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Key Derivation

� Setting: application P needs m–bit secret key R

� Theory: pick uniformly random R ← {0,1}m

� Practice: have ”imperfect randomness” X ∈∈∈∈ {0,1}n

�physical sources, biometric data, partial key leakage, 

extracting from group elements (DH key exchange), …

� Need a “bridge”: key derivation function (KDF) 

h: {0,1}n → {0,1}m s.t. R = h(X) is “good” for P

�… only assuming X has “minimal entropy” k
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Dreaming Big

� Question 1: minimal entropy k enough to achieve 

“real security” ≈ “ideal security” for P?

�Dream 1: can get k  ≈ m (no “entropy loss”) !

� Question 2: best security degradation when k ≈ m ?

�Dream 2: (almost) no security degradation !

Question/Dream 3: can we ever hope to achieve 

comparable security without entropy loss ?!
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Formalizing the Problem

� Ideal Model: pick uniform R ← Um as the key

�Assume P is ε–secure against certain class of attackers A

� Real Model: use R = h(X) as the key, where

�min entropy(X) = HHHH∞∞∞∞(X) ≥ k (Pr[X = x]≤≤≤≤	2��, for all x)

�h: {0,1}n → {0,1}m is a (carefully designed) KDF

� Goal: prove that P is ε’–secure in the real model 
(against same/similar class of attackers A)

�Note: we design h but must work for any (n, k) source X

h X
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Formalizing the Problem

� Ideal Model: pick uniform R ← Um as the key

�Assume P is ε–secure against certain class of attackers A

� Real Model: use R = h(X) as the key, where

�min entropy(X) = HHHH∞∞∞∞(X) ≥ k (Pr[X = x]≤≤≤≤	2��, for all x)

�h: {0,1}n → {0,1}m is a (carefully designed) KDF

� Goal: prove that P is ε’–secure in the real model 
(against same/similar class of attackers A)

�Note: we design h but must work for any (n, k) source X

� What is the smallest ε’???
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Dreaming Big, formally

� Question 1: minimal k (call it k*) to get ε’ = 2ε?

�Dream 1: can get k* ≈ m (no “entropy loss”) !

� Question 2: smallest ε’ (call it ε*) when k = m ?

�Dream 2: can get ε* = O(ε) (no security degradation) !

Question/Dream 3: can we ever hope to achieve 

ε’ = O(ε) security when k ≈ m (no entropy loss) ?!
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Theory vs. Practice

� Practice: heuristic key derivation (h = SHA,MD5,…)

� common belief among practitioner: Dream 3 is TRUE !

� Amazing (heuristic) bound in “random oracle” model: 

ε’ ≤ ε +	ε⋅2m−k

� “implies” ε* = 2ε and k* = m at the same time!

� Despite lack of “practical” attacks, lots of (valid) 

criticism [DHK+04,Kra10,BDK+11]

� How close can we come in theory (and practice ☺)?



(Seeded) Extractors

� Tool: Randomness Extractor [NZ96].  

� Input: a weak secret X and a uniformly random seed S.

�Output: extracted key  R = Ext(X; S).

�R is uniformly random, even conditioned on the seed S.

(Ext(X; S), S) ≈ (Uniform, S)

� Many uses in complexity theory and cryptography.

� Well beyond key derivation (de randomization, etc.)

Ext
secret: X

seed:   S

extracted key:

R
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(Seeded) Extractors

� Tool: Randomness Extractor [NZ96].  

� Input: a weak secret X and a uniformly random seed S.

�Output: extracted key  R = Ext(X; S).

�R is uniformly random, even conditioned on the seed S.

