Ensemble learning
Lecture 13

David Sontag
New York University

Slides adapted from Navneet Goyal, Tan, Steinbach, Kumar, Vibhav Gogate
Ensemble methods

Machine learning competition with a $1 million prize
Reduce Variance Without Increasing Bias

- **Averaging** reduces variance:

 \[Var(\overline{X}) = \frac{Var(X)}{N} \]

 (when predictions are independent)

Average models to reduce model variance

One problem:
 - only one training set
 - where do multiple models come from?
Bagging: Bootstrap Aggregation

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D
- **Bootstrap sampling**: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.

- Bagging:
 - Create k bootstrap samples $D_1 \ldots D_k$.
 - Train distinct classifier on each D_i.
 - Classify new instance by majority vote / average.
General Idea

Step 1: Create Multiple Data Sets

Step 2: Build Multiple Classifiers

Step 3: Combine Classifiers

Original Training data

C^*
Bagging

- Sampling with replacement

<table>
<thead>
<tr>
<th>Data ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Data</td>
<td></td>
</tr>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

- Build classifier on each bootstrap sample
- Each data point has probability \((1 - 1/n)^n\) of being selected as test data
- Training data = 1- \((1 - 1/n)^n\) of the original data
The 0.632 bootstrap

• This method is also called the 0.632 bootstrap
 – A particular training data has a probability of $1-1/n$ of not being picked
 – Thus its probability of ending up in the test data (not selected) is:

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

 – This means the training data will contain approximately 63.2% of the instances
Bagging Example
CART decision boundary

decision tree learning algorithm; very similar to ID3
100 bagged trees

shades of blue/red indicate strength of vote for particular classification
Example of Bagging

Assume that the training data is:

Goal: find a collection of 10 simple thresholding classifiers that collectively can classify correctly.

- Each simple (or weak) classifier is:

 \(x \leq K \rightarrow \text{class} = +1 \) or \(-1\) depending on which value yields the lowest error; where \(K \) is determined by entropy minimization.
Random Forests

• Ensemble method specifically designed for decision tree classifiers

• Introduce two sources of randomness: “Bagging” and “Random input vectors”
 – **Bagging method**: each tree is grown using a bootstrap sample of training data
 – **Random vector method**: At each node, best split is chosen from a random sample of m attributes instead of all attributes
Random Forests

Figure 5.40. Random forests.
Methods for Growing the Trees

• Fix a \(m \leq M \). At each node
 – Method 1:
 • Choose \(m \) attributes randomly, compute their information gains, and choose the attribute with the largest gain to split
 – Method 2:
 • (When \(M \) is not very large): select \(L \) of the attributes randomly. Compute a linear combination of the \(L \) attributes using weights generated from \([-1,+1]\) randomly. That is, new \(A = \sum(W_i*A_i), \text{i}=1..L\).
 – Method 3:
 • Compute the information gain of all \(M \) attributes. Select the top \(m \) attributes by information gain. Randomly select one of the \(m \) attributes as the splitting node.
Random Forest Algorithm: method 1 in previous slide

1. For $b = 1$ to B:

 (a) Draw a bootstrap sample Z^* of size N from the training data.

 (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

 i. Select m variables at random from the p variables.

 ii. Pick the best variable/split-point among the m.

 iii. Split the node into two daughter nodes.

2. Output the ensemble of trees $\{T_b\}_{1}^{B}$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^{B}(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^{B}(x) = majority\ vote\ \{\hat{C}_b(x)\}_{1}^{B}$.
Reduce Bias2 and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average *and* reduce bias?
- Yes:
 - Boosting