Approximate marginal inference

- Given the joint \(p(x_1, \ldots, x_n) \) represented as a graphical model, how do we perform **marginal inference**, e.g. to compute \(p(x_1 | e) \)?
- We showed in Lecture 4 that doing this exactly is NP-hard
- Nearly all **approximate inference** algorithms are either:
 1. **Monte-carlo methods** (e.g., Gibbs sampling, likelihood reweighting, MCMC)
 2. Variational algorithms (e.g., mean-field, loopy belief propagation)
Generating samples from a Bayesian network

Algorithm 12.1 Forward Sampling in a Bayesian network

Procedure Forward-Sample (B // Bayesian network over X
)

1. Let X_1, \ldots, X_n be a topological ordering of X

2. for $i = 1, \ldots, n$

3. $u_i \leftarrow x\langle Pa_{X_i}\rangle$ // Assignment to Pa_{X_i} in x_1, \ldots, x_{i-1}

4. Sample x_i from $P(X_i | u_i)$

5. return (x_1, \ldots, x_n)

Monte-Carlo algorithms

- Given a joint distribution \(p(x_1, \ldots, x_n) \), how do we compute marginals?

\[
p[X_1 = x_1] = E_{x \sim p}[f(x)], \text{ where } f(x) = 1[X_1 = x_1]
\]
\[
= \sum_x p(x)f(x).
\]

- Rather than explicitly enumerating all assignments, consider the following Monte-Carlo estimate of the expectation:

\[
x^1 \sim p(x) \\
x^2 \sim p(x) \\
\vdots \\
x^M \sim p(x)
\]

Then, our estimate is \(\hat{E}_p[f(x)] = \frac{1}{M} \sum_{m=1}^{M} f(x^m) \). How good is it?
Monte-Carlo algorithms

- Let $\mathcal{D} = \{x^1, \ldots, x^M\}$. Since \mathcal{D} was drawn randomly from $p(x)$, the estimate is itself a random variable.
- The estimate is \textit{unbiased} because

\[
E_{x^1, \ldots, x^M \sim p(x)} \left[\hat{E}[f(x)] \right] = E_{x^1, \ldots, x^M \sim p(x)} \left[\frac{1}{M} \sum_{m=1}^{M} f(x^m) \right]
\]

\[
= \frac{1}{M} \sum_{m=1}^{M} E_{x^m \sim p(x)}[f(x^m)]
\]

\[
= E_{x \sim p(x)}[f(x^m)].
\]

- How quickly does the estimate converge to the true expectation?
There are two general results we can use, depending on whether we care about additive or multiplicative error.

Hoeffding bound says that:

\[
\Pr_{D \sim p(x)} \left[E_p[f(x)] - \epsilon \leq \hat{E}_D[f(x)] \leq E_p[f(x)] + \epsilon \right] \geq 1 - 2e^{-2M\epsilon^2}
\]

Chernoff bound says that (assuming \(f(x) \in [0, 1] \)):

\[
\Pr_{D \sim p(x)} \left[E_p[f(x)](1 - \epsilon) \leq \hat{E}_D[f(x)] \leq E_p[f(x)](1 + \epsilon) \right] \geq 1 - 2e^{-\frac{M\epsilon^2}{3} E_p[f(x)]}
\]

Estimating *single-variable* marginals for a BN is easy: just forward sample!

What about computing *conditional* queries such as \(p(X = x \mid E = e) \)?

Computing denominator of \(p(X = x, E = e) / p(E = e) \) needs \(\Omega(1/p(E = e)) \) samples, by Chernoff bound. In this setting, no point in even using a BN, could simply estimate directly from data!
If we could instead directly sample from $p(X \mid E = e)$, we would be in business – but this is hard!

For the same reason, sampling from an undirected graphical model $p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c)$ – even without evidence – is hard, because we don’t know Z

Suppose we instead had a simpler-to-sample-from distribution $q(x)$, called the “proposal distribution”

Let $\tilde{p}(x)$ be an unnormalized version of the distribution, e.g.

$$\tilde{p}(x) = p(x, E = e) \quad (\text{BN with evidence})$$
$$\tilde{p}(x) = \prod_{c \in C} \phi_c(x_c) \quad (\text{MRF})$$

