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Lecture 3: Privacy and Weak Sources
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Secure encryption requires entropy (Theorem 6, Lecture 2). In particular, even for a
uniform distribution X ≡ Um, there are strong bounds on either m or H∞(R). Today, we
set out to answer the following question: is full entropy really necessary? As we shall see,
the answer is yes.

1 Last Time

Let’s quickly review some results from previous lectures.

Definition 1 Let (Enc,Dec) denote an encryption scheme where Enc : {0, 1}m×{0, 1}n →
{0, 1}λ and Dec : {0, 1}m × {0, 1}λ → {0, 1}n are functions. A correct encryption scheme
satisfies ∀r, x Decr(Encr(x)) = x. Let R and X denote distributions on r and x respectively.
(Enc,Dec) is said to be (k, ε)-secure if it is (R, ε)-secure for every k-source R; i.e. H∞(R) ≥
k. Clearly, ε = 0 means perfect security on k-sources. ♦

Lemma 1 One-time pad (OTP) is (m, 0)-secure.

But what can be said when k < m? Recall that for n = 1, (k, ε)-security means that
SD(EncR(0),EncR(1)) ≤ ε. It turns out that nothing good is possible even when k = m−1.

2 Warm-Up

Let’s begin by showing the impossibility of deterministic bit extractors.

Definition 2 A bit extractor Ext : {0, 1}m → {0, 1} is called (k, ε)-secure if for every
k-source R, Bias(Ext(R)) ≤ ε where, for a distribution B, Bias(B) := |2 Pr[B = 0]− 1|. ♦

We note that if a (k, ε)-secure bit extractor exists then a (k, ε)-secure bit encryption
exists; namely, Encr(b) := b+ Ext(r).

In theorem 1, the constant 0.99 can be replaced by any number strictly less than 1.

Theorem 1 No (m− 1, 0.99)-secure bit extractor exists.

Proof: Let S0 and S1 denote the set of preimages of 0 and 1 under Ext respectively.

Ext−1(0)

Ext−1(1)

{0, 1}m

Without loss of generality, we assume |S0| ≥ |S1|. Observe that US0 has min-entropy at
least m− 1. Yet, Ext(US0) = 0; therefore, the bias is 1.
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3 Impossibility of Secure Encryption Schemes

Theorem 2 Given two functions f, g : {0, 1}m → C where C is any universe. Let

Pr
r←Um

[f(r) 6= g(r)] ≥ 2−t

for 0 ≤ t ≤ m. Then there exist sources R1 and R2 such that

(a) H∞(R1) ≥ m− t− 1 and SD(f(R1), g(R1)) ≥ 1
2 ,

(b) H∞(R2) ≥ m− t− 2 and SD(f(R2), g(R2)) ≥ 1.

Proof: Let’s start with the special case where C = {0, 1}. Define D = {z : f(z) 6= g(z)}.
By assumption, |D| ≥ 2m−t. In the picture below, let S01 denote the subset of {0, 1}m on
which the value of f is 0 and the value of g is 1. Similarly, let S10 denote the subset of
{0, 1}m on which the value of f is 1 and the value of g is 0.

D
{0, 1}m

f = g

S01

S10

Without loss of generality, we can assume |S01| ≥ |S10|. Therefore,

|S01| ≥
|D|
2
≥ 2m−t−1.

Set R1 := US01 . We get H∞(R1) ≥ m − t − 1. Moreover, f(R1) ≡ 0 and g(R1) ≡ 1
which implies that SD(f(R1), g(R1)) = 1. Obviously, This result is strong enough to satisfy
both parts (a) and (b).

Now, let’s focus on the general case. Let H = {h : C → {0, 1}} be a family of universal
hash functions; i.e. PrH←h[h(z) 6= h(z′)] = 1

2 for all z 6= z′. Also, define

Sαβ(h) = {r ∈ D |h(f(r)) = α and h(g(r)) = β}.

D
{0, 1}m

S00

S01

S10

S11
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We’d like to compute

EH [|S01|+ |S10|] = EH
[∑
r∈D

(
χS01∪S10(r)

)]
=
∑
r∈D

Pr
H

[r ∈ S01 ∪ S10]

=
∑
r∈D

Pr
H

[
H(f(r)) 6= H(g(r))

]
.

Note that χA denotes the characteristic function of a set A. Moreover, we define

B(h) =

{
0 if |S01(h)| ≥ |S10(h)|
1 otherwise

Now, there exists h∗ : C → {0, 1} such that |S01(h∗) ∪ S10(h∗)| ≥ |D|
2 ≥ 2m−t−1. Set

b∗ = B(h∗). Without loss of generality, we can assume b∗ = 0.

