What’s next…

• We gave several machine learning algorithms:
 – Perceptron
 – Linear support vector machine (SVM)
 – SVM with kernels, e.g. polynomial or Gaussian

• How do we guarantee that the learned classifier will perform well on test data?

• How much training data do we need?
Example: Perceptron applied to spam classification

- In your homework 1, you trained a spam classifier using perceptron
 - The training error was always zero
 - With few data points, there was a big gap between training error and test error!
How much training data do you need?

• Depends on what *hypothesis class* the learning algorithm considers

• For example, consider a memorization-based learning algorithm
 – Input: training data $S = \{ (x_i, y_i) \}$
 – Output: function $f(x)$ which, if there exists (x_i, y_i) in S such that $x=x_i$, predicts y_i, and otherwise predicts the majority label
 – This learning algorithm will always obtain zero training error
 – But, it will take a *huge* amount of training data to obtain small test error (i.e., its generalization performance is horrible)

• Linear classifiers are powerful precisely because of their simplicity
 – Generalization is easy to guarantee
Roadmap of lecture

1. Generalization of finite hypothesis spaces

2. VC-dimension
 - Will show that linear classifiers need to see approximately d training points, where d is the dimension of the feature vectors
 - Explains the good performance we obtained using perceptron!!! (we had a few thousand features)

3. Margin based generalization
 - Applies to infinite dimensional feature vectors (e.g., Gaussian kernel)

[Figure from Cynthia Rudin]
How big should your validation set be?

• In PS1, you tried many configurations of your algorithms (avg vs. regular perceptron, max # of iterations) and chose the one that had smallest validation error

• Suppose in total you tested $|H|=40$ different classifiers on the validation set of m held-out e-mails

• The best classifier obtains 98% accuracy on these m e-mails!!

• But, what is the true classification accuracy?

• How large does m need to be so that we can guarantee that the best configuration (measured on validate) is truly good?
A simple setting...

• Classification
 – m data points
 – **Finite** number of possible hypothesis (e.g., 40 spam classifiers)

• A learner finds a hypothesis h that is **consistent** with training data
 – Gets zero error in training: $\text{error}_{\text{train}}(h) = 0$
 – I.e., assume for now that one of the classifiers gets 100% accuracy on the m e-mails (we’ll handle the 98% case afterward)

• What is the probability that h has more than ε **true** error?
 – $\text{error}_{\text{true}}(h) \geq \varepsilon$
Refresher on probability: outcomes

- An **outcome space** specifies the possible outcomes that we would like to reason about, e.g.

\[
\Omega = \{ \text{Heads}, \text{Tails} \} \quad \text{Coin toss}
\]

\[
\Omega = \{ 1, 2, 3, 4, 5, 6 \} \quad \text{Die toss}
\]

- We specify a **probability** \(p(x) \) for each outcome \(x \) such that

\[
p(x) \geq 0, \quad \sum_{x \in \Omega} p(x) = 1
\]

E.g., \(p(\text{Heads}) = .6 \)

\(p(\text{Tails}) = .4 \)
Refresher on probability: events

- **An event** is a subset of the outcome space, e.g.

 \[E = \{ \text{dice faces} \}, \quad \{ \text{dice faces} \}, \quad \{ \text{dice faces} \} \quad \text{Even die tosses} \]

 \[O = \{ \text{dice faces} \}, \quad \{ \text{dice faces} \}, \quad \{ \text{dice faces} \} \quad \text{Odd die tosses} \]

- **The probability** of an event is given by the sum of the probabilities of the outcomes it contains,

 \[p(E) = \sum_{x \in E} p(x) \]

 E.g., \[p(E) = p(\text{Even faces}) + p(\text{Even faces}) + p(\text{Even faces}) \]

 \[= 1/2, \quad \text{if fair die} \]
Refresher on probability: union bound

• \(P(A \text{ or } B \text{ or } C \text{ or } D \text{ or } ...) \)
 \[\leq P(A) + P(B) + P(C) + P(D) + ... \]

Q: When is this a tight bound?
A: For disjoint events (i.e., non-overlapping circles)
Refresher on probability: independence

- Two events A and B are **independent** if
 \[p(A \cap B) = p(A)p(B) \]

Are these events independent?