(Ext(X; S), S) ≈ (Uniform, S)

� (k,δ) extractor: given any secret (n,k) source X, 
outputs m secret bits “δ–fooling” any distinguisher D:

| Pr[D(Ext(X; S), S) =1] – Pr[D(Um, S) =1] | ≤≤≤≤ δ

9

statistical distance
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Extractors as KDFs

� Lemma: for any ε secure P needing an m–bit key, 

(k,δ) extractor is a KDF yielding security ε’ ≤ ε + δ

� Note: use potentially restricted distinguishers D

�D = combination of attacker A and challenger C

�D outputs 1 ⇔ A “won” (e.g., forged signature) against C

� Best tradeoff between m, k & δ in a (k,δ) extractor?
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Leftover Hash Lemma

� LHL [HILL]: universal hash functions are (k,δ) extractors 

where δ = 2m−k

� Corollary: For any P,   ε’ ≤ ε + 2m−k.  In particular,

� k* = m + 2log(1/ε) ( entropy loss 2log(1/ε) enough )

� ε* = 1 ( no meaningful security when k = m � )

� RT bound [RT]: Any (k,δ) extractor ⇒ δ  ≥ 2m−k

�Above bounds are optimal (in this level of generality) �
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Theory vs. Practice: 

Application

P
KDF

h
Sec. Loss  

εεεε’ − εεεε
εεεε* 

(k=m)

Entr. Loss

k*− m
Provable?

Computat. 
Secure

SHA/RO ε	⋅	2m−k 2ε 0 no

ANY universal 
hash 2m−k 1 2log(1/ε) yes
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How Bad is 2log(1/ε) Entropy Loss?

� Many sources do not have “extra” 2log(1/ε) bits

�Biometrics, physical sources, DH keys on elliptic curves

�DH: lower “start up” min entropy improves efficiency

�AES based P: ε = 2 64, m = 128 ⇒ k* = 256 = 2m   �

� Heuristic extractors have “no entropy loss”: k* = m

� End Result: practitioners prefer heuristic key 

derivation to provable key derivation [DGH+,Kra]

� Can we provably reduce it, despite RT bound? 
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Options for Avoiding RT

� Route 1: restrict the power of distinguisher D or     

the class of (n, k) sources X

� Ex. 1: efficiently samplable sources  X [DGKM12]

� Ex. 2: computationally bounded D (pseudo randomness) 

� Ex. 3: implicitly restrict D by considering special classes of 

applications P [BDK+11,DRV12,DY13,DPW13]

� Route 2: do we need to derive statist. random R?

� Yes for OTP; No for many (most?) other applications P!
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Options for Avoiding RT

� Route 1: restrict the power of distinguisher D or     

the class of (n, k) sources X

� Ex. 1: efficiently samplable sources  X [DGKM12]

� Ex. 2: computationally bounded D (pseudo randomness) 

� Ex. 3: implicitly restrict D by considering special classes of 

applications P [BDK+11,DRV12,DY13,DPW13]

� Route 2: do we need to derive statist. random R?

� Yes for OTP; No for many (most?) other applications P!

Punch line: Difference between 
Extraction and Key Derivation !



16

Unpredictability Applications

� Adv(A) = Pr[A wins] = Pr[D out. 1] ∈ [0,1]

� signatures, MACs, one way functions, … (not encryption!)

� Case Study: key derivation for signature/MAC

�Assume: Pr[A forges sig with uniform key] ≤ ε (= negl)

�Hope: Pr[A forges sig with extracted key] ≤ ε’ (≈ ε)

� Key Insight: only care about distinguishers D which 

almost never succeed on uniform keys (Pr[.] ≤ ε) !

� E.g., small multiplicative security loss is OK now
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Unpredictability Extractors

� UExt is (k, ε, ε’) unpredictability extractor if

Pr[D(Um,S) =1] ≤≤≤≤ ε ⇒ Pr[D(UExt(X;S),S) =1] ≤≤≤≤ ε’ 

� Theorem [DPW13]: efficient (k, ε, ε’) UExt with

�Option 1: ε’ = 3ε and k = m + loglog(1/ε) + 4

�Option 2: ε’ = ε ⋅ (1 + log(1/ε)) and k = m 
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Plan of Attack

� Step1. Argue any unpredictability applic. P
works well with (only) a high entropy key R

� Of independent interest !

