Bayesian networks enable use of domain knowledge

\[p(x_1, \ldots x_n) = \prod_{i \in V} p(x_i \mid x_{Pa(i)}) \]

Will my car start this morning?

Heckerman *et al.*, Decision-Theoretic Troubleshooting, 1995
Bayesian networks enable use of domain knowledge

\[p(x_1, \ldots, x_n) = \prod_{i \in V} p(x_i \mid x_{\text{Pa}(i)}) \]

What is the differential diagnosis?

Beinlich et al., The ALARM Monitoring System, 1989
Bayesian networks are *generative models*

- Can sample from the joint distribution, top-down
- Suppose Y can be “spam” or “not spam”, and X_i is a binary indicator of whether word i is present in the e-mail
- Let’s try generating a few emails!

- Often helps to think about Bayesian networks as a generative model when constructing the structure and thinking about the model assumptions
Inference in Bayesian networks

• Computing marginal probabilities in **tree** structured Bayesian networks is easy

 – The algorithm called “belief propagation” generalizes what we showed for hidden Markov models to arbitrary trees

• Wait... this isn’t a tree! What can we do?

Diagrams

1. A tree-structured Bayesian network with nodes labeled \(X_1, X_2, X_3, X_4, X_5, X_6 \) and \(Y_1, Y_2, Y_3, Y_4, Y_5, Y_6 \).
2. A non-tree structure with nodes labeled \(X_1, X_2, X_3, \ldots, X_{18} \) and a label node \(Y \).
Inference in Bayesian networks

- In some cases (such as this) we can *transform* this into what is called a “junction tree”, and then run belief propagation.

Fig. 7

Spiegelhalter’s algorithm re-arranges the ALARM network by triangulation and clique formation. The cliques are shaded differently to make them visible.
Approximate inference

- There is also a wealth of **approximate** inference algorithms that can be applied to Bayesian networks such as these

 - **Markov chain Monte Carlo algorithms** repeatedly sample assignments for estimating marginals

 - **Variational inference algorithms** (deterministic) find a simpler distribution which is “close” to the original, then compute marginals using the simpler distribution
Maximum likelihood estimation in Bayesian networks

- Suppose that we know the Bayesian network structure G
- Let $\theta_{x_i | x_{pa(i)}}$ be the parameter giving the value of the CPD $p(x_i | x_{pa(i)})$
- Maximum likelihood estimation corresponds to solving:

$$\max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \log p(x^M; \theta)$$

subject to the non-negativity and normalization constraints

- This is equal to:

$$\max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \log p(x^M; \theta) = \max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{N} \log p(x^M_i | x^M_{pa(i)}; \theta)$$

$$= \max_{\theta} \sum_{i=1}^{N} \frac{1}{M} \sum_{m=1}^{M} \log p(x^M_i | x^M_{pa(i)}; \theta)$$

- The optimization problem decomposes into an independent optimization problem for each CPD! Has a simple closed-form solution.
Returning to clustering...

- Clusters may overlap
- Some clusters may be “wider” than others
- Can we model this explicitly?
- With what **probability** is a point from a cluster?
Probabilistic Clustering

• Try a probabilistic model!
 • allows overlaps, clusters of different size, etc.

• Can tell a **generative story** for data
 – \(P(Y)P(X|Y) \)

• **Challenge:** we need to estimate model parameters without labeled Ys
Gaussian Mixture Models

- \(P(Y) \): There are \(k \) components
- \(P(X | Y) \): Each component generates data from a **multivariate Gaussian** with mean \(\mu_i \) and covariance matrix \(\Sigma_i \)

Each data point assumed to have been sampled from a **generative process**:

1. Choose component \(i \) with probability \(P(y = i) \) **[Multinomial]**
2. Generate datapoint \(\sim N(m_i, \Sigma_i) \)

\[
P(X = x_j | Y = i) = \frac{1}{(2\pi)^{m/2} ||\Sigma_i||^{1/2}} \exp \left[-\frac{1}{2} (x_j - \mu_i)^T \Sigma_i^{-1} (x_j - \mu_i) \right]
\]