No!

\[p(A \cap B) = 0 \]
\[p(A)p(B) = \left(\frac{1}{6}\right)^2 \]
Refresher on probability: independence

• Two events A and B are **independent** if
 \[p(A \cap B) = p(A)p(B) \]

• Suppose our outcome space had two different die:

 \[\Omega = \{ \text{\small sequence of 2 die tosses} \} \]

 and the probability of each outcome is defined as

 \[p(\text{\small outcome}) = a_1 b_1 \quad \text{or} \quad p(\text{\small outcome}) = a_1 b_2 \quad \text{etc.} \]

 \[
 \begin{array}{cccccc}
 a_1 & a_2 & a_3 & a_4 & a_5 & a_6 \\
 .1 & .12 & .18 & .2 & .1 & .3 \\
 \end{array}
 \]

 \[
 \begin{array}{cccccc}
 b_1 & b_2 & b_3 & b_4 & b_5 & b_6 \\
 .19 & .11 & .1 & .22 & .18 & .2 \\
 \end{array}
 \]

 \[\sum_{i=1}^{6} a_i = 1 \]

 \[\sum_{j=1}^{6} b_j = 1 \]
Refresher on probability: independence

• Two events A and B are independent if
 \[p(A \cap B) = p(A)p(B) \]

• Are these events independent?

[Diagram with dice showing an analogy]

\[p(A) = p(\text{brown}) \]
\[p(B) = p(\text{blue}) = b_2 \]
\[= \sum_{j=1}^{6} a_1 b_j = a_1 \sum_{j=1}^{6} b_j = a_1 \]

Yes! $p(A \cap B) = p(\text{brown} \cap \text{blue})$

\[p(A)p(B) = p(\text{brown})p(\text{blue}) \]
Refresher of probability: discrete random variables

- A **random variable** X is a mapping $X : \Omega \rightarrow D$
 - D is some set (e.g., the integers)
 - Induces a partition of all outcomes Ω
- For some $x \in D$, we say
 \[
 p(X = x) = p(\{\omega \in \Omega : X(\omega) = x\})
 \]
 “probability that variable X assumes state x”
- Notation: $\text{Val}(X) = \text{set } D$ of all values assumed by X
 (will interchangeably call these the “values” or “states” of variable X)

$$\Omega = \{\text{dice outcomes}\}$$ 2 die tosses
Refresher of probability: discrete random variables

- $p(X)$ is a distribution: $\sum_{x \in \text{Val}(X)} p(X = x) = 1$

- E.g. X_1 may refer to the value of the first dice, and X_2 to the value of the second dice

- We call two random variables X and Y *identically distributed* if $\text{Val}(X) = \text{Val}(Y)$ and $p(X=s) = p(Y=s)$ for all s in $\text{Val}(X)$

\[p(\text{dots}) = a_1 b_1 \quad p(\text{dots}) = a_1 b_2 \quad \ldots \]

X_1 and X_2 NOT identically distributed

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>.12</td>
<td>.18</td>
<td>.2</td>
<td>.1</td>
<td>.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
<th>b_4</th>
<th>b_5</th>
<th>b_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>.19</td>
<td>.11</td>
<td>.1</td>
<td>.22</td>
<td>.18</td>
<td>.2</td>
</tr>
</tbody>
</table>

$\Omega = \{\text{dots}, \text{dots}, \text{dots}, \text{dots}, \ldots, \text{dots}\}$ 2 die tosses
Refresher of probability: discrete random variables

- $p(X)$ is a distribution: $\sum_{x \in \text{Val}(X)} p(X = x) = 1$

- E.g. X_1 may refer to the value of the first dice, and X_2 to the value of the second dice

- We call two random variables X and Y **identically distributed** if $\text{Val}(X) = \text{Val}(Y)$ and $p(X=s) = p(Y=s)$ for all s in $\text{Val}(X)$

$$p(\text{ } \begin{array}{c} \text{a} \\ \text{b} \end{array} \text{ }) = a_1 a_1 \quad p(\text{ } \begin{array}{c} \text{a} \\ \text{c} \end{array} \text{ }) = a_1 a_2 \quad \ldots$$