E.g., random R except first bit 0 ⇒ ε’ ≤ 2ε
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1: Security with Weak Keys

� Fix P and any “legal” A

� Let f(r) = [Advantage of A on key r] ∈ [0,1]

� Ideal Adv. ε ε ε ε = EEEE[f(U
m
)] = ∑

�

��
⋅	(�)

� Real Adv. εεεε’ = EEEE[f(R)] = ∑ �(�) ∙ 	(�)

� Lemma: If f(r) ≥ 0 and HHHH∞∞∞∞(R) ≥ �− �,

EEEE[ f(R) ] ≤≤≤≤ �
⋅ EEEE[ f(Um) ]

�Proof: ∑� � ⋅	 � 				≤≤≤≤	2�⋅max�	(�(�))⋅(∑
�

��
⋅	 � )

� Corollary: HHHH∞∞∞∞(R) ≥ � − � ⇒ ε’ ≤	2�⋅ε

Entropy 
deficiency
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Plan of Attack

� Step1. Argue any unpredictability applic. P
works well with (only) a high entropy key R

� Of independent interest !

� Step2. Build good condenser: relaxation of 
extractor producing high entropy
(but non,uniform!) derived key R = h(X)

Achieve extremely low 2d to compose with Step1!

Option 1: 2d = 2 and k = m + loglog(1/ε) + 4

Option 2: 2d = log(1/ε) and k = m 
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2: Randomness Condensers

� (k,d,ε) condenser: given (n, k) source X, outputs m
bits R “ε–close” to some (m, m−d) source Y : 

(Cond(X; S), S) ≈ε (Y, S)  and HHHH∞∞∞∞(Y | S) ≥ m – d

� Cond + Step1 ⇒ ε’ ≤	(1 + 2�)	⋅ ε

� Extractors: d = 0 but only for k ≥≥≥≥ m + 2log(1/ε) �

� Theorem [DPW13]: efficient (k,d,ε) condenser with

�Option 1:       d = 1          and k = m + loglog(1/ε) + 4

�Option 2: d = loglog(1/ε) and k = m 

random
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Balls and Bins

� Reduces to simple balls and bins game:

� Throw 2� balls into 2� bins

� Pick a random ball �

� Lose if ��� � > 2�	⋅	2���

� Goal: given d, m, ε ⇒ min k s.t. Pr[Lose] ≤ ε

� Easy calculation ⇒ parameters of theorem  
if throw balls totally independently

� Observation: log(1/ε) independence suffices!
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Balls and Bins

� Reduces to simple balls and bins game:

� Throw 2� balls into 2� bins

� Pick a random ball �

� Lose if ��� � > 2�	⋅	2���

� Goal: given d, m, ε ⇒ min k s.t. Pr[Lose] ≤ ε

� Easy calculation ⇒ parameters of theorem  
if throw balls totally independently

� Observation: log(1/ε) independence suffices!

improve |S| to O(n log k) 
using “gradual increase of 
independence” [CRSW11]
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Theory vs. Practice: 

Application

P
KDF

h
Sec. Loss  

εεεε’ − εεεε
εεεε* 

(k=m)

Entr. Loss

k*− m
Provable?

Computat. 
Secure

SHA/RO ε	⋅	2m−k 2ε 0 no

Unpredict.
log(1/ε) 
wise hash ε⋅log(1/ε)⋅2m−k ε⋅log(1/ε) loglog(1/ε) yes

ANY universal 
hash 2m−k 1 2log(1/ε) yes
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Theory vs. Practice: 

� Example: CBC MAC, ε = 2 64, m = 128

LHL: ε* = 1 and k* = 256

Now: ε* = 2 57.9 and k* = 138

Heuristic: ε* = 2 63 and k* = 128

Sometimes Dreams Come True!
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Indistinguishability Apps?

