Inference and Representation

David Sontag

New York University

Lecture 5, Sept. 30, 2014
Today’s lecture

1. Running-time of variable elimination
 - Elimination as graph transformation
 - Fill edges, width, treewidth
2. Sum-product belief propagation (BP)
 Done on blackboard
3. Max-product belief propagation
4. Loopy belief propagation
Let’s try to analyze the complexity in terms of the graph structure.

G_Φ is the undirected graph with one node per variable, where there is an edge (X_i, X_j) if these appear together in the scope of some factor ϕ.

Ignoring evidence, this is either the original MRF (for sum-product VE on MRFs) or the moralized Bayesian network:
Elimination as graph transformation

When a variable X is eliminated,

- We create a single factor ψ that contains X and all of the variables Y with which it appears in factors.
- We eliminate X from ψ, replacing it with a new factor τ that contains all of the variables Y, but not X. Let’s call the new set of factors Φ_X

How does this modify the graph, going from G_Φ to G_{Φ_X}?

- Constructing ψ generates edges between all of the variables $Y \in Y$.
- Some of these edges were already in G_Φ, some are new.
- The new edges are called fill edges.
- The step of removing X from Φ to construct Φ_X removes X and all its incident edges from the graph.
We can summarize the computation cost using a single graph that is the union of all the graphs resulting from each step of the elimination.

We call this the **induced graph** $\mathcal{I}_{\Phi, \prec}$, where \prec is the elimination ordering.
Graph is **chordal**, or triangulated, if every cycle of length \(\geq 3 \) has a shortcut (called a “chord”)

Theorem: Every induced graph is chordal

Proof: (by contradiction)

- Assume we have a chordless cycle \(X_1 - X_2 - X_3 - X_4 - X_1 \) in the induced graph
- Suppose \(X_1 \) was the first variable that we eliminated (of these 4)
- After a node is eliminated, no fill edges can be added to it. Thus, \(X_1 - X_2 \) and \(X_1 - X_4 \) must have pre-existed
- Eliminating \(X_1 \) introduces the edge \(X_2 - X_4 \), contradicting our assumption
Chordal graphs

- **Thm:** Every induced graph is chordal
- **Thm:** Any chordal graph has an elimination ordering that does not introduce any fill edges

