Expectation Maximization
Lecture 22

David Sontag
New York University

Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore
The General GMM assumption

- \(P(Y) \): There are \(k \) components
- \(P(X|Y) \): Each component generates data from a multivariate Gaussian with mean \(\mu_i \) and covariance matrix \(\Sigma_i \)

Each data point is sampled from a generative process:

1. Choose component \(i \) with probability \(P(y=i) \)
2. Generate datapoint \(\sim N(m_i, \Sigma_i) \)

Gaussian mixture model (GMM)
Multivariate Gaussians

$$P(X=x_j) = \frac{1}{(2\pi)^{m/2} \|\Sigma\|^{1/2}} \exp\left[-\frac{1}{2}(x_j - \mu.)^T \Sigma^{-1}(x_j - \mu.) \right]$$

\(\Sigma = \text{arbitrary (semidefinite) matrix:}\)
- specifies rotation (change of basis)
- eigenvalues specify relative elongation
Mixtures of Gaussians
E.M. for General GMMs

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)}, \ldots, \mu_K^{(t)}, \Sigma_1^{(t)}, \Sigma_2^{(t)}, \ldots, \Sigma_K^{(t)}, p_1^{(t)}, p_2^{(t)}, \ldots, p_K^{(t)} \}$$

E-step

Compute “expected” classes of all datapoints for each class

$$P(Y_j = k | x_j, \lambda_t) \propto p_k^{(t)} p(x_j | \mu_k^{(t)}, \Sigma_k^{(t)})$$

M-step

Compute weighted MLE for μ given expected classes above

$$\mu_k^{(t+1)} = \frac{\sum_j P(Y_j = k | x_j, \lambda_t) x_j}{\sum_j P(Y_j = k | x_j, \lambda_t)}$$

$$\Sigma_k^{(t+1)} = \frac{\sum_j P(Y_j = k | x_j, \lambda_t) [x_j - \mu_k^{(t+1)}] [x_j - \mu_k^{(t+1)}]^T}{\sum_j P(Y_j = k | x_j, \lambda_t)}$$

$$p_k^{(t+1)} = \frac{\sum_j P(Y_j = k | x_j, \lambda_t)}{m}$$

$p_k^{(t)}$ is shorthand for estimate of $P(y=k)$ on t'th iteration

$P(Y_j = k | x_j, \lambda_t)$ is the posterior probability of class k for datapoint x_j given the current estimates of the parameters.

Just evaluate a Gaussian at x_j

$m = \#training$ examples
Gaussian Mixture Example: Start
After first iteration
After 2nd iteration
After 3rd iteration
After 4th iteration
After 5th iteration
After 6th iteration
After 20th iteration
What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \ldots \mu_K^{(t)} \}$$

E-step

Compute “expected” classes of all datapoints

$$P(\tilde{Y}_j = k|x_j, \mu_1 \ldots \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2}\|x_j - \mu_k\|^2\right) P(\tilde{Y}_j = k)$$

M-step

Compute most likely new μs given class expectations

$$\mu_k = \frac{\sum_{j=1}^m P(\tilde{Y}_j = k|x_j) x_j}{\sum_{j=1}^m P(\tilde{Y}_j = k|x_j)}$$

δ represents hard assignment to “most likely” or nearest cluster

Equivalent to k-means clustering algorithm!!!
Let's look at the math behind the magic!
The general learning problem with missing data

- **Marginal likelihood:** X is observed,
 Z (e.g. the class labels Y) is missing:

\[
\ell(\theta : D) = \log \prod_{j=1}^{m} P(x_j | \theta) \\
= \sum_{j=1}^{m} \log P(x_j | \theta) \\
= \sum_{j=1}^{m} \log \sum_{z} P(x_j, z | \theta)
\]

- **Objective:** Find $\arg\max_{\theta} l(\theta: \text{Data})$
A Key Computation: E-step

• **X** is observed, **Z** is missing

• Compute probability of missing values given current choice of \(\theta \)

 – \(Q(z|x_j) \) for each \(x_j \)