By fitting this model (unsupervised learning), we can learn new insights about the data
Multivariate Gaussians

\[P(X=x_j) = \frac{1}{(2\pi)^{m/2} \|\Sigma\|^{1/2}} \exp \left[-\frac{1}{2} (x_j - \mu_i)^T \Sigma^{-1} (x_j - \mu_i) \right] \]

\[\Sigma \propto \text{identity matrix} \]
Multivariate Gaussians

\[P(X=x_j) = \frac{1}{(2\pi)^{m/2} \| \Sigma \|^{1/2}} \exp \left[-\frac{1}{2} (x_j - \mu_i)^T \Sigma_i^{-1} (x_j - \mu_i) \right] \]

\[\Sigma = \text{diagonal matrix} \]

\[X_i \text{ are independent } a la \text{ Gaussian NB} \]
Multivariate Gaussians

$$P(X=x_j)= \frac{1}{(2\pi)^{m/2} ||\Sigma||^{1/2}} \exp\left[-\frac{1}{2} (x_j - \mu_i)^T \Sigma^{-1} (x_j - \mu_i)\right]$$

$$\Sigma = \text{arbitrary (semidefinite) matrix:}$$
- specifies rotation (change of basis)
- eigenvalues specify relative elongation
Multivariate Gaussians

Eigenvalue, λ, of Σ

Covariance matrix, Σ, = degree to which x_i vary together

$$P(X=x_j) = \frac{1}{(2\pi)^{m/2} \| \Sigma \|^{1/2}} \exp \left[-\frac{1}{2} (x_j - \mu)^T \Sigma^{-1} (x_j - \mu) \right]$$
Modelling eruption of geysers

Old Faithful Data Set

![Graph showing the relationship between time to eruption and duration of last eruption.](image)
Modelling eruption of geysers

Old Faithful Data Set

Single Gaussian

Mixture of two Gaussians
Marginal distribution for mixtures of Gaussians

\[p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x | \mu_k, \Sigma_k) \]

\forall k : \pi_k \geq 0 \quad \sum_{k=1}^{K} \pi_k = 1

Component
Mixing coefficient

\[K=3 \]

\[p(x) \]

\[x \]
Marginal distribution for mixtures of Gaussians
Learning mixtures of Gaussians

Original data (hypothesized) Observed data (y missing) Inferred y’s (learned model)

Shown is the *posterior probability* that a point was generated from \(i \)th Gaussian: \(\Pr(Y = i \mid x) \)
ML estimation in supervised setting

- Univariate Gaussian

$$\mu_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- Mixture of Multivariate Gaussians

ML estimate for each of the Multivariate Gaussians is given by:

$$\mu_{ML}^k = \frac{1}{n} \sum_{j=1}^{n} x_n$$
$$\Sigma_{ML}^k = \frac{1}{n} \sum_{j=1}^{n} (x_j - \mu_{ML}^k)(x_j - \mu_{ML}^k)^T$$

Just sums over x generated from the k'th Gaussian
What about with unobserved data?

- Maximize *marginal likelihood*:
 - \[\text{argmax}_\theta \prod_j P(x_j) = \text{argmax} \prod_j \sum_{k=1}^K P(Y_j=k, x_j) \]

- Almost always a hard problem!
 - Usually no closed form solution
 - Even when \(\log P(X,Y) \) is convex, \(\log P(X) \) generally isn’t...
 - Many local optima
Expectation Maximization

1977: Dempster, Laird, & Rubin
The EM Algorithm

• A clever method for maximizing marginal likelihood:
 \[
 \arg\max_\theta \prod_j P(x_j) = \arg\max_\theta \prod_j \sum_{k=1}^K P(Y_j=k, x_j)
 \]
 – Based on coordinate descent. Easy to implement (eg, no line search, learning rates, etc.)

• Alternate between two steps:
 – Compute an expectation
 – Compute a maximization

• Not magic: *still optimizing a non-convex function with lots of local optima*
 – The computations are just easier (often, significantly so)
EM: Two Easy Steps

Objective: \(\arg\max_{\theta} \lg \prod_j \sum_{k=1}^K P(Y_j=k, x_j; \theta) = \sum_j \lg \sum_{k=1}^K P(Y_j=k, x_j; \theta) \)

Data: \(\{x_j \mid j=1..n\} \)

• **E-step:** Compute expectations to “fill in” missing y values according to current parameters, \(\theta \)
 – For all examples j and values k for \(Y_j \), compute: \(P(Y_j=k \mid x_j; \theta) \)

• **M-step:** Re-estimate the parameters with “weighted” MLE estimates
 – Set \(\theta^{new} = \arg\max_{\theta} \sum_j \sum_k P(Y_j=k \mid x_j; \theta^{old}) \log P(Y_j=k, x_j; \theta) \)

Particularly useful when the E and M steps have closed form solutions
Gaussian Mixture Example: Start
After first iteration
After 2nd iteration
After 3rd iteration
After 4th iteration
After 5th iteration
After 6th iteration
After 20th iteration
EM for GMMs: only learning means (1D)

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \ldots \mu_K^{(t)} \}$$

E-step

Compute “expected” classes of all datapoints

$$P(Y_j = k|x_j, \mu_1 \ldots \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2}(x_j - \mu_k)^2\right)P(Y_j = k)$$

M-step

Compute most likely new μs given class expectations

$$\mu_k = \frac{\sum_{j=1}^{m} P(Y_j = k|x_j) x_j}{\sum_{j=1}^{m} P(Y_j = k|x_j)}$$
What if we do hard assignments?

