Q: What does the Perceptron mistake bound tell us?

Theorem: The maximum number of mistakes made by the perceptron algorithm is bounded above by \(\frac{R^2}{\gamma^2} \)

- **Batch learning:** setting we consider for most of the class.
 - Assume training data drawn from same distribution as future test data
 - Use training data to find the hypothesis

- The mistake bound gives us an upper bound on the perceptron running time
 - At least one mistake made per pass through the data
 - Running time is at most \(\frac{R^2}{\gamma^2} \) computed on training data

- Does not tell us anything about generalization – this is addressed by the concept of VC-dimension (in a couple lectures)
Q: What does the Perceptron mistake bound tell us?

Theorem: The maximum number of mistakes made by the perceptron algorithm is bounded above by $\frac{R^2}{\gamma^2}$.

Demonstration in Matlab that Perceptron takes many more iterations to converge when there is a smaller margin (relative to R).
Online versus batch learning

In the online setting we measure **regret**, i.e. the total cumulative loss.

No assumptions at all about the order of the data points!

R and gamma refer to all data points (seen and future).

Perceptron mistake bound tell us that the algorithm has bounded regret.

[Shai Shalev-Shwartz, “Online Learning and Online Convex Optimization”, ’11]
Recall from last lecture…
Support vector machines (SVMs)

• Example of a convex optimization problem
 – A quadratic program
 – Polynomial-time algorithms to solve!

• Hyperplane defined by support vectors
 – Could use them as a lower-dimension basis to write down line, although we haven’t seen how yet

\[
\begin{align*}
\text{minimize}_{w, b} & \quad w \cdot w \\
& \quad (w \cdot x_j + b) y_j \geq 1, \quad \forall j
\end{align*}
\]

Non-support Vectors:
• everything else
• moving them will not change \(w \)

Support Vectors:
• data points on the canonical lines
What if the data is not linearly separable?

\[\langle x_i^{(1)}, \ldots, x_i^{(m)} \rangle \quad m \text{ features} \]

\[y_i \in \{-1, +1\} \quad \text{class} \]

Add More Features!!!

What about overfitting?

\[\phi(x) = \begin{pmatrix} x^{(1)} \\ \vdots \\ x^{(n)} \\ x^{(1)}x^{(2)} \\ x^{(1)}x^{(3)} \\ \vdots \\ ex^{(1)} \\ \vdots \end{pmatrix} \]
What if the data is not linearly separable?

\[
\begin{align*}
\text{minimize}_{w,b} & \quad w \cdot w + C \#(\text{mistakes}) \\
\left(w \cdot x_j + b \right) y_j & \geq 1, \quad \forall j
\end{align*}
\]

- First Idea: Jointly minimize $w \cdot w$ and number of training mistakes
 - How to tradeoff two criteria?
 - Pick C using held-out data

- Tradeoff (mistakes) and $w \cdot w$
 - 0/1 loss
 - Not QP anymore
 - Also doesn’t distinguish near misses and really bad mistakes
 - NP hard to find optimal solution!!!
Allowing for slack: “Soft margin” SVM

For each data point:
• If margin ≥ 1, don’t care
• If margin < 1, pay linear penalty

\[
\begin{align*}
\text{minimize}_{\mathbf{w},b} & \quad \mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j \\
\left(\mathbf{w} \cdot \mathbf{x}_j + b \right) y_j & \geq 1 - \xi_j \quad \forall j \quad \xi_j \geq 0
\end{align*}
\]

“slack variables”

Slack penalty $C > 0$:
• $C = \infty \rightarrow$ have to separate the data!
• $C = 0 \rightarrow$ ignores the data entirely!
Allowing for slack: “Soft margin” SVM

\[
\text{minimize}_{w,b} \quad w \cdot w + C \sum_j \xi_j \\
\left(w \cdot x_j + b \right) y_j \geq 1 - \xi_j, \quad \forall j \quad \xi_j \geq 0
\]

“slack variables”

What is the (optimal) value of \(\xi_j\) as a function of \(w\) and \(b\)?

If \((w \cdot x_j + b) y_j \geq 1\), then \(\xi_j = 0\)

If \((w \cdot x_j + b) y_j < 1\), then \(\xi_j = 1 - (w \cdot x_j + b) y_j\)

Sometimes written as

\[
\left(1 - (w \cdot x_j + b) y_j \right)_+ = \max(0, 1 - (w \cdot x_j + b) y_j)
\]
Equivalent hinge loss formulation

\[
\begin{align*}
\text{minimize}_{w,b} & \quad w \cdot w + C \sum_j \xi_j \\
\left(w \cdot x_j + b \right) y_j & \geq 1 - \xi_j, \quad \forall j \quad \xi_j \geq 0
\end{align*}
\]

Substituting \(\xi_j = \max(0, 1 - (w \cdot x_j + b) y_j) \) into the objective, we get:

\[
\begin{align*}
\min ||w||^2 + C \sum_j \max(0, 1 - (w \cdot x_j + b) y_j)
\end{align*}
\]

The hinge loss is defined as \(L(y, \hat{y}) = \max(0, 1 - \hat{y}y) \)

\[
\begin{align*}
\min_{w,b} ||w||_2^2 + C \sum_j L(y_j, w \cdot x_j + b)
\end{align*}
\]

This is called regularization; used to prevent overfitting!

This part is empirical risk minimization, using the hinge loss
Hinge loss vs. 0/1 loss

0-1 Loss:
\[L(y, \hat{y}) = 1[\hat{y} \neq y] \]

Hinge loss:
\[L(y, \hat{y}) = \max \left(0, 1 - \hat{y}y \right) \]

Hinge loss upper bounds 0/1 loss!
How do we do multi-class classification?
One versus all classification

Learn 3 classifiers:
- vs \{o, +\}, weights \(w_+ \)
+ vs \{o, -\}, weights \(w_- \)
o vs \{+, -\}, weights \(w_o \)

Predict label using:
\[
\hat{y} \leftarrow \arg \max_k w_k \cdot x + b_k
\]

Any problems?
Could we learn this dataset? →
Multi-class SVM

Simultaneously learn 3 sets of weights:

• How do we guarantee the correct labels?

• Need new constraints!

The “score” of the correct class must be better than the “score” of wrong classes:

$$w(y_j) \cdot x_j + b(y_j) > w(y) \cdot x_j + b(y) \quad \forall j, y \neq y_j$$
Multi-class SVM

As for the SVM, we introduce slack variables and maximize margin:

\[
\begin{align*}
\text{minimize}_{\mathbf{w}, b} & \quad \sum_y \mathbf{w}(y) \cdot \mathbf{w}(y) + C \sum_j \xi_j \\
\mathbf{w}(y_j) \cdot \mathbf{x}_j + b(y_j) & \geq \mathbf{w}(y') \cdot \mathbf{x}_j + b(y') + 1 - \xi_j, \quad \forall y' \neq y_j, \forall j \\
\xi_j & \geq 0, \quad \forall j
\end{align*}
\]

To predict, we use:

\[
\hat{y} \leftarrow \arg \max_k w_k \cdot x + b_k
\]

Now can we learn it? →
What you need to know

• Perceptron mistake bound
• Maximizing margin
• Derivation of SVM formulation
• Relationship between SVMs and empirical risk minimization
 – 0/1 loss versus hinge loss
• Tackling multiple class
 – One against All
 – Multiclass SVMs
What’s Next!

• Learn one of the most interesting and exciting recent advancements in machine learning
 – The “kernel trick”
 – High dimensional feature spaces at no extra cost!

• But first, a detour
 – Constrained optimization!