

Based on joint works with B. Barak, H. Krawczyk, O. Pereira, K. Pietrzak, F-X. Standaert, D. Wichs and Y. Yu

Key Derivation

- Setting: application P needs m—bit secret key R
 Theory: pick uniformly random R ← {0,1}^m
 Practice: have "imperfect randomness" X ∈ {0,1}ⁿ
 physical sources, biometric data, partial key leakage,
 - extracting from group elements (DH key exchange), ...
- □ Need a "bridge": key derivation function (KDF) $h: \{0,1\}^n \rightarrow \{0,1\}^m$ s.t. R = h(X) is "good" for P
 - $\blacksquare \dots \underline{only}$ assuming X has "minimal entropy" k

Dreaming Big

Question 1: minimal entropy k enough to achieve "real security" ≈ "ideal security" for P?

Dream 1: can get $k \approx m$ (no "entropy loss")!

Question/Dream 3: can we ever hope to achieve comparable security without entropy loss ?!

□ Question 2: best security degradation when $k \approx m$? □ Dream 2: (almost) no security degradation !

DNote: we design h but must work for any (n, k)-source X

Formalizing the Problem

- \Box <u>Ideal Model</u>: pick uniform $R \leftarrow U_m$ as the key
 - Assume P is E-secure against certain class of attackers A
- □ <u>Real Model</u>: use R = h(X) as the key, where □ min-entropy(X) = $\mathbb{H}_{\infty}(X) \ge k$ ($\Pr[X = x] \le 2^{-k}$, for all x) □ $h: \{0,1\}^n \to \{0,1\}^m$ is a (carefully designed) KDF
- □ <u>Goal</u>: prove that P is E'<u>-secure</u> in the real model (against same/similar class of attackers A)
 - **D** Note: we design h but must work for any (n, k)-source X
- What is the smallest E'???

□ Question 1: minimal k (call it k^*) to get $\varepsilon' = 2\varepsilon$?

□ Dream 1: can get $k^* \approx m$ (no "entropy loss") !

<u>Question/Dream 3</u>: can we ever hope to achieve $\epsilon' = O(\epsilon)$ security when $k \approx m$ (no entropy loss) ?!

Question 2: smallest ε' (call it ε^*) when k = m?

Dream 2: can get $\varepsilon^* = O(\varepsilon)$ (no security degradation) !

Theory vs. Practice

 $\square \underline{Practice}: heuristic key derivation (h = SHA, MD5, ...)$

common belief among practitioner: Dream 3 is TRUE !

□ Amazing (heuristic) bound in "random oracle" model: $\varepsilon' \le \varepsilon + \varepsilon \cdot 2^{m-k}$

• "implies" $\varepsilon^* = 2\varepsilon$ and $k^* = m$ at the same time!

Despite lack of "practical" attacks, lots of (valid) criticism [DHK⁺04,Kra10,BDK⁺11]

 \Box How close can we come in theory (and practice \bigcirc)?

Extractors

- <u>Tool</u>: Randomness Extractor [NZ96].
 - Input: a weak secret X and a uniformly random seed S.
 - Output: extracted key R = Ext(X; S).
 - $\square R$ is uniformly random, even conditioned on the seed S.

(Ext(X; S), S) \approx (Uniform, S)

Many uses in complexity theory and cryptography.

Well beyond key derivation (de-randomization, etc.)

(Seeded) Extractors

- <u>Tool</u>: Randomness Extractor [NZ96].
 - Input: a weak secret X and a uniformly random seed S.
 - Output: extracted key R = Ext(X; S).
 - $\square R$ is uniformly random, even conditioned on the seed S.

(Ext(X; S), S) \approx (Uniform, S)

 \Box (k, δ) -extractor: given any secret (n, k)-source X, outputs *m* secret bits " δ -fooling" any distinguisher **D**:

 $|\Pr[\mathbf{D}(\mathbf{Ext}(X; S), S) = 1] - \Pr[\mathbf{D}(U_m, S) = 1]| \le \delta$

Extractors as KDFs

- □ Lemma: for any ε-secure P needing an *m*—bit key, (k, δ)-extractor is a KDF yielding security ε' ≤ ε + δ
- Note: use potentially restricted distinguishers D
 - $\square D =$ combination of attacker A and challenger C
 - $\square D$ outputs 1 $\Leftrightarrow A$ "won" (e.g., forged signature) against C
- □ Best tradeoff between *m*, *k* & δ in a (*k*, δ)-extractor?

