
Randomness in Cryptography February 7, 2013

Lecture 5: SV-robust Mechanisms and Bias-Control-Limited Source

Lecturer: Yevgeniy Dodis Scribe: Abhishek Samanta

We have seen that additive noise technique is not (SV (γ), ε)-DP. So, the question that we
explore in todays class is whether differential privacy (DP) is achievable with SV sources.
Interestingly, we give a differential private mechanism for approximate arbitrary “low sen-
sitive” functions that works even with randomness coming from SV source, for any γ < 1.
We conclude todays lecture with some key insights to a new imperfect random source, we
call BCL source.

1 Last Class

Before delving into technical details, let us refresh our memory with some important metrics
we defined and few important results we proved in last lecture.
Definition 1 A mechanism M is (R, ε)-DP for Q, if ∀ x, x′ ∈ X s.t. |x−x′| = 1, ∀q ∈ Q,
and ∀z,

PrR[M(x′, q;R) = z]

PrR[M(x, q;R) = z]
≥ e−ε

Definition 2 A mechanism M is (R, ρ)-accurate w.r.t Q, if ∀x ∈ X ,∀q ∈ Q,

ER[|M(x, q;R) − q(x)|] ≤ ρ

Theorem 1 (Theorem 2 lecture 4) It is impossible to construct a “non-trivial” mech-
anism M with (Weakk(m), ε)-differential-privacy and (Weakk(m), ρ)-utility, if k ≤ m −
log(ε · ρ)− o(1)

Remark 1 γ-SV does not work for ρ-utiility, where ρ > 1
ε , but imply the following restric-

tion,

∀q,∀x, x′ ∈ X , s.t.|x− x′| = 1

Prr←UN
[M(x, q; r) 6= M(x′, q; r)] ≤ 2 · ε

γ
= O(ε)

2 A new differential private mechanism

Definition 3 A mechanism M has ε-consistent sampling (ε-CS) if ∀x, x′ ∈ X , s.t. |x −
x′| = 1, ∀q ∈ Q and ∀z,

Prr←UN
[M(x′, q; r) = z|M(x, q; r) = z] ≥ e−ε ≈ 1− ε

Lemma 1 If a mechanism M is ε-CS, then M is (UN , ε)-DP

Lecture 5, Page 1

Proof:

Prr←UN
[M(x′, q; r) = z]

Prr←UN
[M(x, q; r) = z]

≥ Prr←UN
[M(x, q; r) = z] · Prr←UN

[M(x′, q; r) = z|M(x, q; r) = z]

Prr←UN
[M(x, q; r) = z]

≥ e−ε

Now, recall that we have defined additive noise mechanism as follows,

Mlap(x, q; r) = q(x) +Rlap0,1/ε(r), with ρ = O(
1

ε
), (1)

where Rlap0,1/ε(r) is number of flips of (1− ε)-biased coin until a head.
Additive-noise mechanism, Equation (1), fails to handle SV sources because such algorithms
use disjoint sets of coins to produce “noisy answer” on two databases having different “real
answers”. We explain this with the example shown in Figure 1, with different values of q(x).
M lap, Equation (2), solves this problem by clustering together 1/ε number of intervals,

0 1 2-1-2

1 2 30-1

0

1

Mlap(x, q; r)q(x)

Figure 1: Example illustrating the fact that additive-noise mechanism fails to handle SV
sources.

M lap(x, q; r) = ⌈q(x) +Rlap0,1/ε(r)⌋1/ε, (2)

where ⌈a⌋b is rounding a to nearest multiple of b. As can be seen from the example in

Figure 2, (1ε − 1) of 1
ε intervals overlap. So, size of overlap is 1/ε−1

1/ε = (1− ε) fraction of the
size of a set.

0

1

M lap(x, q; r)q(x)

0

− 1
2ε − 1 1

2ε − 1

0

− 1
2ε

1
2ε

Figure 2: M lap distribution for q(x) = 0, 1

Lecture 5, Page 2

Lemma 2 M lap is a ε-CS ((UN , ε)-DP) and has utility ρ′ = O(1ε).