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1 and X_2 identically distributed</td>
<td>.1</td>
<td>.12</td>
<td>.18</td>
<td>.2</td>
<td>.1</td>
<td>.3</td>
</tr>
</tbody>
</table>

$\Omega = \{\begin{array}{c} \text{a} \\ \text{b} \end{array}, \begin{array}{c} \text{a} \\ \text{c} \end{array}, \begin{array}{c} \text{b} \\ \text{c} \end{array}, \ldots, \begin{array}{c} \text{a} \\ \text{a} \end{array}\} \quad 2$ die tosses

$\sum_{i=1}^{6} a_i = 1$
Refresher of probability: discrete random variables

- \(X=x \) is simply an event, so can apply union bound, etc.
- Two random variables \(X \) and \(Y \) are independent if:
 \[
p(X = x, Y = y) = p(X = x)p(Y = y) \quad \forall x \in \text{Val}(X), y \in \text{Val}(Y)
 \]

 Joint probability. Formally, given by the event \(X = x \cap Y = y \)

- The expectation of \(X \) is defined as:
 \[
 E[X] = \sum_{x \in \text{Val}(X)} p(X = x)x
 \]

- If \(X \) is binary valued, i.e. \(x \) is either 0 or 1, then:
 \[
 E[X] = p(X = 0) \cdot 0 + p(X = 1) \cdot 1
 = p(X = 1)
 \]
A simple setting...

• Classification
 – m data points
 – **Finite** number of possible hypothesis (e.g., 40 spam classifiers)

• A learner finds a hypothesis h that is **consistent** with training data
 – Gets zero error in training: $error_{train}(h) = 0$
 – I.e., assume for now that one of the classifiers gets 100% accuracy on the m e-mails (we’ll handle the 98% case afterward)

• What is the probability that h has more than ε **true** error?
 – $error_{true}(h) \geq \varepsilon$
How likely is a **single** hypothesis to get m data points right?

- The probability of a hypothesis h incorrectly classifying:
 \[\epsilon_h = \sum_{(\vec{x}, y)} p(\vec{x}, y) 1[h(\vec{x}) \neq y] \]

- Let Z^h_i be a random variable that takes two values: **1 if h correctly classifies** i^{th} data point, and 0 otherwise.
- The Z^h variables are **independent and identically distributed** (i.i.d.) with
 \[\Pr(Z^h_i = 0) = \sum_{(\vec{x}, y)} p(\vec{x}, y) 1[h(\vec{x}) \neq y] = \epsilon_h \]

- What is the probability that h classifies m data points correctly?
 \[\Pr(h \text{ gets } m \text{ iid data points right}) = (1 - \epsilon_h)^m \leq e^{-\epsilon_h m} \]
Are we done?

Pr(h gets m iid data points right | error_{true}(h) ≥ ε) ≤ e^{-εm}

• Says “if h gets m data points correct, then with very high probability (i.e. 1-e^{-εm}) it is close to perfect (i.e., will have error ≤ ε)”

• This only considers one hypothesis!

• Suppose 1 billion classifiers were tried, and each was a random function

• For m small enough, one of the functions will classify all points correctly – but all have very large true error
How likely is learner to pick a bad hypothesis?

Suppose there are \(|H_c|\) hypotheses consistent with the training data

- How likely is learner to pick a bad one, i.e. with true error \(\geq \varepsilon\)?
- We need a bound that holds for all of them!

\[
\Pr(h \text{ gets } m \text{ iid data points right } | \text{ error}_{\text{true}}(h) \geq \varepsilon) \leq e^{-\varepsilon m}
\]

\[
P(\text{error}_{\text{true}}(h_1) \geq \varepsilon \text{ OR error}_{\text{true}}(h_2) \geq \varepsilon \text{ OR } \ldots \text{ OR error}_{\text{true}}(h_{|H_c|}) \geq \varepsilon) \\
\leq \sum_k P(\text{error}_{\text{true}}(h_k) \geq \varepsilon) \quad \leftarrow \text{Union bound}
\]

\[
\leq \sum_k (1-\varepsilon)^m \\
\leq |H_c|(1-\varepsilon)^m \\
\leq |H| e^{-m\varepsilon} \\
\leq |H| e^{-m\varepsilon} \quad \leftarrow (1-\varepsilon) \leq e^{-\varepsilon} \text{ for } 0 \leq \varepsilon \leq 1
\]
Generalization error of finite hypothesis spaces
[Haussler ’88]