Leftover)# Leftover Hash Lemma \Box <u>LHL</u> [HILL]: universal hash functions are (k, δ) -extractors where $\delta = \sqrt{2^{m-k}}$ \Box Corollary: For any P, $\varepsilon' \leq \varepsilon + \sqrt{2^{m-k}}$. In particular, $\square k^* = m + 2\log(1/\epsilon) \quad (\text{ entropy loss } 2\log(1/\epsilon) \text{ enough })$ (no meaningful security when $k = m \otimes$) \Box <u>RT-bound</u> [RT]: Any (k, δ) -extractor $\Rightarrow \delta \geq \sqrt{2^{m-k}}$

Above bounds are optimal (in this level of generality)

12	vs. P	ractice:			
Application P	KDF h	Sec. Loss E' – E	E * (<i>k=m</i>)	Entr. Loss k^*-m	Provable?
Computat. Secure	SHA/RO	$\mathbf{\epsilon} \cdot 2^{m-k}$	2ε	0	no
ANY	universal hash	$\sqrt{2^{m-k}}$	1	$2\log(1/\epsilon)$	yes

How Bad is $2\log(1/\epsilon)$ Entropy Loss?

- Many sources do not have "extra" 2log(1/ɛ) bits
 Biometrics, physical sources, DH keys on elliptic curves
 DH: lower "start-up" min-entropy improves efficiency
 AES-based P: ɛ = 2⁻⁶⁴, m = 128 ⇒ k* = 256 = 2m
 Heuristic extractors have "no entropy loss": k* = m
- End Result: practitioners prefer heuristic key derivation to provable key derivation [DGH⁺,Kra]
- □ Can we **provably** reduce it, despite RT-bound?

Options for Avoiding RT

- Route 1: restrict the power of distinguisher D or the class of (n, k)-sources X
 - **\square** Ex. 1: efficiently samplable sources X [DGKM12]
 - Ex. 2: computationally bounded D (pseudo-randomness)
 - Ex. 3: implicitly restrict D by considering special classes of applications P [BDK⁺11,DRV12,DY13,DPW13]
- Route 2: do we need to derive statist. random R?
 - Yes for OTP; No for many (most?) other applications P!

Options for Avoiding RT

<u>Punch line</u>: Difference between Extraction and Key Derivation !

Ex. 3: implicitly restrict D by considering special classes of applications P [BDK⁺11,DRV12,DY13,DPW13]

Route 2: do we need to derive statist. random R?

Yes for OTP; No for many (most?) other applications P!

Unpredictability Applications

 $\Box \operatorname{Adv}(\mathbf{A}) = \Pr[\mathbf{A} \text{ wins}] = \Pr[\mathbf{D} \text{ out. } 1] \in [0,1]$

reduction rights obtainable from v CartoonStock com

signatures, MACs, one-way functions, ... (not encryption!)

Case Study: key derivation for signature/MAC

□ <u>Assume</u>: $Pr[A \text{ forges sig with uniform key}] \le \varepsilon$ (= negl)

□ <u>Hope</u>: $Pr[A \text{ forges sig with extracted key}] \le \varepsilon' (≈ \varepsilon)$

□ <u>Key Insight</u>: only care about distinguishers **D** which almost never succeed on uniform keys ($\Pr[.] \le \varepsilon$) !

E.g., small multiplicative security loss is OK now

Unpredictability Extractors

□ **UExt** is $(k, \varepsilon, \varepsilon')$ -unpredictability extractor if $\Pr[D(U_m, S) = 1] \le \varepsilon \Rightarrow \Pr[D(UExt(X;S), S) = 1] \le \varepsilon'$

Theorem [DPW13]: efficient (k, ϵ , ϵ ')-UExt with

Option 1: $\epsilon' = 3\epsilon$ and $k = m + \log\log(1/\epsilon) + 4$

Option 2: $\varepsilon' = \varepsilon \cdot (1 + \log(1/\varepsilon))$ and k = m

Step1. Argue any unpredictability applic. P works well with (only) a high-entropy key R
 Of independent interest !