Proof: Since, two consecutive sets have (1− ε) fraction of overlap,

Prr←UN
[M lap(x

′, q; r) = z]

Prr←UN
[M lap(x, q; r) = z]

≈ 1− ε

Thus M lap is ε-CS.
Now, as discussed in the previous lecture (Theorem 1 Lecture 4) Mlap is (UN , O(1/ε))-
accurate. So, utility ρ′ of M lap holds the following condition,

ρ′ ≤ O(1/ε) +
1

2ε
= O(1/ε)

Thus, M lap is (UN , O(1/ε))-accurate.

2.1 Differential privacy offered by ε-CS

Now, the question that we ask is if ε-CS is (SV (γ), O(ε))-DP. But, unfortunately the answer
is no. Let us illustrate this with the help of following example shown in Figure 3.
A SV (γ) can be viewed as a tree where each branch (labeled 0 or 1) can be chosen with a
probability p ∈ [12(1− γ), 12(1 + γ)]. Now, let us assume coins as follows,

{r : M lap(x, q; r) = z} = S0 ∪ S1

{r : M lap(x
′, q; r) = z} = S′

(3)

Let us also assume that |S1| = ε · |S0|.

S0 S1

S′

t

log(1ε)

0 1

1 0

Figure 3: Example of how a SV (γ) adversary can decrease the ratio
Prr←SV (γ)[r∈S

′]

Prr←SV (γ)[r∈S0∪S1]

2.1.1 Goal of adversary

The goal of the adversary is decreasing the ratio
Prr←SV (γ)[r∈S

′]

Prr←SV (γ)[r∈S]

Lecture 5, Page 3

2.1.2 Attack Strategy

• Pick r← {0, 1}

• If r = 1, then, bias towards S1

• If r = 0, then, avoid S0 ∪ S′

So,

Prr←SV (γ)[r ∈ S′]

Prr←SV (γ)[r ∈ S0 ∪ S1]
=

|S′|
|S0 ∪ S1|

≤ [12(1− γ)]t

[12(1− γ)]t · [12 (1 + γ)]t+log(1/ε)

=
1

1 +
[1
2
(1+γ)]t+log(1/ε)

[1
2
(1−γ)]t

≤ 1

1 + ε · [1+γ
1−γ]

t

Now,
1

1 + ε · [1+γ
1−γ]

t
→ 0 as t >>

1

γ
log(

1

ε
)

2.2 SV-consistent Sampling

Definition 4 A mechanism M is (ε, c)-SV-consistent sampling (SVCS), if following two
conditions are satified,

• M is ε-CS

• M is “c-nice”

♦
Definition 5 A mechanism M is c-nice is ∀x ∈ X and q ∈ Q

|suffix(x)|
|S ∪ S′| ≤ c,

where,

S = {r,M lap(x, q; r) = z}
S′ = {r,M lap(x

′, q; r) = z}
♦

Definition 6 A node x of SV-tree is least common ancestor of S and S′ if x is the node
with least height satisfying the following condition,

S ∪ S′ ⊂ suffix(x)

♦

Lecture 5, Page 4

s′

s

x

Suffix(x)

Figure 4: Example SV-tree to illustrate least common ancestor and suffix function. x is
called the least common ancestor of S and S′

Theorem 2 A mechanism M is (ε, c)-SVCS⇒M is (SV (γ), ε)-DP, where ε = 2(8ε)(1−log(1+γ))·
[1−γ1+γ]

log(8c) and c = O(1).

Proof: Let us consider the highest node w, s.t. suffix(w) ⊂ S′, and v, s.t. v is the least

common ancestor S\S′, Figure 5. Let us partition S\S′ in I0 and I1, s.t. |I0| = |I1| = |S\S′|
2

Let v0 and v1 be the least common ancestors of I0 and I1, respectively. Without loss of
generality, let us also consider that |v0| ≤ |v1|. Now,

Prr←SV (γ)[r ∈ S]

Prr←SV (γ)[r ∈ S′]
≤ 1 +

Prr←SV (γ)[r ∈ S]

Prr←SV (γ)[r ∈ S′]

= 1 +
Prr←SV (γ)[r ∈ S \ S′|r ∈ suffix(u)]

Prr←SV (γ)[r ∈ S′|r ∈ suffix(u)]

