The Naïve Bayes Classifier

• Given:
 – Prior $P(Y)$
 – n conditionally independent features X given the class Y
 – For each X_i, we have likelihood $P(X_i | Y)$

• Decision rule:

$$ y^* = h_{NB}(x) = \arg \max_y P(y)P(x_1, \ldots, x_n | y) $$
$$ = \arg \max_y P(y) \prod_i P(x_i | y) $$

If certain assumption holds, NB is optimal classifier!
(they typically don’t)
What has to be learned?

\[
P(Y)
\]

\[
\begin{array}{c|c}
1 & 0.1 \\
2 & 0.1 \\
3 & 0.1 \\
4 & 0.1 \\
5 & 0.1 \\
6 & 0.1 \\
7 & 0.1 \\
8 & 0.1 \\
9 & 0.1 \\
0 & 0.1 \\
\end{array}
\]

\[
P(F_{3,1} = \text{on}|Y) \quad P(F_{5,5} = \text{on}|Y)
\]

\[
\begin{array}{c|c}
1 & 0.01 \\
2 & 0.05 \\
3 & 0.05 \\
4 & 0.30 \\
5 & 0.80 \\
6 & 0.90 \\
7 & 0.05 \\
8 & 0.60 \\
9 & 0.50 \\
0 & 0.80 \\
\end{array}
\]

\[
\begin{array}{c|c}
1 & 0.05 \\
2 & 0.01 \\
3 & 0.90 \\
4 & 0.80 \\
5 & 0.90 \\
6 & 0.90 \\
7 & 0.25 \\
8 & 0.85 \\
9 & 0.60 \\
0 & 0.80 \\
\end{array}
\]
MLE for the parameters of NB

- Given dataset
 - \(\text{Count}(A=a,B=b)\leftarrow\) number of examples where \(A=a\) and \(B=b\)
- MLE for discrete NB, simply:
 - Prior:
 \[
P(Y = y) = \frac{\text{Count}(Y = y)}{\sum_{y'} \text{Count}(Y = y')}
 \]
 - Observation distribution:
 \[
P(X_i = x | Y = y) = \frac{\text{Count}(X_i = x, Y = y)}{\sum_{x'} \text{Count}(X_i = x', Y = y)}
 \]
What about if there is missing data?

- One of the key strengths of Bayesian approaches is that they can naturally handle missing data
 - Suppose don’t have value for some attribute X_i
 - applicant’s credit history unknown
 - some medical test not performed on patient
 - how to compute $P(X_1=x_1 \ldots X_j=? \ldots X_d=x_d \mid y)$
 - Easy with Naïve Bayes
 - ignore attribute in instance where its value is missing
 - compute likelihood based on observed attributes
 - no need to “fill in” or explicitly model missing values
 - based on conditional independence between attributes

[Slide from Victor Lavrenko and Nigel Goddard]
What about if there is missing data?

- Ex: three coin tosses: Event = \{X_1=H, \, X_2=?, \, X_3=T\}
 - event = head, unknown (either head or tail), tail
 - event = \{H,H,T\} + \{H,T,T\}
 - \(P(\text{event}) = P(H,H,T) + P(H,T,T)\)
- General case: \(X_j\) has missing value

\[
P(x_1 \ldots x_j \ldots x_d | y) = P(x_1 | y) \cdots \underbrace{P(x_j | y)} \cdots P(x_d | y)\]

\[
\sum_{x_j} P(x_1 \ldots x_j \ldots x_d | y) = \sum_{x_j} P(x_1 | y) \cdots \underbrace{P(x_j | y)} \cdots P(x_d | y)
= P(x_1 | y) \cdots \underbrace{\sum_{x_j} P(x_j | y)} \cdots P(x_d | y)
= P(x_1 | y) \cdots [1] \cdots P(x_d | y)
\]
Naive Bayes = Linear Classifier

Theorem: assume that $x_i \in \{0, 1\}$ for all $i \in [1, N]$. Then, the Naive Bayes classifier is defined by

$$x \mapsto \text{sgn}(w \cdot x + b),$$
Outline of lectures

- Review of probability
- Maximum likelihood estimation

2 examples of Bayesian classifiers:
- Naïve Bayes
- Logistic regression

[Next several slides adapted from: Vibhav Gogate, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld]
Logistic Regression

Learn $P(Y|X)$ directly!