E.g., random R except first bit $0 \Rightarrow \epsilon' \leq 2\epsilon$

1: Security with Weak Keys

Entropy Fix P and any "legal" A deficiency $\Box \text{ Let } f(r) = [\text{Advantage of } A \text{ on } \text{key}]$ ∈ [0,1] $\Box \text{ Ideal Adv. } \varepsilon = \mathbb{E}[f(U_m)] = \sum_r \frac{1}{2m} \cdot f(v)$ \Box Real Adv. $\varepsilon' = \mathbb{E}[f(R)] = \sum_{r} p(r) \cdot f(r)$ $\Box \underline{\mathsf{Lemma}}: \text{ If } \mathsf{f}(r) \geq \mathsf{O} \text{ and } \mathbb{H}_{\infty}(R) \geq m - d,$ $\mathbb{E}[f(R)] \leq 2^{d} \cdot \mathbb{E}[f(U_m)]$ ■ Proof: $\sum p(r) \cdot f(r) \le 2^m \cdot \max_r(p(r)) \cdot (\sum \frac{1}{2^m} \cdot f(r))$ $\Box \operatorname{\underline{Corollary}}: \mathbb{H}_{\infty}(R) \geq m - d \Longrightarrow \frac{\varepsilon' \leq 2^d \cdot \varepsilon}{\varepsilon}$

Plan of Attack

Achieve extremely low 2^d to compose with **Step1**! **Option 1:** $2^d = 2$ and $k = m + \log\log(1/\epsilon) + 4$ **Option 2:** $2^d = \log(1/\epsilon)$ and k = m

Step2. Build good condenser: relaxation of extractor producing high-entropy (but non-uniform!) derived key R = h(X)

 \Box (k,d,E)-condenser: given (n, k)-source X, outputs m bits R " \mathcal{E} -close" to some (m, m-d)-source Y: $(Cond(X; S), S) \approx_{\epsilon} (Y, S)$ and $\mathbb{H}_{\infty}(Y \mid S) \geq m - d$ **Cond** + Step1 \Rightarrow $\epsilon' \leq (1 + 2^d) \cdot \epsilon$ $\Box \text{ Extractors: } d = 0 \text{ but only for } k \ge m + 2\log(1/\epsilon)$ $(\mathbf{\dot{z}})$ \square **Theorem** [DPW13]: efficient (k, d, ε) -condenser with **Option 1:** d = 1 and $k = m + \log\log(1/\epsilon) + 4$ **Option 2:** $d = \log\log(1/\epsilon)$ and k = m

Balls and Bins

Reduces to simple balls-and-bins game:

- **Throw 2^k balls into 2^m bins**
- **D** Pick a random ball $\boldsymbol{\chi}$
- Lose if $|Bin(x)| > 2^d \cdot 2^{k-m}$
- □ **<u>Goal</u>**: given $d, m, \varepsilon \Rightarrow \min k$ s.t. $\Pr[Lose] \le \varepsilon$
- Easy calculation ⇒ parameters of theorem if throw balls totally independently
- □ <u>Observation</u>: <u>log(1/ε)</u>-independence suffices!

Balls and Bins

improve |S| to $O(n \log k)$

using "gradual increase of

independence" [CRSW11]

Reduces to simple balls-and-bins game:

- **Throw 2^k balls into 2^m b**
- Pick a random ball x
- Lose if $|Bin(x)| > 2^d \cdot 2^{k-\eta}$
- $\Box \underline{Goal}: \text{ given } d, m, \mathfrak{E} \Longrightarrow \min k / Pr[Lose] \le \mathfrak{E}$
- Easy calculation ⇒ paramet s of theorem if throw balls totally independently
- $\Box \underline{Observation}: \log(1/\epsilon) independence suffices!$

Theory vs. Practice:

Application P	к D F h	Sec. Loss E' — E	E * (<i>k=m</i>)	Entr. Loss $k^*\!-m$	Provable?
Computat. Secure	SHA/RO	$\mathbf{\epsilon} \cdot 2^{m-k}$	2ε	0	no
Unpredict.	log(1/E)- wise hash	$\varepsilon \cdot \log(1/\varepsilon) \cdot 2^{m-k} \varepsilon \cdot \log(1/\varepsilon)$		loglog(1/ɛ)	yes
ANY	universal hash	$\sqrt{2^{m-k}}$	1	$2\log(1/\epsilon)$	yes

24

$$\Box \underline{\text{Example: CBC-MAC, } \mathbf{E} = 2^{-64}, m = 128$$

$$LHL: \quad \mathbf{E}^* = 1 \quad \text{and} \quad k^* = 256$$

$$Now: \quad \mathbf{E}^* = 2^{-57.9} \text{ and} \quad k^* = 138$$

$$Heuristic: \mathbf{E}^* = 2^{-63} \quad \text{and} \quad k^* = 128$$

Sometimes Dreams Come True!