≤ 1 +
Prr←SV (γ)[r ∈ suffix(v0) ∪ r ∈ suffix(v1)|r ∈ suffix(u)]

Prr←SV (γ)[r ∈ suffix(w)|r ∈ suffix(u)]

= 1 +
[(1+γ)

2]|v0|−|u| + [(1+γ)
2]|v1|−|u|

[(1−γ)2]|w|−|u|

≤ 1 + 2 · [
(1+γ)

2]|v0|−|u|

[(1−γ)2]|w|−|u|

= 1 + 2 ·
[(1 + γ)

2

]|v0|−|w|
·
[(1 + γ)

(1− γ)

]|w|−|u|

≤ 1 + 2 · (8ε)1−log(1+γ) ·
[(1 + γ)

(1− γ)

]log(8c)
, [By, Lemma 4] (4)

Since, M is (ε, c)-SVCS,

Prr←SV (γ)[r ∈ S]

Prr←SV (γ)[r ∈ S′]
≤ 1 + ε (5)

Comparing right hand side of Equation (4) and Equation (5),

ε = 2 · (8ε)1−log(1+γ) ·
[(1 + γ)

(1− γ)

]log(8c)

Lecture 5, Page 5

u

S′I0 I1

S \ S′

w

v

v0 v1

Figure 5: Construction of (SV (γ), ε)-DP

Corollary 3 ∀γ < 1, ε→ 0 and ε→ 0.

Lemma 4 If M has (ε, c)-SVCS then for all neighboring databases D1,D2 ∈ D, which
define u, v0, v1, w as in Figure 5, we have,

|v0| − |w| ≥ log(
1

8 · ε)

|w| − |u| ≤ log(8c)

Proof: By definition of (ε, c)-SVCS, we have,

S \ S′
S′

≤ ε

|suffix(u, n)|
|S| ≤ c

So,

|suffix(v0, n)|
2

+
|suffix(v1, n)|

2
≤ |I0|+ |I1|

= |S \ S′|
≤ ε · |S′|
≤ 4 · ε · |suffix(w,n)|

Therefore,

n− |v0| ≤ log(8ε) + n− |w|

⇒|v0| − |w| ≥ log(
1

8ε
)

Lecture 5, Page 6

u

S S’

0

1
2

pi 1
Ω(2−|u|)

Figure 6: SVCS implementation of M lap

Again, we have,

|suffix(u, n)| ≤ c · |S|
≤ c · (|S \ S′|+ |S|)
≤ (1 + ε) · c · |S′|
≤ 2 · c · |S′|
≤ 8 · c · |suffix(w,n)|

Thus,

n− |u| ≤ log(8 · c) + n− |w|
⇒|w| − |u| ≤ log(8 · c)

Theorem 3 ∀ε, ∃(ε,O(1))-SVCS implementation of M lap.

Proof:
It is to be noted that, we have already proved that M lap is ε-cs, Lemma 2. So, by

definition of SVCS, we have to prove that M lap is “c-nice”. To prove this, we use arithmatic
coding as follows,

Construction 1

• Place interval (Ir) corresponding to Pr(R = r) on [0, 1].

• Map real number X ∈ [0, 1] to unique r, s.t. x ∈ Ir.

• Sample X = 0.X1X2X2... by sampling random bits X1,X2,X3, ..., until it identifies
an interval, uniquely.

Let, u be the least common ancestor of S ∪ S′, Figure 6. By construction, |suffix(u)| =
2−|u|. Moreover, arithmatic coding and our use of Laplacian distribution ensure that smaller
intervals are farther from center than bigger ones. So, |S ∪ S′| = Ω(2−|u|). Therefore,

|suffix(u)|
|S ∪ S′| = O(1)

Lecture 5, Page 7

Note 1 (1+ 1
ε) consecutive intervals starting from pi cover a constant fraction of the range

[pi, 1], Figure 6. So, for any consecutive interval S, S′,

1− pi = Ω(2−|u|)

⇒pi ≈ 1− 2−|u|

Project 1 What about other DP-mechanisms(viz. exponential mechanism)? What are the
effects of CS and SVCS on them?