D
{0, 1}m

S01 S10

h(f) = h(g)

Observe that

|S01| ≥ max(2m−t−2, |S01|) and |S01|+ |S10| ≥ 2m−t−1.

Define R2 := US01 . Clearly, H∞(R2) ≥ m−t−2; also, h∗(f(R2)) ≡ 0 and h∗(g(R2)) ≡ 1.
Hence SD(f(R2), g(R2)) = 1. Similarly, define R1 := US10 . We have H∞(R2) ≥ m− t− 1.
Finally,

SD(f(R1), g(R1)) ≥ Pr[h∗(f(R1)) = 0]− Pr[h∗(g(R1)) = 0]

≥ Pr[R1 ∈ S01] ≥ 1/2.

Note that one can define Eve as Eveh∗(C) = 1⇔ h∗(C) = 0. Eve is efficient.

Exercise 1 Is it possible to achieve SD(f(R1), g(R1)) = 1 for all universes C?
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In our case f(r) = Encr(0), g(r) = Encr(1) and t = 0 since for all secret keys r ∈ {0, 1}m
it holds that Encr(0) 6= Encr(1). More precisely, we have the following result.

Theorem 3 Even if n = 1, there is no (m − 1, 1/2)- and (m − 2, 0.99)-secure encryption
scheme.

Proof: Define f(r) := Encr(0) and g(r) := Encr(1). Clearly, ∀r : f(r) 6= g(r). Since
Decr(f(r)) 6= Decr(g(r)), we conclude T = 1 and t = 0. The lemma implies that there exist
sourcesR1 andR2 such that SD(EncR1(0),EncR2(1)) ≥ 1/2 and SD(EncR2(0),EncR2(1)) = 1.
Moreover, H∞(Ri) ≥ m− i for i ∈ {1, 2}.

Although this result is stated in case of encryption, it seems to hold for most traditional
privacy primitives. Some examples are in order.

Example 1 (Commitment) Commitment can be viewed as a function Com(b; r) = C
satisfying the following two properties

(a) Hiding: SD(Com(0;R),Com(1; r)) ≤ ε,

(b) Binding: intuitively, it is “hard” to find an r such that Com(0; r) 6= Com(1; r).

Instead of the binding property, we use the weak binding property which states that

Pr
r∈Um

[
Com(0; r) 6= Com(1;R)

]
≥ 1/2.

Now, setting f(r) = Com(0; r) and g(r) = Com(1; r) with get the impossibility of (m −
1, 0, 99)-commit.

Example 2 (Secret Sharing) (2, T ) secret sharing (T ≥ 2) even of one bit is impossible.
We have secret shares S1 = Share1(b; r), S2 = Share2(b; r), ..., ST = ShareT (b; r) with the
following properties

(a) Rec(S1, ..., ST ) = b where Rec is the recovery function.

(b) No individual share (R, ε)-leak on b; for all j ∈ [T ] it holds that

SD
(
Sharej(0;R), Sharej(1;R)

)
≤ ε.

Theorem 4 No (m− log T − 1, 0.99) or (m− log T − 2, 1/2) secret sharing in possible.

Proof:

∀r : (S1(0, r), ..., ST (0, r)) 6= (S1(1, r), ..., ST (1, r))

⇒ ∃j = j(r) : Sj(0, r) 6= Sj(1, r)

⇒ ∃j∗ : |{r|j(r) = j∗}| ≥ 2m

T

Define f(r) := Sharej(0, r) and g(r) := Sharej∗(1, r). Hence Pr[f(z) 6= g(z)] ≥ 1/T . The
result follows.

Question 1 Can we make the distributions R1 and R2 efficiently samplable given oracle
access to f and g while keeping Eve efficient?

Question 2 Did we have to lose log T for (2, T ) secret sharing?
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4 Getting out of Impossibility

Faced with these impossibility results, the question arises: where to go from here? To get
out of impossibility, we need to change the model; i.e. put some restrictions. There seems
to be four major directions for us to follow.

1. Make the source more structured by defining block sources. This approach culminates
in Santha-Vazirani sources.

2. Is perfect/extractable randomness (to do both authentication and encryption) inher-
ently necessary?

3. Relax correctness (a.k.a. differential privacy).

4. Allow public randomness.

Today we will focus on block devices. In particular we will analyze enhanced Santha-
Vazirani sources (e-SVN). The main question we would like to answer is: can we do privacy
with this type of sources?