 • e.g., probability computed during classification step

 • corresponds to “classification step” in K-means

\[
Q^{(t+1)}(z \mid x_j) = P(z \mid x_j, \theta^{(t)})
\]
Properties of EM

• We will prove that
 – EM converges to a local minima
 – Each iteration improves the log-likelihood

• How? (Same as k-means)
 – E-step can never decrease likelihood
 – M-step can never decrease likelihood
Jensen’s inequality

- **Theorem**: \[\log \sum_z P(z) f(z) \geq \sum_z P(z) \log f(z) \]
 - e.g., Binary case for convex function f:
Applying Jensen’s inequality

- Use: $\log \sum_z P(z) f(z) \geq \sum_z P(z) \log f(z)$

$$
\ell(\theta(t) : \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{z} Q^{(t+1)}(z | x_j) \frac{P(z, x_j | \theta(t))}{Q^{(t+1)}(z | x_j)}
$$

$$
\geq \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z | x_j) \log \left(\frac{p(z, x_j | \theta(t))}{Q^{(t+1)}(z | x_j)} \right)
$$

$$
= \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z | x_j) \log \left(p(z, x_j | \theta(t)) \right) - \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z | x_j) \log \left(Q^{(t+1)}(z | x_j) \right)
$$

$$
\ell(\theta(t) : \mathcal{D}) \geq \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z | x_j) \log P(z, x_j | \theta(t)) + \sum_{j=1}^{m} H(Q^{(t+1)}, j)
$$
The M-step

Lower bound:

\[\ell(\theta^{(t)} : \mathcal{D}) \geq \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z \mid x_j) \log P(z, x_j \mid \theta^{(t)}) + \sum_{j=1}^{m} H(Q^{(t+1),j}) \]

- **Maximization step:**

 \[\theta^{(t+1)} \leftarrow \arg \max_{\theta} \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z \mid x_j) \log P(z, x_j \mid \theta) \]

- **We are optimizing a lower bound!**

This term is a constant with respect to \(\theta \)
Derivation of EM algorithm

\[
L(\theta) = l(\theta | \theta_n)
\]

\[
L(\theta_{n+1}) = \max L(\theta)
\]

\[
l(\theta_{n+1} | \theta_n)
\]

\[
L(\theta_n) = l(\theta_n | \theta_n)
\]

\[
L(\theta_{n+1}) = \max L(\theta)
\]

\[
l(\theta_{n+1} | \theta_n)
\]

\[
L(\theta_n) = l(\theta_n | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X | z, \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X, z | \theta_n)
\]

\[
L(\theta_{n+1}) = \max L(\theta)
\]

\[
l(\theta_{n+1} | \theta_n)
\]

\[
L(\theta_n) = l(\theta_n | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X, z | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X | z, \theta_n)
\]

\[
L(\theta_{n+1}) = \max L(\theta)
\]

\[
l(\theta_{n+1} | \theta_n)
\]

\[
L(\theta_n) = l(\theta_n | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X | z, \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X, z | \theta_n)
\]

\[
L(\theta_{n+1}) = \max L(\theta)
\]

\[
l(\theta_{n+1} | \theta_n)
\]

\[
L(\theta_n) = l(\theta_n | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X, z | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X | z, \theta_n)
\]

\[
L(\theta_{n+1}) = \max L(\theta)
\]

\[
l(\theta_{n+1} | \theta_n)
\]

\[
L(\theta_n) = l(\theta_n | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X, z | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X | z, \theta_n)
\]

\[
L(\theta_{n+1}) = \max L(\theta)
\]

\[
l(\theta_{n+1} | \theta_n)
\]

\[
L(\theta_n) = l(\theta_n | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X, z | \theta_n)
\]

\[
\sum_z P(z | \theta_n) \log P(X | z, \theta_n)
\]
What you should know

• Mixture of Gaussians

• EM for mixture of Gaussians:
 – Coordinate ascent, just like k-means
 – How to “learn” maximum likelihood parameters (locally max. like.) in the case of unlabeled data
 – Relation to K-means
 • Hard / soft clustering
 • Probabilistic model

• Remember, E.M. can get stuck in local minima,
 – And empirically it **DOES**