Project 2 Is ε-CS enough if allow (ε, δ)-DP, with negligible δ.

Project 3 This project consists of following two parts,

• Generalize DP to Weakm(k) sources if k ≥ m− log(ε · ρ).

• Define more realisitic source between Weakm(k) and SV (γ).

3 New Imperfect Random Source with Applications to Coin-

Flipping

We are going to look into a new imperfect random source which realistically generalizes
SV-source [4] and the bit fixing (LLS) source [3]. This new source is called Bias Control
Limited (BCL) sources.
A BCL source is characterized by a “noise” oarameter γ ∈ [0, 12] and a “number of error”
parameter b ≥ 0. It is also convenient to fix the number of bits, N , emitted by the source.
Hence, we define BCL source as follows,
Definition 7 A (γ, b,N) −BCL source generates N bits xi, where i ∈ [1, N]. The value

of xi depends on xj, where j ∈ [1, i − 1] in one of the following two ways,

• xi is determined by xj . But, this happens for at most b bits. This process of deter-
mining a bit is called intervention.

• Pr[xi = 1|x1, x2, ..., xi−1] ∈ [(1−γ)2 , (1+γ)
2].

♦

Note 2

• If b = 0, (γ, b,N)-BCL source behaves as a (γ,N)-SV source

• If γ = 0, (γ, b,N)-BCL source behaves as a (b,N)-LLS source

Project 4 Do DP with BCL source for reasonably high b.

Question 2 For which value of b = b(N) can there be a good extractor?

Lecture 5, Page 8

Now, we quantitatively measure the “goodness” of BCL source for the problem of bit-
extraction.

Definition 8 Let A be some (γ, b,N)-BCL source, and e : {0, 1}N → {0, 1} be a 1-bit-
extractor. Let us define,

• q(γ, b, n, e,A) be the bias of the coin e(x), where x = x1...xN was produced by A.

• q(γ, b,N, e)= maxAq(γ, b,N, e,A), for all (γ, b,N)-BCL sources.

• q(γ, b,N) = mineq(γ, b,N, e), for all e : {0, 1}N → {0, 1}.
♦

Thus, q(γ, b,N) is the smallest bias of a coin that can be extracted from any (γ, b,N)-BCL
source.

Theorem 4 ([4]) q(γ, 0, N) = γ. Thus, it is possible to extract an almost perfect bit iff
γ = o(1), and a slightly random bit iff γ = 1− Ω(1).

Theorem 5 ([3]) For any b, majority is the best bit extraction function for the LLS source.
In particular, q(0, c1 ·

√
N,N) = o(1), while q(0, c2 ·

√
N,N) = 1− o(1), for some constants

c1 < c2.

Note 3 A random function f : {0, 1}N → {0, 1} is a bad bit extractor for a LLS source
even for b = ω(1). Although, with high probability the first (N − b) bits do not fix f , A
can use last b interventions to fix f . Another bad function (even for b = 1) is any parity
function: it can be fixed by fixing the last emitted bit. On the other hand, majority is the
best extraction funtion and can tolerate b = Θ(

√
N).

Theorem 6 If b ·γ = Θ(1), it is impossible to extract a slightly random bit from a (γ, b,N)-
BCL source, irrespective of the value of N. More precisely,

q(γ, b,N) ≥ 1− 2

(1 + γ)b
= 1− 21−Θ(b·γ)

Lemma 5 If b · γ = O(1), b = O(
√
N), and γ = o(1), it is possible to extraxt an almost

random bit from a (γ, b,N)-BCL source: q(γ, b,N) = o(1). In particular, such extraction
can be done by applying the majority function to any min(N,O(1/γ2)) bits of the source.

p-sparse

Given an extractor e : {0, 1}N ← {0, 1}, we can associate an event ξ such that “ξ happend
⇔ e(x) = 1”. So, the natural probability of ξ is the probability that ξ happend for an ideal
source, which in our case, emits N perfect unbiased bits. More precisely,

p = Prr←UN
[e(r) = 1] = Prr←UN

[ξ]

We then say that ξ is p-sparse.
Definition 9 Fγ(p,N, b)= maxξminAPr[e(x) = 0], taken over all p-sparse ξ, and all

(γ, b,N)-BCL source. ♦

Lecture 5, Page 9

Observation 7

q(γ, b,N) ≥ 1− Fγ(
1

2
, b,N)

Theorem 8

Fγ(p,N, b) ≤ 1

p · (1 + γ)b
= 2log(1/p)−Θ(b·γ)

In particular , if b = ω(1γ · log(1/p)), A can force any p-sparse ξ with probability 1− o(1).