� Impossible for one time pad �

� Still, similar plan of attack:

�Step1. Identify sub,class of indist. applications P

which work well with (only) a high entropy key R

� Will use Renyi entropy instead of min entropy

� Weaker inequality, but still beat LHL

�Step2. Build good condensers for Renyi entropy
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Simple Inequality

� Col(R) = Pr[R1=R2] = ∑� � 2

� Renyi: HHHH
2222
(R) = −log Col(R) ≥ HHHH∞∞∞∞(R)

� Lemma: For all f and HHHH
2222
(R) ≥ m–d, 

|EEEE[f(R)] EEEE[f(Um)]|≤≤≤≤ � ⋅ EEEE[f(Um)2]

� Proof: LHS = 
�

��
⋅

� CS: ≤ 2�∑(� � −	
�

��
) ⋅⋅⋅⋅

�

��
∑	(�) …
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Why is it Nice?

� Lemma: For all f and HHHH
2222
(R) ≥ m – d, 

|EEEE[f(R)] EEEE[f(Um)]|≤≤≤≤ � ⋅ EEEE[f(Um)2]

�Works even if f(r) can be negative (indist. OK)

� First term does not depend on f (i.e., appl. P)

� Second term is for uniform distribution

� Nicer entropy for condenser: HHHH
2222
(R) ≥ HHHH∞∞∞∞(R)

�Question: |EEEE[f(Um)]|=ε, what is EEEE[f(Um)2]?
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Square Security

� Def: P is σ square secure (against a class of 
attackers A), if for any A ⇒ EEEE[fA(Um)2] ≤ σ

� Lemma: If P is ε secure and σ square secure, 

then P is ε’ secure in “(m-d) real model”, 

where ε’ ≤ ε +	 σ⋅(2� − 1)

� Motivates studying square security!

� Question: how does square security σ relate 
to regular security ε?

Malevich
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Square Friendly Applications

� P is square friendly* (SQF) if σ ≤ ε

� Example: all unpredictability applications P

� f∈[0,1] ⇒ σ = EEEE[f2] ≤ EEEE[f] = ε

� Non SQF applications: OTP, PRF, PRP, PRG �

� [BDK+11,DY13]: many natural indistinguishability
applications are square friendly !

� CPA/CCA encryption, weak PRFs, q wise 
independent hash functions, …

Hermitage State 
Museum

* Allow for small (say, factor of 2) degradation in the efficiency of the attacker A
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Indistinguishability Apps?

� Impossible for one time pad �

� Still, similar plan of attack:

�Step1. Identify sub,class of indist. applications P

which work well with (only) a high entropy key R

� Will use Renyi entropy instead of min entropy

� Weaker inequality, but still beat LHL

�Step2. Build good condensers for Renyi entropy
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Universal Hash Functions

� Universal Hash Family HHHH = { h: {0,1}n → {0,1}m }:

∀ x ≠ x’,  Prh[ h(x) = h(x’) ] = 
�

��

� LHL’. Universal family HHHH defines (k,d,0) condenser
2222

with m–bit output, where	2� − 1 = 	2���

� Pr[h(X) = h(X’)] ≤ Pr[X = X’] + Pr[h(X) = h(X’) & X ≠≠≠≠ X’]

≤      2−! + 2−"

� Corollary: If P is ε secure and square friendly, then 

universal hashing yields KDF with ε’ ≤ ε + ε	⋅2���

= 					2d −−−− "
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Theory vs. Practice: 

Application

P
KDF

h
Sec. Loss  

εεεε’ − εεεε
εεεε* 

(k=m)

Entr. Loss

k*− m
Provable?

Computat. 
Secure

SHA/RO ε	⋅	2m−k 2ε 0 no

Unpredict.
log(1/ε) 
wise hash ε⋅log(1/ε)⋅2m−k ε⋅log(1/ε) loglog(1/ε) yes

Square 
Friendly

universal 
hash ε	⋅2m−k ε	 log(1/ε) yes

ANY universal 
hash 2m−k 1 2log(1/ε) yes
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Theory vs. Practice: 

� Example: CBC Encryption, ε = 2 64, m = 128

LHL: ε* = 1 and k* = 256

LHL’: ε* = 2 32 and k* = 192

Heuristic: ε* = 2 63 and k* = 128
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Options for Avoiding RT

� Route 1: restrict the power of distinguisher D or     

the class of (n, k) sources X

� Ex. 1: efficiently samplable sources  X [DGKM12]

� Ex. 2: computationally bounded D (pseudo randomness) 

� Ex. 3: implicitly restrict D by considering special classes of 

applications P [BDK+11,DRV12,DY13,DPW13]

� Route 2: do we need to derive statist. random R?

