The AdaBoost algorithm

0) Set \(\tilde{W}_i^{(0)} = 1/n \) for \(i = 1, \ldots, n \)

1) At the \(m^{th} \) iteration we find (any) classifier \(h(x; \hat{\theta}_m) \) for which the \textit{weighted classification error} \(\epsilon_m \)

\[
\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^{n} \tilde{W}_i^{(m-1)} y_i h(x_i; \hat{\theta}_m) \right)
\]

is better than chance.

2) The new component is assigned votes based on its error:

\[
\hat{\alpha}_m = 0.5 \log\left(\frac{(1 - \epsilon_m)}{\epsilon_m} \right)
\]

3) The weights are updated according to (\(Z_m \) is chosen so that the new weights \(\tilde{W}_i^{(m)} \) sum to one):

\[
\tilde{W}_i^{(m)} = \frac{1}{Z_m} \cdot \tilde{W}_i^{(m-1)} \cdot \exp\{ -y_i \hat{\alpha}_m h(x_i; \hat{\theta}_m) \}
\]
Adaboost properties: exponential loss

- After each boosting iteration, assuming we can find a component classifier whose weighted error is better than chance, the combined classifier

\[\hat{h}_m(x) = \hat{\alpha}_1 h(x; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(x; \hat{\theta}_m) \]

is guaranteed to have a lower exponential loss over the training examples.
Adaboost properties: training error

- The boosting iterations also decrease the classification error of the combined classifier

\[\hat{h}_m(x) = \hat{\alpha}_1 h(x; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(x; \hat{\theta}_m) \]

over the training examples.
Adaboost properties: training error cont’d

• The training classification error has to go down exponentially fast if the weighted errors of the component classifiers, ϵ_k, are strictly better than chance $\epsilon_k < 0.5$

\[
\text{err}(\hat{h}_m) \leq \prod_{k=1}^{m} 2\sqrt{\epsilon_k(1 - \epsilon_k)}
\]
Adaboost properties: weighted error

- Weighted error of each new component classifier

\[\epsilon_k = 0.5 - \frac{1}{2} \left(\sum_{i=1}^{n} \tilde{W}_i^{(k-1)} y_i h(x_i; \hat{\theta}_k) \right) \]

tends to increase as a function of boosting iterations.
How Will Test Error Behave? (A First Guess)

expect:

- training error to continue to drop (or reach zero)
- test error to increase when H_{final} becomes “too complex”
 - “Occam’s razor”
 - overfitting
 - hard to know when to stop training
Technically...

- with high probability:

\[
\text{generalization error} \leq \text{training error} + \tilde{O}\left(\sqrt{\frac{dT}{m}}\right)
\]

- bound depends on
 - \(m\) = \# training examples
 - \(d\) = “complexity” of weak classifiers
 - \(T\) = \# rounds

- generalization error = \(E\) [test error]

- predicts overfitting
“Typical” performance

- Training and test errors of the combined classifier

\[
\hat{h}_m(x) = \hat{\alpha}_1 h(x; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(x; \hat{\theta}_m)
\]

- Why should the test error go down after we already have zero training error?
AdaBoost and margin

- We can write the combined classifier in a more useful form by dividing the predictions by the “total number of votes”:

\[\hat{h}_m(x) = \frac{\hat{\alpha}_1 h(x; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(x; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m} \]

- This allows us to define a clear notion of “voting margin” that the combined classifier achieves for each training example:

\[\text{margin}(x_i) = y_i \cdot \hat{h}_m(x_i) \]

The margin lies in \([-1, 1]\) and is negative for all misclassified examples.
AdaBoost and margin

• Successive boosting iterations still improve the majority vote or margin for the training examples

\[\text{margin}(x_i) = y_i \left[\frac{\hat{\alpha}_1 h(x_i; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(x_i; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m} \right] \]

• Cumulative distributions of margin values:

![Graph showing cumulative distributions of margin values for 4 iterations and 10 iterations.](image-url)
AdaBoost and margin

- Successive boosting iterations still improve the majority vote or margin for the training examples

\[
\text{margin}(x_i) = y_i \left[\frac{\hat{\alpha}_1 h(x_i; \hat{\theta}_1) + \ldots + \hat{\alpha}_m h(x_i; \hat{\theta}_m)}{\hat{\alpha}_1 + \ldots + \hat{\alpha}_m} \right]
\]

- Cumulative distributions of margin values:

![Cumulative distributions of margin values](image)
Can we improve the combination?

- As a result of running the boosting algorithm for m iterations, we essentially generate a new feature representation for the data

$$\phi_i(x) = h(x; \hat{\theta}_i), i = 1, \ldots, m$$

- Perhaps we can do better by separately estimating a new set of “votes” for each component. In other words, we could estimate a linear classifier of the form

$$f(x; \alpha) = \alpha_1 \phi_1(x) + \ldots \alpha_m \phi_m(x)$$

where each parameter α_i can be now any real number (even negative). The parameters would be estimated jointly rather than one after the other as in boosting.
Can we improve the combination?

- We could use SVMs in a postprocessing step to reoptimize

 \[f(x; \alpha) = \alpha_1 \phi_1(x) + \ldots \alpha_m \phi_m(x) \]

 with respect to \(\alpha_1, \ldots, \alpha_m \). This is not necessarily a good idea.

boosting

svm postprocessing
Practical Advantages of AdaBoost

• fast
• simple and easy to program
• no parameters to tune (except \(T \))
• flexible — can combine with any learning algorithm
• no prior knowledge needed about weak learner
• provably effective, provided can consistently find rough rules of thumb
 \(\rightarrow \) shift in mind set — goal now is merely to find classifiers barely better than random guessing
• versatile
 • can use with data that is textual, numeric, discrete, etc.
 • has been extended to learning problems well beyond binary classification
Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 → overfitting
 - weak classifiers too weak ($\gamma_t \to 0$ too quickly)
 → underfitting
 → low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise
Multiclass Problems

• say $y \in Y$ where $|Y| = k$
• direct approach (AdaBoost.M1):

\[h_t : X \rightarrow Y \]

\[D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases} \]

\[H_{\text{final}}(x) = \arg \max_{y \in Y} \sum_{t:h_t(x) = y} \alpha_t \]

• can prove same bound on error if $\forall t : \epsilon_t \leq 1/2$
 • in practice, not usually a problem for “strong” weak learners (e.g., C4.5)
 • significant problem for “weak” weak learners (e.g., decision stumps)
• instead, reduce to binary
The One-Against-All Approach

- break k-class problem into k binary problems and solve each separately
- say possible labels are $Y = \{\text{ }, \text{ }, \text{ }, \text{ }, \text{ }\}$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
<td>\Rightarrow</td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> +</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> </td>
<td> -</td>
<td> -</td>
<td> +</td>
<td> </td>
</tr>
<tr>
<td> -</td>
<td> +</td>
<td> -</td>
<td> </td>
<td> -</td>
</tr>
<tr>
<td> +</td>
<td> </td>
<td> -</td>
<td> -</td>
<td> -</td>
</tr>
</tbody>
</table>

- to classify new example, choose label predicted to be “most” positive
- $\Rightarrow \text{"AdaBoost.MH"} \quad [\text{with Singer}]$
- problem: not robust to errors in predictions