Note that we can efficiently evaluate $\tilde{p}(x)$ for any x
Consider the following estimate (now using $x^1, \ldots, x^M \sim q(x)$):

$$
\hat{E}_D[f(x)] = \frac{1}{M} \sum_{m=1}^{M} f(x^m) \tilde{w}(x^m) \frac{1}{M} \sum_{m=1}^{M} \tilde{w}(x^m),
$$

where \(\tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)} \)

This is not an unbiased estimate! E.g., for $M = 1$, we have

$$
E_{x^1 \sim q(x)}\left[\hat{E}_D[f(x)] \right] = E_{x^1 \sim q(x)} \left[\frac{f(x^1) \tilde{w}(x^1)}{\tilde{w}(x^1)} \right] = E_{x \sim q(x)}[f(x)] \\
\neq E_{x \sim p(x)}[f(x)].
$$

However, the estimate is asymptotically correct (i.e., as $M \to \infty$)
"Normalized" Importance Sampling

- Consider the following estimate (now using $x^1, \ldots, x^M \sim q(x)$):

$$\hat{E}_D[f(x)] = \frac{1}{M} \sum_{m=1}^{M} \frac{f(x^m)\tilde{w}(x^m)}{\frac{1}{M} \sum_{m=1}^{M} \tilde{w}(x^m)}, \quad \text{where} \quad \tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)}$$

- Letting \(\tilde{p}(x) = p(x)Z \), the expectation of the numerator is:

$$E_{D \sim q(x)} \left[\frac{1}{M} \sum_{m=1}^{M} f(x^m)\tilde{w}(x^m) \right] = \frac{1}{M} \sum_{m=1}^{M} E_{x^m \sim q(x)}[f(x^m)\tilde{w}(x^m)]$$

$$= \frac{1}{M} \sum_{m=1}^{M} \sum_{x} q(x) \left[f(x) \frac{\tilde{p}(x)}{q(x)} \right]$$

$$= \frac{1}{M} \sum_{m=1}^{M} \sum_{x} \tilde{p}(x)f(x) = ZE_p[f(x)].$$
“Normalized” Importance Sampling

- Consider the following estimate (now using $x^1, \ldots, x^M \sim q(x)$):

$$
\hat{E}_D[f(x)] = \frac{1}{M} \sum_{m=1}^{M} f(x^m) \tilde{w}(x^m), \quad \text{where} \quad \tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)}
$$

- Letting $\tilde{p}(x) = p(x)Z$, the expectation of the numerator is $ZE_p[f(x)]$.

- The expectation of the denominator is Z!

$$
E_{D\sim q(x)} \left[\frac{1}{M} \sum_{m=1}^{M} \tilde{w}(x^m) \right] = \frac{1}{M} \sum_{m=1}^{M} E_{x^m \sim q(x)}[\tilde{w}(x^m)]
$$

$$
= \frac{1}{M} \sum_{m=1}^{M} \sum_x q(x) \left[\frac{\tilde{p}(x)}{q(x)} \right]
$$

$$
= \frac{1}{M} \sum_{m=1}^{M} \sum_x \tilde{p}(x) = Z.
$$
What should we use for \(q(x) \)? For a Bayesian network, we can sample from the latent variables, keeping the evidence fixed.

Algorithm 12.2 Likelihood-weighted particle generation

Procedure LW-Sample (

\[B, \quad \text{// Bayesian network over } \mathcal{X} \]
\[Z = z \quad \text{// Event in the network} \]

1. Let \(X_1, \ldots, X_n \) be a topological ordering of \(\mathcal{X} \)
2. \(w \leftarrow 1 \)
3. for \(i = 1, \ldots, n \)
4. \(u_i \leftarrow x^{\text{Pa}X_i} \quad \text{// Assignment to } \text{Pa}X_i \text{ in } x_1, \ldots, x_{i-1} \)
5. if \(X_i \notin Z \) then
6. \quad Sample \(x_i \) from \(P(X_i | u_i) \)
7. else
8. \quad \(x_i \leftarrow z(X_i) \quad \text{// Assignment to } X_i \text{ in } z \)
9. \quad \(w \leftarrow w \cdot P(x_i | u_i) \quad \text{// Multiply weight by probability of desired value} \)
10. return \((x_1, \ldots, x_n), w\)

Corresponds to importance sampling using:

\[
q(x) = \prod_{t \notin E} p(x_t | x_{pa(t)}) \prod_{t \in E} 1[x_t = e_t], \text{ so } \tilde{w}(x) = \frac{\tilde{p}(x)}{q(x)} = \prod_{t \in E} p(x_t | x_{pa(t)}).
\]