� Yes for OTP; No for many (most?) other applications P!

����

����
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Efficient Samplability

� Theorem [DPW13]: efficient samplability of X
does not help to improve entropy loss below

� 2log(1/ε) for all applications P (RT bound)

�Affirmatively resolves “SRT conjecture” from [DGKM12]

� log(1/ε) for all square friendly applications P

� loglog(1/ε) for all unpredictability applications P

� Idea: bounded independent (n, k) source X is 
enough to fool any extractor/condenser/…
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Options for Avoiding RT

� Route 1: restrict the power of distinguisher D or     

the class of (n, k) sources X

� Ex. 1: efficiently samplable sources  X [DGKM12]

� Ex. 2: computationally bounded D (pseudo randomness) 

� Ex. 3: implicitly restrict D by considering special classes of 

applications P [BDK+11,DRV12,DY13,DPW13]

� Route 2: do we need to derive statist. random R?

� Yes for OTP; No for many (most?) other applications P!

����

����

����
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Minimal Assumptions

� Theorem [DGKM12]:              SRT conjecture ⇒
efficient Ext beating RT bound for all 
computationally bounded D ⇒ OWFs exist

� How far can we go with OWFs/PRGs?

� Extract then Expand [Kra10]: Beats RT bound, 
but only for medium to high values of k      �

� Expand then Extract (aka “dense model thm”): 
horrible run time degradation in reduction �

,DPW13]:
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Computational Extractor

� Idea: Design square friendly key derivation

�Good KDF for any computationally secure P

� Solution: Use weak PRF 	: set # = 	%(&)

� wPRF: secure for random (but public) inputs

� Note: 	 only needs security against 2 queries!

� [DY13]: Can easily build using one PRG call: 
“expand then extract w/o time degradation”!

� New alternative to “dense model” theorem
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Theory vs. Practice: 

Application

P
KDF

h
Sec. Loss  

εεεε’ − εεεε
εεεε* 

(k=m)

Entr. Loss

k*− m
Provable?

Computat. 
Secure

SHA/RO ε	⋅	2m−k 2ε 0 no

Unpredict.
log(1/ε) 
wise hash ε⋅log(1/ε)⋅2m−k ε⋅log(1/ε) loglog(1/ε) yes

Square 
Friendly

universal 
hash ε	⋅2m−k ε	 log(1/ε) yes

Computat. 
Secure

PRG + 

pairwise 
hash

εPRG⋅2
m−k ε+ εPRG log(εPRG/ε2) yes*

ANY universal 
hash 2m−k 1 2log(1/ε) yes

* Under standard and minimal cryptographic assumptions (OWFs)



Summary

� Difference between extraction and KDF

� loglog(1/ε) loss for all unpredictability apps

� log(1/ε) loss for all square friendly apps   

(+ motivation to study “square security”)

� Efficient samplability does not help               �

� Good computational KDFs require OWFs �

� Main challenge: better computational KDFs to close 

theory vs practice gap even further



Questions?
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One Time Pad

� Expect to fail even for min entropy m – 1

� A(c) = c ⇒ f(0) = ½, f(1) =  ½ ⇒ ε = 0, σ = ¼

� Similar problem for PRGs/PRFs/PRPs �
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CPA Security of Encryption

� Probabilistic Enc/Dec: c ← Enc
r
(m) ; m = Dec

r
(c)

� Define f(r) = '�(( A, r ) = Pr + = +′ −
�

�
∈ [−

�

�
,
�

�
]

� Leads to (T, q, ε) security/(T, q, σ) square security

Charlie Alice
c1 ← Enc

r
(m1)

Try guessing b

m1r ← Um

C
Pick b ← {0,1}

Set C ← Enc
r
(M

b
)

cq ← Enc
r
(mq-1)

mq-1

…

M0, M1

b’