We just proved the following result:

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{\text{true}}(h) > \varepsilon) \leq |H|e^{-m\varepsilon}$$
Using a PAC bound

Typically, 2 use cases:
- 1: Pick ϵ and δ, compute m
- 2: Pick m and δ, compute ϵ

$$p(\text{error}_{true}(h) \geq \epsilon) \leq |H|e^{-m\epsilon} \leq \delta$$

$$\epsilon = \delta = .01, |H| = 40$$
Need $m \geq 830$

Case 1
$$m \geq \ln |H| + \ln \frac{1}{\delta} - \epsilon$$
Log dependence on $|H|$, OK if exponential size (but not doubly)

Case 2
$$\epsilon \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$
ϵ has stronger influence than δ

Argument: Since for all h we know that
$$P(\text{error}_{true}(h) > \epsilon) \leq |H|e^{-m\epsilon}$$
... with probability $1-\delta$ the following holds... (either case 1 or case 2)

Says: we are willing to tolerate a δ probability of having $\geq \epsilon$ error

ϵ shrinks at rate $O(1/m)$
Limitations of Haussler ‘88 bound

• There may be no consistent hypothesis h (where $error_{\text{train}}(h)=0$)

• Size of hypothesis space
 – What if $|H|$ is really big?
 – What if it is continuous?

• First Goal: Can we get a bound for a learner with $error_{\text{train}}(h)$ in the data set?
Question: What’s the expected error of a hypothesis?

- The probability of a hypothesis incorrectly classifying:
 \[\sum_{(\bar{x}, y)} p(\bar{x}, y)1[h(\bar{x}) \neq y] \]

- Let’s now let \(Z_i^h \) be a random variable that takes two values, 1 if \(h \) correctly classifies \(i \)th data point, and 0 otherwise

- The \(Z \) variables are \textbf{independent} and \textbf{identically distributed} (i.i.d.) with
 \[\Pr(Z_i^h = 0) = \sum_{(\bar{x}, y)} p(\bar{x}, y)1[h(\bar{x}) \neq y] \]

- Estimating the true error probability is like estimating the parameter of a coin!

- **Chernoff bound:** for \(m \) i.i.d. coin flips, \(X_1, \ldots, X_m \), where \(X_i \in \{0,1\} \). For \(0<\epsilon<1 \):
 \[P \left(\theta - \frac{1}{m} \sum_i x_i > \epsilon \right) \leq e^{-2m\epsilon^2} \]
 \[p(X_i = 1) = \theta \]
 \[E[\frac{1}{m} \sum_{i=1}^{m} X_i] = \frac{1}{m} \sum_{i=1}^{m} E[X_i] = \theta \]

(=by linearity of expectation)
Generalization bound for $|H|$ hypothesis

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$
\Pr(\text{error}_{true}(h) - \text{error}_D(h) > \varepsilon) \leq |H|e^{-2m\varepsilon^2}
$$

Why? Same reasoning as before. Use the Union bound over individual Chernoff bounds.
PAC bound and Bias-Variance tradeoff

for all h, with probability at least $1-\delta$:

$$\text{error}_{true}(h) \leq \text{error}_D(h) + \sqrt{\ln |H| + \ln \frac{1}{\delta}} \cdot \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$$

“bias”

“variance”

• For large $|H|$
 – low bias (assuming we can find a good h)
 – high variance (because bound is looser)

• For small $|H|$
 – high bias (is there a good h?)
 – low variance (tighter bound)
What about continuous hypothesis spaces?

\[
\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}
\]

• Continuous hypothesis space:
 – \(|H| = \infty\)
 – Infinite variance???