Iterate: On the t’th iteration let our estimates be
\[\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \ldots \mu_K^{(t)} \} \]

E-step

Compute “expected” classes of all datapoints
\[P(Y_j = k \mid x_j, \mu_1 \ldots \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} (x_j - \mu_k)^2\right) P(Y_j = k) \]

M-step

Compute most likely new μs given class expectations
\[\mu_k = \frac{\sum_{j=1}^{m} P(Y_j = k \mid x_j) x_j}{\sum_{j=1}^{m} P(Y_j = k \mid x_j)} \]

δ represents hard assignment to “most likely” or nearest cluster

Equivalent to k-means clustering algorithm!!!
E.M. for General GMMs

Iterate: On the t’th iteration let our estimates be
\[\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \ldots \mu_K^{(t)}, \Sigma_1^{(t)}, \Sigma_2^{(t)} \ldots \Sigma_K^{(t)}, p_1^{(t)}, p_2^{(t)} \ldots p_K^{(t)} \} \]

E-step

Compute “expected” classes of all datapoints for each class
\[P(Y_j = k|x_j; \lambda_t) \propto p_k^{(t)} p(x_j; \mu_k^{(t)}, \Sigma_k^{(t)}) \]

M-step

Compute weighted MLE for \(\mu \) given expected classes above
\[\mu_k^{(t+1)} = \frac{\sum_j P(Y_j = k|x_j; \lambda_t) x_j}{\sum_j P(Y_j = k|x_j; \lambda_t)} \quad \Sigma_k^{(t+1)} = \frac{\sum_j P(Y_j = k|x_j; \lambda_t) [x_j - \mu_k^{(t+1)}][x_j - \mu_k^{(t+1)}]^T}{\sum_j P(Y_j = k|x_j; \lambda_t)} \]
\[p_k^{(t+1)} = \frac{\sum_j P(Y_j = k|x_j; \lambda_t)}{m} \]

\(p_k^{(t)} \) is shorthand for estimate of \(P(y=k) \) on t’th iteration

Evaluate probability of a multivariate a Gaussian at \(x_j \)

\(m = \#training \text{ examples} \)
The general learning problem with missing data

- **Marginal likelihood:** X is observed,

 Z (e.g. the class labels Y) is missing:

 $$
 \ell(\theta : D) = \log \prod_{j=1}^{m} P(x_j | \theta) \\
 = \sum_{j=1}^{m} \log P(x_j | \theta) \\
 = \sum_{j=1}^{m} \log \sum_z P(x_j, z | \theta)
 $$

- **Objective:** Find $\text{argmax}_\theta I(\theta : \text{Data})$

- **Assuming hidden variables are missing completely at random** (otherwise, we should explicitly model why the values are missing)
Properties of EM

• One can prove that:
 – EM converges to a local maxima
 – Each iteration improves the log-likelihood

• How? (Same as k-means)
 – Likelihood objective instead of k-means objective
 – M-step can never decrease likelihood
Derivation of EM algorithm

\[L(\theta) = \sum_z P(z|X, \theta_n) \ln P(X|z, \theta_n) P(z|\theta_n) \]

We have now a function, \(l(\theta|\theta_n) \) which is bounded above by the likelihood function \(L(\theta) \). Additionally, observe that,

\[l(\theta_n|\theta_n) = \sum_z P(z|X, \theta_n) \ln P(X|z, \theta_n) P(z|\theta_n) \]

so for \(\theta = \theta_n \) the functions \(l(\theta|\theta_n) \) and \(L(\theta) \) are equal. Therefore, any \(\theta \) which increases \(l(\theta|\theta_n) \) will also increase \(L(\theta) \). In order to achieve the greatest possible increase in the value of \(L(\theta_n) \), the EM algorithm calls for selecting \(\theta \) such that \(l(\theta|\theta_n) \) is maximized. We denote this updated value as \(\theta_{n+1} \). This process is illustrated in Figure 2.

(Figure from tutorial by Sean Borman)
What you should know

• Mixture of Gaussians

• EM for mixture of Gaussians:
 – How to learn maximum likelihood parameters in the case of unlabeled data
 – Relation to K-means
 • Two step algorithm, just like K-means
 • Hard / soft clustering
 • Probabilistic model

• Remember, EM can get stuck in local minima,
 – And empirically it *DOES*