Algorithm 9.3 Maximum Cardinality Algorithm for constructing an elimination ordering

```plaintext
Procedure Max-Cardinality (H) // An undirected graph over X

1. Initialize all nodes in X as unmarked
2. for k = |X| ... 1
3. X ← unmarked variable in X with largest number of marked neighbors
4. π(X) ← k
5. Mark X
6. return π

(The elimination ordering is REVERSE)

- **Conclusion:** Finding a good elimination ordering is equivalent to making graph chordal with minimal width
Today’s lecture

1. Running-time of variable elimination
   - Elimination as graph transformation
   - Fill edges, width, treewidth

2. Sum-product belief propagation (BP)
   *Done on blackboard*

3. Max-product belief propagation

4. Loopy belief propagation
MAP inference

- Recall the MAP inference task,

\[ \arg \max_x p(x), \quad p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c) \]

(we assume any evidence has been subsumed into the potentials, as discussed in the last lecture)

- Since the normalization term is simply a constant, this is equivalent to

\[ \arg \max_x \prod_{c \in C} \phi_c(x_c) \]

(called the max-product inference task)

- Furthermore, since log is monotonic, letting \( \theta_c(x_c) = \lg \phi_c(x_c) \), we have that this is equivalent to

\[ \arg \max_x \sum_{c \in C} \theta_c(x_c) \]

(called max-sum)
Semi-rings

- Compare the sum-product problem with the max-product (equivalently, max-sum in log space):

  \[
  \text{sum-product} \quad \sum_{x} \prod_{c \in C} \phi_c(x_c)
  \]

  \[
  \text{max-sum} \quad \max_{x} \sum_{c \in C} \theta_c(x_c)
  \]

- Can exchange operators (+, *) for (max, +) and, because both are semirings satisfying associativity and commutativity, everything works!

- We get “max-product variable elimination” and “max-product belief propagation”
Suppose we have a simple chain, \( A \rightarrow B \rightarrow C \rightarrow D \), and we want to find the MAP assignment,

\[
\max_{a,b,c,d} \phi_{AB}(a, b) \phi_{BC}(b, c) \phi_{CD}(c, d)
\]

Just as we did before, we can push the maximizations inside to obtain:

\[
\max_{a,b} \phi_{AB}(a, b) \max_c \phi_{BC}(b, c) \max_d \phi_{CD}(c, d)
\]

or, equivalently,

\[
\max_{a,b} \theta_{AB}(a, b) + \max_c \theta_{BC}(b, c) + \max_d \theta_{CD}(c, d)
\]

[Illustrate factor max-marginalization on board.]

To find the actual maximizing assignment, we do a traceback (or keep back pointers)
### Max-product variable elimination

**Procedure** Max-Product-VE (  
\(\Phi\) \hspace{3pt} // Set of factors over \(X\)  
\(\prec\) \hspace{3pt} // Ordering on \(X\)  
)

1. Let \(X_1, \ldots, X_k\) be an ordering of \(X\) such that
2. \(X_i \prec X_j\) iff \(i < j\)
3. for \(i = 1, \ldots, k\)
   4. \((\Phi, \phi_{X_i}) \leftarrow \text{Max-Product-Eliminate-Var}(\Phi, X_i)\)
5. \(x^* \leftarrow \text{Traceback-MAP}(\{\phi_{X_i} : i = 1, \ldots, k\})\)
6. return \(x^*, \Phi\) \hspace{3pt} // \(\Phi\) contains the probability of the MAP

**Procedure** Max-Product-Eliminate-Var (  
\(\Phi\) \hspace{3pt} // Set of factors  
\(Z\) \hspace{3pt} // Variable to be eliminated  
)

1. \(\Phi' \leftarrow \{\phi \in \Phi : Z \in \text{Scope}[\phi]\}\)
2. \(\Phi'' \leftarrow \Phi - \Phi'\)
3. \(\psi \leftarrow \prod_{\phi \in \Phi'} \phi\)
4. \(\tau \leftarrow \max_Z \psi\)
5. return \((\Phi'' \cup \{\tau\}, \psi)\)

**Procedure** Traceback-MAP (  
\(\{\phi_{X_i} : i = 1, \ldots, k\}\)  
)

1. for \(i = k, \ldots, 1\)
   2. \(u_i \leftarrow (x^*_i, \ldots, x^*_k)\)\(\langle\text{Scope}[\phi_{X_i}] \setminus \{X_i\}\rangle\)
   3. \hspace{3pt} // The maximizing assignment to the variables eliminated after \(X_i\)
   4. \(x^*_i \leftarrow \arg \max_{x_i} \phi_{X_i}(x_i, u_i)\)
   5. \hspace{3pt} // \(x^*_i\) is chosen so as to maximize the corresponding entry in the factor, relative to the previous choices \(u_i\)
6. return \(x^*\)
Max-product belief propagation (for tree-structured MRFs)

- Same as sum-product BP except that the messages are now:

\[ m_{j \rightarrow i}(x_i) = \max_{x_j} \phi_j(x_j) \phi_{ij}(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{k \rightarrow j}(x_j) \]

- After passing all messages, can compute single node max-marginals,

\[ m_i(x_i) = \phi_i(x_i) \prod_{j \in N(i)} m_{j \rightarrow i}(x_i) \propto \max_{x_{V \setminus i}} p(x_{V \setminus i}, x_i) \]

- If the MAP assignment \( x^* \) is unique, can find it by locally decoding each of the single node max-marginals, i.e.

\[ x_i^* = \arg \max_{x_i} m_i(x_i) \]
Max-sum belief propagation (for tree-structured MRFs)

- Same as sum-product BP except that the messages are now:
  \[
  m_{j \rightarrow i}(x_i) = \max_{x_j} \theta_j(x_j) + \theta_{ij}(x_i, x_j) + \sum_{k \in N(j) \setminus i} m_{k \rightarrow j}(x_j)
  \]

- After passing all messages, can compute single node max-marginals,
  \[
  m_i(x_i) = \theta_i(x_i) + \sum_{j \in N(i)} m_{j \rightarrow i}(x_i) = \max_{x_V \setminus i} \log p(x_V \setminus i, x_i) + C
  \]

- If the MAP assignment \(x^*\) is unique, can find it by locally decoding each of the single node max-marginals, i.e.
  \[
  x_i^* = \arg \max_{x_i} m_i(x_i)
  \]

- Working in log-space prevents numerical underflow/overflow
Implementing sum-product in log-space

- Recall the sum-product messages:

\[ m_{j \rightarrow i}(x_i) = \sum_{x_j} \phi_j(x_j) \phi_{ij}(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{k \rightarrow j}(x_j) \]

- Making the messages in log-space corresponds to the update:

\[ m_{j \rightarrow i}(x_i) = \log \sum_{x_j} \exp(\theta_j(x_j) + \theta_{ij}(x_i, x_j) + \sum_{k \in N(j) \setminus i} m_{k \rightarrow j}(x_j)) \]

\[ = \log \sum_{x_j} \exp( T(x_i, x_j)), \]

where \( T(x_i, x_j) = \theta_j(x_j) + \theta_{ij}(x_i, x_j) + \sum_{k \in N(j) \setminus i} m_{k \rightarrow j}(x_j) \)

- Letting \( c_{x_i} = \max_{x_j} T(x_i, x_j) \), this is equivalent to

\[ = c_{x_i} + \log \sum_{x_j} \exp( T(x_i, x_j) - c_{x_i} ) , \]
MAP as a discrete optimization problem is

$$\arg \max_x \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

Very general discrete optimization problem – many hard combinatorial optimization problems can be written as this (e.g., 3-SAT)

Studied in operations research communities, theoretical computer science, AI (constraint satisfaction, weighted SAT), etc.

Very fast moving field, both for theory and heuristics