Proof: The statement is true for γ = 0 or b = 0, since Fγ(·, ·, ·) ≤ 1 ≤ 1/p, so assume
γ > 0 and b ≥ 1. Define g(p, b) = 1

p(1+γ)b
. We need to show that Fγ(p,N, b) ≤ g(p, b) for

any N ≥ 1, 1 ≤ b ≤ N and 0 ≤ p ≤ 1. We prove this by induction on N .

Base Case For N = 1, Fγ(0, 1, b) = 1 < ∞ = g(0, b), and Fγ(p, 1, b) = 0 ≤ g(p, b) for
p > 0 (here we used b ≥ 1).

Induction step Assume now the claim is true for (N − 1) and we want to show it for N .
Take any p-sparse E given by a function e. Let e0 : {0, 1}N−1 → {0, 1} be the restriction

of e when x1 = 0. Similarly for e1. This defines a p0-sparse event E0 and a p1-sparse event
E1 satisfying 1

2(p0 + p1) = p. Without loss of generality assume p0 ≥ p ≥ p1. Given such E ,
our particular adversary A will consider two options and pick the best (using his unbounded
computational resources): either he will use an intervention (he can do it since we assumed
b ≥ 1) and fix x1 = 0, reducing the question to that of analyzing the p0-sparse event E0 on
(N − 1) variables and also reducing b by 1, or he will use rule (B) making the 0-probability
of x1 equal to

1
2 ·(1+γ) and leaving the same b. By the definition of function Fγ(p,N, b), we

know that in the first case the failure probability of A will be at most Fγ(p0, N−1, b−1), and
in the second case it will be at most (12 ·(1−γ))Fγ (p1, N−1, b)+(12 ·(1+γ))Fγ (p0, N−1, b).
Since, the choice of p0 ≥ p1 (i.e., how E splits into E0 and E1) such that p0 + p1 = 2p
is outside of our control, we will take the maximum over all such choices and obtain the
following recurrence.

Fγ(p,N, b) ≤ max
p0≥p1

p0+p1=2p

min[Fγ(p0, N − 1, b− 1),

(1

2
· (1− γ)

)

· Fγ(p1, N − 1, b) +
(1

2
· (1 + γ)

)

· Fγ(p0, N − 1, b)]

Let p0 = p(1 + β) and p1 = p(1 − β), where 0 ≤ β ≤ 1 (since p0 ≥ p ≥ p1). Using our
inductive assumption.

Fγ(p,N, b) ≤ max
0≤β≤1

min[g(p(1 + β), b− 1),

(1

2
· (1− γ)

)

· g(p(1 + β), b) +
(1

2
· (1 + γ)

)

· g(p(1 + β), b)]

Lecture 5, Page 10

w
u v

ξ

h

Figure 7: Definition of u, v, ξ in binary tree representation of SV-source

Recalling the definition of g, it thus suffices to show that

max
0≤β≤1

min

(

1

p(1 + β)(1 + γ)b−1
,

1
2 · (1− γ)

p(1− β)(1 + γ)b
+

1
2 · (1 + γ)

p(1 + β)(1 + γ)b

)

≤ 1

p(1 + γ)b

⇐⇒ max
0≤β≤1

min

(

1 + γ

1 + β
,
1
2 · (1− γ)

1− β
+

1
2 · (1 + γ)

1 + β

)

≤ 1 (6)

We see that the expressions under the minimum are equal when β = γ. We consider
two cases.

• Case 1. Assume β ≥ γ. Then the minimum above is 1+γ
1+β and it suffices to show that

1+γ
1+β ≤ 1, which is equivalent to our assumption on β.