4.1 Block Sources

So far, we were assuming one m-bit source R of min-entropy k. It is sometimes, however,
reasonable to assume a sequence of potentially correlated sources R1, R2, ... where, for each
i, |Ri| = m and each source (block) has some “fresh” entropy given some other block. We’re
interested in block sources not only because they can potentially help us to overcome the
impossibility results but also because they are reasonable sources deserving further study.

Definition 3 A (potentially unbounded) sequence of random variables R1, R2, ... is called
a (k,m)-block source if |Ri| = m and, for all i and for all fixed values r1, ..., ri−1 ∈ {0, 1}m
the following holds

H∞(Ri|R1 = r1, R2 = r2, ..., Ri−1 = ri−1) ≥ k.

This means that having fixed r1, ..., ri−1, Eve can sample any Ri of conditional entropy k.
Moreover, m is the block length and the entropy rate, r, is k/m. ♦

Note 1 We can also consider the more general case in which block length is not fixed (i.e.
∃m1, ...) and/or the conditional min-entropy is not fixed (i.e. ∃k1, ...).

Note 2 We have used the worst-case conditional min-entropy in our definition. So, why
not use H∞(Ri|R1, ..., Ri−k)? One reason is that the Chain Rule does not hold for H∞; with
worse-case min-entropy, it is possible to argue that Ri := (R1, R2, ..., Ri) is an (ik)-source.
Furthermore, we don’t want to condition on “the future.” In a way, we don’t want the future
to pay for the past. As we shall see, enhanced block sources, however, allow such possibility.
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Definition 4 A (potentially unbounded) sequence of random variables R1, R2, ... is called
a (k,m)-enhanced block source if |Ri| = m and, for all i and for every I ⊆ [r], such that
i 6∈ I, and for every fixed value vector rI = (ri1 , ..., rit), where i1, ..., it are indices into I,

H∞(Ri|RI = rI) ≥ k.

♦

Example 3 Suppose A,B ≡ Um/2. Then, R1 = (A, 0) and R2 = (A,B) are (m/2,m)-block
sources (but not enhanced).

The simplest case m = 1, in the above example, corresponds to Santha-Vazirani sources.
It’s the friendliest (possibly enhanced) block source.

Santha-Vazirani Sources

Definition 5 Let B1, B2, ... be a potentially unbounded sequence of Boolean random
variables.

SV(γ) = {B1B2... | ∀i ∀b1, ..., bi−1 ∈ {0, 1}i−1 :

Pr[Bi = 0 | B1 = b1, ..., Bi−1 = bi−1] ∈ [
1

2
(1− γ),

1

2
(1 + γ)]}.

Equivalently,
Bias(Bi | B{1,...,i−1} = b{1,...,i−1}) ≤ γ.

♦
Note that γ = 0 corresponds to the perfect source. Enhanced Santha-Vazirani sources

are defined similarly

Definition 6 Let B1, B2, ... BN be a sequence of Boolean random variables,

eSV(γ) = {B1...BN | ∀i ∀b[N ]\{i} : Bias
(
Bi | B[N ]\{i} = b[N ]\{i}

)
≤ γ}.

The source rate r is log( 2
1+γ ). ♦

eSV is the most structured source without independence. The main question here is the
following. Can we do privacy with eSV(γ,N)? Unfortunately, as we will see, the answer is
negative.

Given that our results will be negative, we consider the friendly case of an enhanced
γ-SV source where γ > 0.

Definition 7 Given N ≥ 1 and any S ⊆ {0, 1}N with |S| = 2N−1; let HS(γ,N) denote
the following distribution

R ≡ HS(γ,N) :=

{
Pr[R = r] = (1 + γ)2−N if r ∈ S,
Pr[R = r] = (1− γ)2−N if r 6∈ S.

HS(γ,N) is also know as a γ-semi-flat source. Furthermore,

H(γ,N) = {HS(γ,N) | S ⊆ {0, 1}N and |S| = 2N−1}.
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♦
As illustrated, One can view HS(γ,N) as first using a γ-biased coin to select S or S

and then selecting a uniform sample from the corresponding set.

S

S

{0, 1}N
1
2(1 + γ)

1
2(1− γ)

Lemma 2 H(γ,N) ( eSV(γ,N).