Step2. Build good condensers for Renyi entropy

Simple Inequality

27

□ Col(R) = Pr[R₁=R₂] =
$$\sum p(r)^2$$

□ Renyi: $\mathbb{H}_2(R) = -\log \operatorname{Col}(R) \ge \mathbb{H}_{\infty}(R)$
□ Lemma: For all f and $\mathbb{H}_2(R) \ge m-d$,
| E[f(R)]-E[f(U_m)] | $\le \sqrt{2^d-1} \cdot \sqrt{\mathbb{E}[f(U_m)^2]}$
□ Proof: LHS = $\left|\sum_r (p(r) - \frac{1}{2^m}) \cdot f(r)\right|$
□ CS: $\le \sqrt{2^m \sum (p(r) - \frac{1}{2^m})^2} \cdot \sqrt{\frac{1}{2^m} \sum f(r)^2}$...

Why is it Nice?

$\Box \underline{\mathsf{Lemma}}: \text{ For all f and } \mathbb{H}_2(R) \geq m - d,$

- $|\mathbb{E}[\mathbf{f}(R)] \mathbb{E}[\mathbf{f}(U_m)]| \leq \sqrt{2^d 1} \cdot \sqrt{\mathbb{E}[\mathbf{f}(U_m)^2]}$
- Works even if f(r) can be negative (indist. OK)
- First term does not depend on f (i.e., appl. P)
- Second term is for uniform distribution
- Nicer entropy for condenser: $\mathbb{H}_2(R) \ge \mathbb{H}_{\infty}(R)$

Question: $|\mathbb{E}[f(U_m)]| = \varepsilon$, what is $\mathbb{E}[f(U_m)^2]$?

Malevich

Square Security

Def: P is σ-square secure (against a class of attackers A), if for any A ⇒ E[f_A(U_m)²] ≤ σ
 Lemma: If P is ε-secure and σ-square secure, then P is ε'-secure in "(m-d)-real model", where ε' ≤ ε + √σ·(2^d - 1)

- Motivates studying square security!
- Question: how does square security σ relate to regular security ε?

Square-Friendly Applications

- P is square-friendly* (SQF) if σ ≤ ε
 Example: all unpredictability applications P
 f∈ [0,1] ⇒ σ = E[f²] ≤ E[f] = ε
 Non-SQF applications: OTP, PRF, PRP, PRG ☺
 [BDK+11,DY13]: many natural indistinguishability
 - applications are square-friendly !
- CPA/CCA-encryption, weak PRFs, q-wise independent hash functions, ...
- * Allow for small (say, factor of 2) degradation in the efficiency of the attacker A

Step1. Identify *sub-class* of indist. applications P which work well with (*only*) a high-entropy key *R*

- Will use Renyi entropy instead of min-entropy
- Weaker inequality, but still beat LHL

Step2. Build good condensers for Renyi entropy

Universal Hash Functions

□ Universal Hash Family $\Re = \{h: \{0,1\}^n \rightarrow \{0,1\}^m\}$: $\forall x \neq x', \Pr_h[h(x) = h(x')] = \frac{1}{2^m}$ □ LHL'. Universal family \Re defines (k,d,0)-condenser₂ with *m*-bit output, where $2^d - 1 = 2^{m-k}$ □ $\Pr[h(X) = h(X')] \leq \Pr[X = X'] + \Pr[h(X) = h(X') \& X \neq X']$ $= 2^{d-m} \leq 2^{-k} + 2^{-m}$

□ <u>Corollary</u>: If P is ε -secure and square-friendly, then universal hashing yields KDF with $\varepsilon' \le \varepsilon + \sqrt{\varepsilon \cdot 2^{m-k}}$

Theory vs. Practice:

33

Application P	к D F h	Sec. Loss E' — E	E * (<i>k=m</i>)	Entr. Loss $k^*\!-m$	Provable?
Computat. Secure	SHA/RO	$\varepsilon \cdot 2^{m-k}$	2ε	0	no
Unpredict.	log(1/E)- wise hash	$\varepsilon \cdot \log(1/\varepsilon) \cdot 2^{m-k}$	$\varepsilon \cdot \log(1/\epsilon)$	loglog(1/E)	yes
Square- Friendly	universal hash	$\sqrt{\varepsilon \cdot 2^{m-k}}$	$\sqrt{\epsilon}$	log(1 / ɛ)	yes
ANY	universal hash	$\sqrt{2^{m-k}}$	1	$2\log(1/\epsilon)$	yes

□ Example: CBC Encryption,
$$\mathcal{E} = 2^{-64}$$
, $m = 128$
LHL: $\mathcal{E}^* = 1$ and $k^* = 256$
LHL': $\mathcal{E}^* = 2^{-32}$ and $k^* = 192$
Heuristic: $\mathcal{E}^* = 2^{-63}$ and $k^* = 128$

Options for Avoiding RT

Route 1: restrict the power of distinguisher D or the class of (n, k)-sources X

Ex. 1: efficiently samplable sources X [DGKM12]

- Ex. 2: computationally bounded D (pseudo-randomness)
- Ex. 3: implicitly restrict D by considering special classes of applications P [BDK⁺11,DRV12,DY13,DPW13]

<u>Route 2</u>: do we need to derive statist. random R?
 Yes for OTP; No for many (most?) other applications P!

Efficient Samplability

- □ **Theorem** [DPW13]: efficient samplability of X does <u>not</u> help to improve entropy loss below
 - 2log(1/ɛ) for all applications P (RT-bound)
 - Affirmatively resolves "SRT-conjecture" from [DGKM12]
 - $\Box \log(1/\epsilon)$ for all square-friendly applications P
 - \Box loglog(1/ ϵ) for all unpredictability applications P
- Idea: bounded independent (n, k)-source X is enough to fool any extractor/condenser/...

Options for Avoiding RT

Route 1: restrict the power of distinguisher D or the class of (n, k)-sources X

 \checkmark **Ex. 1: efficiently samplable sources** X [DGKM12]

Ex. 2: computationally bounded D (pseudo-randomness)

Ex. 3: implicitly restrict D by considering special classes of applications P [BDK⁺11,DRV12,DY13,DPW13]

<u>Route 2</u>: do we need to derive statist. random R?
 Yes for OTP; No for many (most?) other applications P!

□ **Theorem** [DGKM12 ,DPW13]: -SRT-conjecture = efficient Ext beating RT-bound for all computationally bounded $D \Rightarrow OWFs$ exist □ How far can we go with OWFs/PRGs? Extract-then-Expand [Kra10]: Beats RT-bound, but only for medium-to-high values of k(;;) Expand-then-Extract (aka "dense-model thm"): horrible run-time degradation in reduction 😕

Idea: Design square-friendly key derivation Good KDF for any computationally secure P \Box <u>Solution</u>: Use weak PRF f: set $R = f_X(S)$ wPRF: secure for <u>random</u> (but public) inputs Note: f only needs security against 2 queries! [DY13]: Can easily build using one PRG call: "expand-then-extract w/o time degradation"! New alternative to "dense model" theorem

Theory vs. Practice:

40

Application P	kdf h	Sec. Loss E' — E	E * (<i>k=m</i>)	Entr. Loss $k^*\!-\!m$	Provable?
Computat. Secure	SHA/RO	$\varepsilon \cdot 2^{m-k}$	2ε	0	no
Unpredict.	log(1/E)- wise hash	$\varepsilon \cdot \log(1/\varepsilon) \cdot 2^{m-k}$	$\epsilon \cdot \log(1/\epsilon)$	$loglog(1/\epsilon)$	yes
Square- Friendly	universal hash	$\sqrt{\epsilon \cdot 2^{m-k}}$	$\sqrt{\epsilon}$	$log(1/\epsilon)$	yes
Computat. Secure	PRG + pairwise hash	$\sqrt{\epsilon_{PRG}} \cdot 2^{m-k}$	$\varepsilon + \sqrt{\varepsilon_{PRG}}$	$\log(\epsilon_{PRG}/\epsilon^2)$	yes*
ANY	universal hash	$\sqrt{2^{m-k}}$	1	$2\log(1/\epsilon)$	yes

* Under standard and minimal cryptographic assumptions (OWFs)

Summary

- Difference between extraction and KDF
 - □ $loglog(1/\epsilon)$ loss for all unpredictability apps

Summari

 $(\mathbf{\dot{z}})$

- □ log(1/ε) loss for all square-friendly apps
 - (+ motivation to study "square security")
- Efficient samplability does not help
- □ Good computational KDFs require OWFs 🔅
- Main challenge: better computational KDFs to close theory-vs-practice gap even further

Questions?