- Assume a particular functional form
 - Linear classifier? On one side we say $P(Y=1|X)=1$, and on the other $P(Y=1|X)=0$
 - But, this is not differentiable (hard to learn)... doesn’t allow for label noise...

![Diagram showing logistic regression with two classes and a decision boundary.](image-url)
Logistic Regression

- Learn $P(Y|X)$ directly!
 - Assume a particular functional form
 - Sigmoid applied to a linear function of the data:

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

$$P(Y = 0|X) = \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

Logistic function (Sigmoid):

Features can be discrete or continuous!
Logistic Function in n Dimensions

\[P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)} \]

Sigmoid applied to a linear function of the data:

Features can be discrete or continuous!
Logistic Regression: decision boundary

\[
P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)} \quad \quad P(Y = 0|X) = \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}
\]

- **Prediction**: Output the Y with highest P(Y|X)
 - For binary Y, output Y=0 if

\[
1 < \frac{P(Y = 0|X)}{P(Y = 1|X)}
\]

\[
1 < \exp(w_0 + \sum_{i=1}^{n} w_i X_i)
\]

\[
0 < w_0 + \sum_{i=1}^{n} w_i X_i
\]

A Linear Classifier!
Likelihood vs. Conditional Likelihood

Generative (Naïve Bayes) maximizes **Data likelihood**

\[
\ln P(\mathcal{D} \mid w) = \sum_{j=1}^{N} \ln P(x^j, y^j \mid w)
\]

\[
= \sum_{j=1}^{N} \ln P(y^j \mid x^j, w) + \sum_{j=1}^{N} \ln P(x^j \mid w)
\]

Discriminative (Logistic Regr.) maximizes **Conditional Data Likelihood**

\[
\ln P(\mathcal{D}_Y \mid \mathcal{D}_X, w) = \sum_{j=1}^{N} \ln P(y^j \mid x^j, w)
\]

Focuses only on learning \(P(Y \mid X)\) - all that matters for classification
Maximizing Conditional Log Likelihood

\[
l(w) \equiv \ln \prod_j P(y^j | x^j, w)
\]

\[
= \sum_j y^j (w_0 + \sum_i^n w_i x_i^j) - \ln(1 + \exp(w_0 + \sum_i^n w_i x_i^j))
\]

0 or 1!

Bad news: no closed-form solution to maximize \(l(w)\)

Good news: \(l(w)\) is concave function of \(w\) →

No local maxima

Concave functions easy to optimize
Optimizing concave function – Gradient ascent

- Conditional likelihood for Logistic Regression is concave \rightarrow

Gradient:

$$\nabla_w l(w) = \left[\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n} \right]$$

Update rule:

$$\Delta w = \eta \nabla_w l(w)$$

$$w_i(t+1) \leftarrow w_i(t) + \eta \frac{\partial l(w)}{\partial w_i}$$
Maximize Conditional Log Likelihood: Gradient ascent

\[
P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i x_i^j)}{1 + \exp(w_0 + \sum_i w_i x_i^j)}
\]

\[
l(w) = \sum_j y^j (w_0 + \sum_i^n w_i x_i^j) - \ln(1 + \exp(w_0 + \sum_i^n w_i x_i^j))
\]

\[
\frac{\partial l(w)}{\partial w_i} = \sum_j \left[\frac{\partial}{\partial w_i} y^j (w_0 + \sum_i w_i x_i^j) - \frac{\partial}{\partial w_i} \ln \left(1 + \exp(w_0 + \sum_i w_i x_i^j) \right) \right]
\]

\[
= \sum_j \left[y^j x_i^j - \frac{x_i^j \exp(w_0 + \sum_i w_i x_i^j)}{1 + \exp(w_0 + \sum_i w_i x_i^j)} \right]
\]

\[
= \sum_j x_i^j \left[y^j - \frac{\exp(w_0 + \sum_i w_i x_i^j)}{1 + \exp(w_0 + \sum_i w_i x_i^j)} \right]
\]

\[
\frac{\partial l(w)}{\partial w_i} = \sum_j x_i^j (y^j - P(Y^j = 1|x^j, w))
\]
Gradient Ascent for LR

Gradient ascent algorithm: (learning rate $\eta > 0$)

do:

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 | x^j, w)]$$

For i=1 to n: (iterate over features)

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 | x^j, w)]$$

until “change” < ϵ

Loop over training examples
(could also do stochastic GD)
That’s all MLE. How about MAP?