• Case 2. Assume β ≤ γ. Then the minimum above equals to
1
2
·(1−γ)

1−β +
1
2
·(1+γ)

1+β and

it suffices to show that
1
2
·(1−γ)

1−β +
1
2
·(1+γ)

1+β ≤ 1. But this is again equivalent to our
assumption on β.

Theorem 9 For SV (γ,N), for all p-sparse ξ, ∃ an adversary A s.t. A increases Pr(ξ)
from p to atleast p1−log(1+γ).

Proof: Recall that a (γ,N)-SV source can be represented as a finite binary tree and let ξ
be the subset of its leaves having probability p under unbiased coin. We are going to prove
Theorem 9 by induction on height of the binary tree representation of (γ,N)-SV source.

Base case: The base case is a tree consisting of a single node labeled ξ. In this case p = 1.
So, the induction hypothesis holds trivially.

Induction step: Let us assume that the induction hypothesis holds for a tree of height
h. Let the probability of reaching ξ through left and right child of the root(w) be u and v,
respectively, Figure 3. Since, p is the probability of hitting ξ if a child is chosen at uniformly
at random, p = (u+v)

2 . Let us also assume that without loss of generality u ≥ v. Now, let
us consider two cases as follows,

Lecture 5, Page 11

case 1 (v = 0):

If v = 0, p = u
2 . So, by induction hypothesis probability of hitting ξ is,

(
1

2
· (1 + γ)) · u1−log(1+γ) = (

1

2
· (1 + γ)) · (1

2
· (1 + γ))− log(u)

= (
1

2
· (1 + γ))− log(u/2)

= p1−log(1+γ)

case 2 (v > 0):

To prove the induction step, we have to verify that,

(
1

2
· (1 + γ)) · u1−log(1+γ) + (

1

2
· (1− γ)) · v1−log(1+γ) ≥

(

(u+ v)

2

)1−log(1+γ)

Let us consider that u = α · v, where α ≥ 1. Then the above equation is equivalent to,

(
1

2
· (1 + γ)) · α1−log(1+γ) + (

1

2
· (1− γ)) ≥

(

(1 + α)

2

)1−log(1+γ)

Let the LHS of Equation (7) be l(α) and RHS be r(α). Now, let l′(α) and r′(α) be the first
order derivative of l(α) and r(α), respectively. Now,

l′(α) =
(1 + γ)) · (1− log(1 + γ))

2 · αlog(1+γ)

r′(α) =
(1 + γ)) · (1− log(1 + γ))

2 · (α+ 1)log(1+γ)

The exponent log(1 + γ) > 0 for γ > 0. So, l′(α) > r′(α). Again since, l(1) = 1 = r(1),
l(α) > r(α).

Project 5 Translate to stronger impossibility of traditional privacy.

Hint: ξ = [f(r) 6= g(r)] = 1− 1

T

Project 6 Develop MACs with BCL sources for rate < 1
2 .

Hint: 2−K = [
1

2
· (1 + γ)]N−b

Project 7 Develop clear understanding of bounded budget source. The total budget B =
b+ (n− b) · γ

Project 8 Break O(
√
n) barrier, (or, show optimality) for adaptively secured coin flipping.

Lecture 5, Page 12

3.1 BCL source and collective coin flipping

The setting In this model n computationally unbounded processors are trying to generate
a random bit in a setting where only a single broadcast channel is available for communi-
cation. We assume that some of the players (at most b out of n) can be faulty or malicious,
and in fact is controlled by a central adversary A (which is called b-bounded). In each
round of the protocol every player can broadcast a message to the other players. A crucial
complication is that the network is asynchronous within a round. For example, players
cannot flip a coin by broadcasting a random bit and taking their exclusive OR: the last
player to talk can completely control the output. Again taking the worst case scenario, we
assume that in each round first A receives all the messages broadcast by the honest players,
and only then decides which messages to send on behalf of the bad players. The output of
the protocol is some pre-agreed deterministic function of the messages exchanged over the
broadcast channel.

The Goal The objective of collective coin-flipping (parameterized by the number of play-
ers, n) is for the players to agree on a “random” bit, even in the presence of an adver-
sary. Of course, the adversary A will introduce some bias into the coin. We let ∆Π(b)
be the largest bias achieved by a b-bounded adversary against protocol Π. Then, a coin-
flipping protocol Π is said to be (weakly) b(n)-resilient if Π produces a slightly random coin:
∆Π(b(n)) ≤ 1

2 − Ω(1), where the constant is independent of n.