• Only care about the maximum number of points that can be classified exactly!
How many points can a linear boundary classify exactly? (1-D)

2 Points: Yes!!

3 Points: No...

etc (8 total)
Shattering and Vapnik–Chervonenkis Dimension

A set of points is shattered by a hypothesis space H iff:

- For all ways of splitting the examples into positive and negative subsets
- There exists some consistent hypothesis h

The VC Dimension of H over input space X

- The size of the largest finite subset of X shattered by $H
How many points can a linear boundary classify exactly? (2-D)

3 Points: Yes!!

4 Points: No...

[Figure from Chris Burges]
How many points can a linear boundary classify exactly? (d-D)

• A linear classifier $\sum_{j=1}^{d} w_j x_j + b$ can represent all assignments of possible labels to $d+1$ points
 – But not $d+2$!!
 – Thus, VC-dimension of d-dimensional linear classifiers is $d+1$
 – Bias term b required
 – **Rule of Thumb**: number of parameters in model often matches max number of points

• **Question**: Can we get a bound for error as a function of the number of points that can be completely labeled?
PAC bound using VC dimension

- **VC dimension**: number of training points that can be classified exactly (shattered) by hypothesis space H!!!
 - Measures relevant size of hypothesis space

\[
\text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{VC(H) \left(\ln \frac{2m}{VC(H)} + 1 \right) + \ln \frac{4}{\delta}}{m}}
\]

- **Same bias / variance tradeoff as always**
 - Now, just a function of VC(H)

- **Note**: all of this theory is for **binary** classification
 - Can be generalized to multi-class and also regression
What is the VC-dimension of rectangle classifiers?

- First, show that there are 4 points that *can* be shattered:

- Then, show that no set of 5 points can be shattered:

[Figures from Anand Bhaskar, Ilya Sukhar]
Generalization bounds using VC dimension

\[
\text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{VC(H) \left(\ln \frac{2m}{VC(H)} + 1 \right) + \ln \frac{4}{\delta}}{m}}
\]

- **Linear classifiers:**
 - \(VC(H) = d+1 \), for \(d \) features plus constant term \(b \)

- **Classifiers using Gaussian Kernel**
 - \(VC(H) = \infty \)
 - \(K(\tilde{u}, \tilde{v}) = \exp \left(-\frac{||\tilde{u} - \tilde{v}||^2}{2\sigma^2} \right) \)

[Figure from Chris Burges]

[Figure from mblondel.org]
Gap tolerant classifiers

• Suppose data lies in \mathbb{R}^d in a ball of diameter D
• Consider a hypothesis class H of linear classifiers that can only classify point sets with margin at least M
• What is the largest set of points that H can shatter?

VC dimension $= \min \left(d, \frac{D^2}{M^2} \right)$

$M = 2\gamma = 2 \frac{1}{||w||}$

SVM attempts to minimize $||w||^2$, which minimizes VC-dimension!!!
Gap tolerant classifiers

• Suppose data lies in \mathbb{R}^d in a ball of diameter D
• Consider a hypothesis class H of linear classifiers that can only classify point sets with margin at least M
• What is the largest set of points that H can shatter?

\[
K(\bar{u}, \bar{v}) = \exp \left(-\frac{||\bar{u} - \bar{v}||^2}{2\sigma^2} \right)
\]

What is $R = D/2$ for the Gaussian kernel?

\[
R = \max_x ||\phi(x)|| \\
= \max_x \sqrt{\phi(x) \cdot \phi(x)} \\
= \max_x \sqrt{K(x, x)} \\
= 1 \quad !!!
\]

What is $||w||^2$?

\[
||w||^2 = \left(\frac{2}{M} \right)^2 \\
= \sum_i \sum_j \alpha_i \alpha_j y_i y_j K(x_i, x_j)
\]

VC dimension = $\min \left(d, \frac{D^2}{M^2} \right)$

[Figure from Chris Burges]
What you need to know

• Finite hypothesis space
 – Derive results
 – Counting number of hypothesis

• Complexity of the classifier depends on number of points that can be classified exactly
 – Finite case – number of hypotheses considered
 – Infinite case – VC dimension
 – VC dimension of gap tolerant classifiers to justify SVM

• Bias-Variance tradeoff in learning theory