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- One common approach is to define priors on \(w \)
 - Normal distribution, zero mean, identity covariance
 - “Pushes” parameters towards zero
 \[
 p(w) = \prod_i \frac{1}{\kappa \sqrt{2\pi}} e^{-\frac{w_i^2}{2\kappa^2}}
 \]
- **Regularization**
 - Helps avoid very large weights and overfitting

- MAP estimate:
 \[
 w^* = \arg \max_w \ln \left[p(w) \prod_{j=1}^N P(y_j \mid x_j, w) \right]
 \]
MAP as Regularization

\[w^* = \arg \max_w \ln \left[p(w) \prod_{j=1}^{N} P(y^j | x^j, w) \right] \]

\[p(w) = \prod_i \frac{1}{\kappa \sqrt{2\pi}} \frac{-w_i^2}{e^{2\kappa^2}} \]

- Adds \(\log p(w) \) to objective:

\[\ln p(w) \propto -\frac{\lambda}{2} \sum_i w_i^2 \]

\[\frac{\partial \ln p(w)}{\partial w_i} = -\lambda w_i \]

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients

Quadratic penalty on weights, just like with SVMs!
\[L(D; \omega) = \sum_{i=1}^{N} \log \left(\frac{1}{1 + e^{-y_i (\omega \cdot x_i)}} \right) \]

MAP estimation of LR:

\[
\max_{\omega} \sum_{i=1}^{N} \log \left(\frac{1}{1 + e^{-y_i (\omega \cdot x_i)}} \right) - \lambda \| \omega \|_2^2
\]

\[
\min_{\omega} \sum_{i=1}^{N} \log \left(1 + e^{-y_i (\omega \cdot x_i)} \right) + \lambda \| \omega \|_2^2
\]

Log loss

\[z = y(\omega + \tilde{\omega} \cdot x) \]

- Hinge loss
- Max(0, 1 - \delta)
- Log loss
- Exponential loss, \(e^{-z} \)
- Log loss, \(\log(1 + e^{-z}) \)
Naïve Bayes vs. Logistic Regression

Learning: $h: X \mapsto Y$
- X – features
- Y – target classes

Generative
- Assume functional form for
 - $P(X|Y)$ \textbf{assume cond indep}
 - $P(Y)$
 - Est. params from train data
- Gaussian NB for cont. features
- Bayes rule to calc. $P(Y|X=x)$:
 - $P(Y \mid X) \propto P(X \mid Y) P(Y)$
- \textbf{Indirect} computation
 - Can generate a sample of the data
 - Can easily handle missing data

Discriminative
- Assume functional form for
 - $P(Y|X)$ \textbf{no assumptions}
 - Est params from training data
- Handles discrete & cont features
- \textbf{Directly calculate} $P(Y|X=x)$
 - Can’t generate data sample
Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

• Generative vs. Discriminative classifiers
• Asymptotic comparison
 (# training examples → infinity)
 – when model correct
 • NB, Linear Discriminant Analysis (with class independent variances), and Logistic Regression produce identical classifiers
 – when model incorrect
 • LR is less biased – does not assume conditional independence
 – therefore LR expected to outperform NB
Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

• Generative vs. Discriminative classifiers

• Non-asymptotic analysis
 – convergence rate of parameter estimates,

 \(n = \# \text{ of attributes in } X \)

 • Size of training data to get close to infinite data solution
 • Naïve Bayes needs \(O(\log n) \) samples
 • Logistic Regression needs \(O(n) \) samples

 – Naïve Bayes converges more quickly to its *(perhaps less helpful)* asymptotic estimates
Some experiments from UCI data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. \(m \) (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.
Logistic regression for discrete classification

Logistic regression in more general case, where set of possible Y is $\{y_1,\ldots,y_R\}$

- Define a weight vector w_i for each y_i, $i=1,\ldots,R$

\[
P(Y = 1|X) \propto \exp(w_{10} + \sum_i w_{1i}X_i)
\]
\[
P(Y = 2|X) \propto \exp(w_{20} + \sum_i w_{2i}X_i)
\]
\[
\vdots
\]

- Also called “soft-max” loss