(run time at most T)
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CPA Security of Encryption

� Probabilistic Enc/Dec: c ← Enc
r
(m) ; m = Dec

r
(c)

� Lemma: if Enc is (2T, 2q, 2ε ) secure,  then 

Enc is (  T,  q,  ε ) square secure (“σ ≈ ε”)

Charlie Alice
c1 ← Enc

r
(m1)

Try guessing b

m1r ← Um

C
Pick b ← {0,1}

Set C ← Enc
r
(M

b
)

cq ← Enc
r
(mq-1)

mq-1

…

M0, M1

b’

(run time at most T)
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Square Security of CPA

� Insight: for any A making q encryption queries, 
there exists B making 2q encryption queried s.t.
∀r '�(( B, r ) = 	2'�(( A, r )2 ≥ 0    (**)

� Here’s B:

1. Run A once against simulated challenger C

� Choose selection bit yourself ⇒ can check if A “won”

� Spend q queries to simulate both A and C

2. Run A again against real challenger C (+ q queries)

3. If A lost in Step 1., reverse A’s guess in Step 2.

� Intuition: Step 3. ensures B has advantage ≥ 0
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Square Security of CPA

� Insight: for any A making q encryption queries, 
there exists B making 2q encryption queried s.t.
∀r '�(( B, r ) = 	2'�(( A, r )2 ≥ 0    (**)

� Here’s B:

1. Run A once against simulated challenger C

2. Run A again against real challenger C

3. If A lost in Step 1., reverse A’s guess in Step 2.

� Pr[B wins] =	Pr[A wins twice] + 	Pr[A looses twice]

= 
�

�
	± ε

�
+

�

�
	∓ ε

�
= 

�

�
+ 2ε�
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Square Security of CPA

� Insight: for any A making q encryption queries, 
there exists B making 2q encryption queried s.t.
∀r '�(( B, r ) = 	2'�(( A, r )2 ≥ 0    (**)

� Hence, σ =	EEEE['�(( A, r )2] ≤ ½ EEEE['�(( B, r )] ≤ ε

� Corollary: if Enc is (2T, 2q, 2ε) secure, then            

Enc is (T, q, ε⋅2�) secure in the (m-d) real model

� [BG09]: ((1+	44)T, (1+	44)q, ε) ⇒ (T, q,O(
�

6
∙ ε⋅2�))

� Same argument works for weak PRFs, greatly

simplifying [Pie09]
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New Dense Model Theorem

� How to build PRG with weak seed?

� Naïve: 7(8) not pseudorandom, even if HHHH
2222
(X) = m – 1

� Dense Model Theorem: if HHHH∞∞∞∞(X) ≥ m – d, then 

7(8) has “pseudo entropy” 2m–d ≫ m 

� Implies 7 Ext(7 8 ; &) is psedorandom given &

� Problem: bad degradation in run time =	

� Our Version: if HHHH
2222
(X) ≥ m – d, then 7 PIH@(%)(&)

is psedorandom given &

� No degradation in =, security ε⋅2� (vs. ε⋅2�) 

I had my people and your people 
crushed together to create this 

one superdense person

independent  hash
Pairwise 

independent  hash

wprf
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New Dense Model Theorem

� How to build PRG with weak seed?

� Naïve: 7(8) not pseudorandom, even if HHHH
2222
(X) = m – 1

� Dense Model Theorem: if HHHH∞∞∞∞(X) ≥ m – d, then 

7(8) has “pseudo entropy” 2m–d ≫ m 

� Implies 7 Ext(7 8 ; &) is psedorandom given &

� Problem: bad degradation in run time =	

� Our Version: if HHHH
2222
(X) ≥ m – d, then 7 PIH@(%)(&)

is psedorandom given &

� No degradation in =, security ε⋅2� (vs. ε⋅2�) 

I had my people and your people 
crushed together to create this 

one superdense person

independent  hash
Pairwise 

independent  hash

Leads to same concrete instantiation:
pairwise independent hash is a good extractor!

Open: a single unified proof, giving a smooth 
transition between these two “extreme” bounds