Proof: First, note that the lemma is equivalent to saying that for all S, HS(γ,N) is an
enhanced γ-SV source. Take any i ∈ [N ], for every bi ∈ {0, 1} and any b−i ∈ {0, 1}N−1 let
R = HS(γ,N) = (Bi, B−i). Consider

α

β
:=

Pr[Bi = 0 | B−i = b−i]

Pr[Bi = 1 | B−i = b−i]
=

Pr[(Bi, B−i) = (0, b−i)]

Pr[(Bi, B−i) = (1, b−i)]
∈
[1− γ

1 + γ
,
1 + γ

1− γ

]
On the other hand, α + β = 1. Hence, α, β ∈ [1

2(1 − γ), 1
2(1 + γ)]. We’ve arrived at the

definition of an enhanced source and thus the proof is complete.

Impossibility of Privacy with Santha-Vazirani Sources

Here we will derive an impossibility result for privacy with HS(γ,N) for all N which implies
one with SV(γ,N) for all N . First, as a warm-up, let’s prove a negative result for bit
extraction. We present a new proof here. Previous papers used a direct proof for SV(γ,N)
using a greedy strategy with induction on N . Our proof, while less intuitive, is shorter and
stronger.

Theorem 5 ∀N ∀ Ext : {0, 1}N → {0, 1}, there exists a γ-semi-flat source R ∈ H(γ,N) ⊂
eSV(γ,N) such that Bias(Ext(R)) ≥ γ.

Proof: Without of loss of generality, assume |Ext−1(1)| ≥ |Ext−1(0)|. Let S be any 2N−1-
subset of Ext−1(1). Now, let R := HS(γ,N). By construction we have

Pr[Ext(R) = 1] ≥ Pr[R ∈ S] =
1

2
(1 + γ).

Ext−1(0)

Ext−1(1)S
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Now we present an optimized proof of the following lemma appearing in [2].

Theorem 6 Given two functions f, g : {0, 1}N → C. Let Prr←Um [f(r) 6= g(r)] ≥ 1/T for
some T ≥ 1 (e.g. T = 2t). Then there exists a subset S ⊆ {0, 1}N of size 2N−1 such that,
setting R := HS(γ,N), SD(f(R), g(R)) ≥ γ/2T .

Proof: First recall that (in theorem 2) we defined D := {r | f(r) 6= g(r)} and showed the
existence of an efficient hash function h∗ : C → {0, 1} giving rise to the situation illustrated
below.

D

{0, 1}N

S01 S10

1+γ
2

1−γ
2

Eve = 1 Eve = 0

positive advantage negative advantage

h(f) = h(g)

In particular |S01| ≥ max(2N/4T, |S10|) and |S01|+|S10| ≥ 2N/2T . As before, Eve is defined
as Eve(C) = 1⇔ h∗(C) = b∗ = 0. Now, we have

SD(f(R), g(R)) ≥ Pr[Eve(f(R)) = 0]− Pr[Eve(g(R)) = 0]

≥ Pr[R ∈ S01]− Pr[R ∈ S10]

= (1 + γ)2−N · |S01| − (1− γ)2−N · |S10|
= 2−N

[
|S01| − |S10|︸ ︷︷ ︸

≥0

+ γ · (|S01|+ |S10|︸ ︷︷ ︸
≥|D|/2

)
]

≥ γ

2N
· |D|

2

=
γ

2T

Note 3 For C = {0, 1}, the lower bond can be improved to γ/T since in this case h∗ can be
identity and 1/2 can be saved.

Note 4 This is the same lemma as theorem 2 except that here we have N in place of m
and we have to settle for a smaller but still non-trivial advantage Ω(γ/T ) instead of 1 or
1/2.
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Note 5 For most privacy primitives, such as commitment, secret sharing, etc., the length
N of source can’t achieve (eSV(γ,N),Ω(γ/T )) security. Consequently, for a non-negligible
γ (and T ) we can’t achieve “negligible” security.

Note 6 For all N and for all Ext : {0, 1}N → {0, 1}N ,

∃R ∈ eSV (γ,N) s.t. Pr[Ext(R) = 0] 6∈
(1

2
(1− γ),

1

2
(1 + γ)

)
.

That is, the best 1-bit extractor for γ-SV sources is r1; the bias can not be reduced below γ.

We end today’s lecture with some open questions and projects.

Quesject 1 Can we make the distribution R efficiently samplable, given oracle access to f
and g (and still keep Eve efficient)? To get some ideas see the recent papaer of Austen et
al. [1].

5 MACs with SV/block or eSV/eblock Sources

Project 1 Investigate MACs with block and SV sources as well as their enhanced versions.
In the case of enhanced sources, this seems to be easy. The regular version, however, seems
to be much harder.

Exercise 2 For the enhanced version, prove that γ = 2−Ω(kn), where N = O(n), using a
simple coding scheme.

Quesject 2 What is the general capacity of γ-SV sources?
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