Coin-Flipping with adaptive adversaries Let us assume that, we are given with a
protocol Π which is known be “very good” against static adversaries. The question that we
ask is if it is possible to transform it in a “black-box” way so as to obtain a “somewhat-
good” adaptively secure protocol Φ.
Definition 10 Let N be any integer and f : {0, 1}N ← {0, 1} be any function. We

let Φ(N, f,Π) be the protocol where players sequentially run N times the protocol Π,
obtain coins x1, x2, ..., xN and outputs f(x1, x2, ..., xN) as the resulting coin. The class
{Φ(N, f,Π)|N ≥ 1, f : {0, 1}N ← {0, 1}} is called the class of black box transformation of
Π. ♦
Let us assume that given a fixed set B of faulty players, Π produces at most a ∆Π(B)-
biased coin for any static adversary who corrupts at the beginning, and let ∆Π(b) =
max|B|=b∆Π(B) be the best bias that a b-bounded static adversary can achieve. Let us

denote by Πi the ith run of Π, and by xi the resulting coin. As before, A is called b-
bounded if he corrupts at most b players overall. However, now we assume that A (the
adversary for Φ(N, f,Π)) has the following capabilities:

• (A) If A decides to corrupt at least one new player during the execution of any value.

• (B) If at the beginning of A, the set of corrupted players is B and A decides not to
corrupt new players during Π. The resulting coin xi is at most ∆Π(B)-biased, but A
can set the probability of xi = 0 anywhere in the interval [12 · (1 − ∆Π(B)), 12 · (1 +
∆Π(B))].

Lecture 5, Page 13

Theorem 10 For any family of coin-flipping protocols Π, there is no black-box transfor-
mation resulting in an adaptively ω(

√
n)-resilient family of protocols Φ(N, f,Π).

Proof: Let us assume that, Φ(N, f,Π) is adaptively 2b(n)-resilient. We construct the
following 2b(n)-bounded adversary for Φ satisfying properties (A) and (B). Let b = b(n)
and γ = ∆Π(b) and let B be the set of players of cardinality achieving ∆Π(B) = ∆Π(b) = γ.
Before Π1 starts, A corrupts all the players in B. Therefore, from now on in each of the
N invocations of Π, A can set the 0-probability of xi anywhere in at least the interval
[12 · (1− γ), 12 · (1 + γ)]. As A will later corrupt more players, this interval can only expand,
but our particular A will not use it. If A decides to follow rule (A), he will corrupt a single
player and set the corresponding bit xi to the value he wants. Therefore, since Φ claims
to be 2b-resilient, A an use rule (A) exactly b times. Hence, now we exactly reduced the
possible behavior of A to an arbitrary (γ, b,N)-BCL source.

From the upper-bound of Ben-Or and Linial [5], we know that ∆Π(b) ≥ Ω(b/n). Thus,
bγ = Ω(b2/n). By Theorem 6, it is impossible to extract a slightly random bit whenever
b2/n = ω(1), i.e. b = ω(

√
n).

References

[1] Yevgeniy Dodis, Adriana Lpez-Alt, Ilya Mironov and Salil P. Vadhan. Differential Pri-
vacy with Imperfect Randomness. In CRYPTO 2012: 497-516

[2] Yevgeniy Dodis: New Imperfect Random Source with Applications to Coin-Flipping. In
ICALP 2001

[3] D. Lichtenstein, N. Linial, M. Saks. Some Extremal Problems Arising from Discrete
Control Processes. In Combinatorica, 9:269287, 1989.

[4] M. Santha, U. Vazirani. Generating Quasi-Random Sequences from Semi-Random
Sources. In Journal of Computer and System Sciences, 33(1):7587, 1986.

[5] M. Ben-Or, N. Linial. Collective Coin-Flipping. In Slivio Micali, editor, Randomness
and Computation, pp. 91-115, Academic Press, New York, 1990.

Lecture 5, Page 14