 \Box Expect to fail even for min-entropy m-1

• A(c) = c \Rightarrow f(0) = $\frac{1}{2}$, f(1) = $-\frac{1}{2}$ \Rightarrow ϵ = 0, σ = $\frac{1}{4}$

□ Similar problem for PRGs/PRFs/PRPs ⊗

CPA Security of Encryption

45

$\square Probabilistic Enc/Dec: c \leftarrow Enc_r(m); m = Dec_r(c)$

□ Define $f(r) = Adv(A, r) = Pr[b = b'] - \frac{1}{2} \in [-\frac{1}{2}, \frac{1}{2}]$ □ Leads to (T, q, ε)-security/(T, q, σ)-square security

CPA Security of Encryption

46

 $\square Probabilistic Enc/Dec: c \leftarrow Enc_r(m); m = Dec_r(c)$

□ Lemma: if Enc is (27, 2q, 2ε)-secure, then Enc is (7, q, ε)-square secure (" $\sigma \approx \epsilon$ ")

Square Security of CPA

- Insight: for any A making q encryption queries, there exists B making 2q encryption queried s.t.
 ∀r Adv(B,r) = 2Adv(A,r)² ≥ 0 (**)
 Here's B:
 - 1. Run A once against simulated challenger C
 - Choose selection bit yourself \Rightarrow can check if <u>A</u> "won"
 - Spend q queries to simulate both A and C
 - 2. Run A again against real challenger C (+ q queries)
 - 3. If A lost in Step 1., reverse A's guess in Step 2.
 - Intuition: Step 3. ensures B has advantage ≥ 0

Square Security of CPA

- Insight: for any A making q encryption queries, there exists B making 2q encryption queried s.t.
 ∀r Adv(B,r) = 2Adv(A,r)² ≥ 0 (**)
 Here's B:
 - 1. Run A once against simulated challenger C
 - 2. Run A again against real challenger C
- 3. If A lost in Step 1., reverse A's guess in Step 2. □ Pr[B wins] = Pr[A wins twice] + Pr[A looses twice]

$$= \left(\frac{1}{2} \pm \varepsilon\right)^2 + \left(\frac{1}{2} \mp \varepsilon\right)^2 = \frac{1}{2} + 2\varepsilon^2$$

Square Security of CPA

- Insight: for any A making q encryption queries, there exists **B** making **2**q encryption queried s.t. $Adv(B, r) = 2Adv(A, r)^{2} \ge 0$ (**) $\forall r$ • Hence, $\sigma = \mathbb{E}[Adv(A, r)^2] \leq \frac{1}{2} \mathbb{E}[Adv(B, r)] \leq \varepsilon$ \Box **Corollary**: if Enc is (27, 2q, 2E)-secure, then Enc is (T, q, $\sqrt{\epsilon \cdot 2^d}$)-secure in the (*m*-*d*)-real model $\square [BG09]: ((1+c^4)T, (1+c^4)q, \varepsilon) \Rightarrow (T, q, O(\frac{1}{c} \cdot \sqrt{\varepsilon \cdot 2^d}))$
- Same argument works for weak PRFs, greatly simplifying [Pie09]

New Dense Model Theorem

l had my people and your people crushed together to create this one superdense person

- How to build PRG with weak seed?
 - Naïve: G(X) not pseudorandom, even if $\mathbb{H}_2(X) = m 1$
- □ <u>Dense Model Theorem</u>: if $\mathbb{H}_{\infty}(X) \ge m d$, then G(X) has "pseudo-entropy" $2m - d \gg m$
 - □ Implies G(Ext(G(X); S)) is psedorandom given S
 - Problem: bad degradation in run-time t

Pairwise independent hash

□ <u>Our Version</u>: if $\mathbb{H}_2(X) \ge m - d$, then $G(\operatorname{PIH}_{G(X)}(S))$ is psedorandom given S

D No degradation in t, security $\sqrt{\epsilon \cdot 2^d}$ (vs. $\epsilon \cdot 2^d$)

New Dense Model Theorem

l had my people and your people crushed together to create this

