \ t=0 \)

While not converged
 \(t = t+1 \)
 Choose a stepsize, \(\eta_t \)
 Choose a direction, \(p_t \)
 Go!
 Test for convergence

Output: \(wt+1 \)

Pegasos Algorithm (from homework)

Initialize: \(w_1 = 0, \ t=0 \)

For iter = 1,2,...,20
 For j=1,2,...,|data|
 \(t = t+1 \)
 \(\eta_t = 1/(t\lambda) \)
 If \(y_j(w_t x_j) < 1 \)
 \(w_{t+1} = w_t - \eta_t(\lambda w_t - y_j x_j) \)
 Else
 \(w_{t+1} = w_t - \eta_t \lambda w_t \)

Output: \(wt+1 \)

Go: update \(w_{t+1} = w_t - \eta_t p_t \)
Why is this algorithm interesting?

• Simple to implement, state of the art results.
 – Notice similarity to Perceptron algorithm!
 Algorithmic differences: updates if insufficient margin, scales weight vector, and has a learning rate.

• Since based on *stochastic* gradient descent, its running time guarantees are probabilistic.

• Highlights interesting tradeoffs between running time and data.
Much faster than previous methods

- **3 datasets** (provided by Joachims)
 - Reuters CCAT (800K examples, 47k features)
 - Physics ArXiv (62k examples, 100k features)
 - Covertype (581k examples, 54 features)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Pegasos</th>
<th>SVM-Perf</th>
<th>SVM-Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reuters</td>
<td>2</td>
<td>77</td>
<td>20,075</td>
</tr>
<tr>
<td>Covertype</td>
<td>6</td>
<td>85</td>
<td>25,514</td>
</tr>
<tr>
<td>Astro-Physics</td>
<td>2</td>
<td>5</td>
<td>80</td>
</tr>
</tbody>
</table>
Approximate algorithms

Approximation error:
- Best error achievable by large-margin predictor
- Error of population minimizer
 \[w_0 = \text{arg min } E[f(w)] = \text{arg min } \lambda \|w\|^2 + E_{x,y}[\text{loss}(\langle w, x \rangle; y)] \]

Estimation error:
- Extra error due to replacing \(E[\text{loss}] \) with empirical loss
 \[w^* = \text{arg min } f_n(w) \]

Optimization error:
- Extra error due to only optimizing to within finite precision

Note: \(w_0 \) is redefined in this context (see below) – does not refer to initial weight vector

From ICML’08 presentation (available [here](#))
Approximate algorithms

Approximation error:
- Best error achievable by large-margin predictor
- Error of population minimizer
 \[w_0 = \text{argmin } E[f(w)] = \text{argmin } \lambda |w|^2 \]

Estimation error:
- Extra error due to replacing \(E[\text{loss}] \) with empirical loss
 \[w^* = \text{arg min } f_n(w) \]

Optimization error:
- Extra error due to only optimizing to within finite precision

Prediction error

Pegasos Guarantees

After
\[T = \tilde{O} \left(\frac{1}{\delta \lambda \epsilon} \right) \]
updates:
\[\text{err}(w_T) < \text{err}(w_0) + \epsilon \]

With probability \(1 - \tilde{\delta} \)

[Shalev Schwartz, Srebro '08]
Approximate algorithms

Prediction error:
- Best error achievable by large-margin predictor
 \[w_0 = \arg\min E[f(w)] = \arg\min \lambda |w|^2 + E_{x,y}[\text{loss}(\langle w, x \rangle; y)] \]
- Error of population minimizer
- Estimation error:
 - Extra error due to replacing \(E[\text{loss}] \) with empirical loss
 \[w^* = \arg\min f_n(w) \]
- Optimization error:
 - Extra error due to only optimizing to within finite precision
 \[\text{err}(w_0), \text{err}(w^*), \text{err}(w) \]

Prediction error

Pegasos Guarantees

After
\[T = \tilde{O} \left(\frac{1}{\delta \lambda \epsilon} \right) \text{ updates:} \]

\[\text{err}(w_T) < \text{err}(w_0) + \epsilon \]

With probability \(1 - \delta \)

Running time does **NOT** depend on:
- # training examples!

It **DOES** depend on:
- Dimensionality \(d \) (why?)
- Approximation \(\epsilon \) and \(\delta \)
- Difficulty of problem \(\lambda \)

[Shalev Schwartz, Srebro ’08]
But how is that possible?

As the dataset grows, our approximations can be worse to get the same error!

[Shalev Schwartz, Srebro ’08]