
Randomness in Cryptography May 2, 2013

Lecture 16: Special Purpose Extractors

Lecturer: Yevgeniy Dodis Scribe: Zahra Jafargholi

In previous lectures we studied extractors and strong extractors, today we study several
randomness extractors, each with a special property. In this note I ∈ {0, 1}d is the uniform

seed, W ∈ {0, 1}n is the week source, H∞(W) ≥ k, R ∈ {0, 1}m ≈ε Um is the extracted
randomness from W .

1 Randomness extractors and Entropic security

In previous lectures we defined a randomness extractor as follow,

Definition 1 Function Ext : {0, 1}n × {0, 1}d → {0, 1}m is (k, ε)- extractor if for any
distribution W ∈ {0, 1}n, with H∞(W) ≥ k

SD(Ext(W ; I), Um) ≤ ε.

♦
If (I,Ext(W ; I) ≈ε (I, Um) we say Ext is a strong extractor. We saw that if H = {hi :

{0, 1}n → {0, 1}m|∀i ∈ {0, 1}d} is a universal hash family and m ≤ k − 2 log(1/ε) then
Ext(X; I) = hI(X) is (k, ε)-strong extractor (LHL). We also saw the LHL is pretty robust.
If I has entropy deficiency c then we can extract m = k − c− 2 log(1/ε) bits.

Next we define (k, ε)-entropically secure and (k, ε)- indistinguishable maps:

Definition 2 The probabilistic map S() hides all functions of W with leakage ε if for every
adversary A, there exists an adversary A∗ such that for all functions f : {0, 1}∗ → zo∗,

|Pr [A(S(W)) = f(W)]− Pr [A∗() = f(W)] | ≤ ε

♦
In other words, predicting f(W) is nearly as hard with S(W) as it is without S(W). If S()
hides all functions of W , for all k -sources W , we say S() is (k, ε)-entropically secure.

Definition 3 The probabilistic map S() is (k, ε)-indistinguishable if for all pairs of k-
sources W1 and W2, S(W1) ≈ε S(W2) ♦

In particular all such output distributions of S are ε-close to Y (Un), so all (k, ε)-
extractors are(k, 2ε)-indistinguishable.

Theorem 1 If S() is (k, ε)-entropically secure, then it is (k − 1, 4ε)- indistinguishable.
Conversely if S() is (k, ε)-indistinguishable then it is (k + 2, 8ε)-entropically secure.

Lecture 16, Page 1

To give an intuition as why indistinguishablity implies entropic security , we give an
example showing that if S() is (k − 1, ε)-indistinguishable then S() is (k, ε/2)-entropically
secure for all balanced predicates.

Suppose that g() is a balanced predicate for distribution X, that is Pr[g(X) = 0] =
Pr[g(X) = 1] = 1/2, and that A is an adversary contradicting entropic security for min-
entropy k = H∞(X), that is Pr[A(S(X)) = g(X)] = 1/2 + ε. For b ∈ {0, 1}, let Xb be
the distribution of X conditioned on g(X) = b. The adversary’s advantage over random
guessing in distinguishing S(X0) and S(X1) is ε. However, the same advantage is also a
lower bound for the statistical difference. We get,

1

2
+ ε = Pr[A(S(X)) = g(X)]

= Pr[b
r← {0, 1} : A(S(Xb)) = b] ≤ 1

2
+

1

2
SD(S(X0), S(X1)),

and so the distance between S(X0) and S(X1) is at least 2ε. Note that since g(X) is a
balanced predicate, both X0 and X1 have min-entropy k − 1 and SD(S(X0), S(X1)) ≥ 2ε
contradicts with S() being (k − 1, ε) -indistinguishable.

Corollary 1 (k, ε)-extractors hide all functions for sources with min-entropy k + 2.

This means to design an entropically secure map with some special functionality it is
enough to design a special purpose extractor having this functionality.

2 Adding Invertability: Entropically Secure Encryption

As a first special property, we consider invertible extractors: namely, the extractors input
W should be reproducible from its output Ext(W ; I) and the seed I by some (efficient)
procedure Inv(·, ·). Notice that invertibility of the extractors and the fact that I is inde-
pendent from W imply that the output length m of the extractor must be at least n. Since
these m ≥ n bits are (nearly) uniform, and W has only k bits of entropy, we see that the
remaining at least n− k bits of the entropy must come from the seed I. In fact, the lower
bound on extractors easily implies that |I| = d ≥ n−k+2 log (1/ε)−O(1). We will shortly
see how we can match this bound.

Also notice that an invertible extractor cannot be strong. Indeed, in this case the value
W should be obtainable from an almost uniform string Ext(W ; I) ◦ I, which means that
W should be close to a fixed distribution Inv(Um, I). However, this is impossible, since W
could be any distribution of min-entropy k (and we assume k < n). However, some part
Ip of the seed I = (Is, Ip) could indeed be independent from the output. (We call such
extractors semi-strong.) Unfortunately, an extension of the previous argument still implies
that the ”secret part” of the seed must be long: |Is| ≥ n− k+ 2 log (1/ε)−O(1). However,
having the public part Ip enables us to achieve simpler constructions.

Lecture 16, Page 2

Application: Entropically Secure Encryption. Now assume we have Ext which is a
(k, ε)-extractor with invertability property. We can set C = Ext(W, I) to be the ciphertext
for message W , since Ext is invertable we can recover W from C and I and as long as W has
min-entropy k, C hides all functions of W which gives us the notion of (k, ε)-entropically
secure encryption. This notion is weaker than Shanon’s security but it will allow us to have
shorter key length. Here we achieve key length of slightly more than n− k bits. Intuitively,
to hide the plaintext of n bits we need n bits of randomness, here we take k of those bits
from the randomness of the message itself and the rest (n− k) bits we get from the secret
key. We also remark that “semi-strong” invertible extractors with seed (Is, Ip) corresponds
to probabilistic encryption, where the parties only share the “secret part” Is, while the
“public part” Ip is sent together with the ciphertext Ext(W ; (Is, Ip)). Thus, here we only
care about minimizing the secret part Is.

Constructions. One idea is to construct invertible extractors from good expander
graphs, which in fact mix in one step. A bit more formally, assume we have a 2d-regular
expander graph G on 2n vertices V with the property that for any subset T of 2k vertices,
picking a random vertex w of T and taking a random neighbor v, we obtain an almost
uniform distribution on V (say, within distance ε from Un). Since any k-source W is known
to be a convex combination of uniform distributions on some subsets T of size 2k, it is
obvious that such extractor graphs immediately yield a (n, k,m = n, ε)-extractor, where
the source W defines the original vertex v and the seed I specifies which neighbor v of
w to take. To see the invertibility of this scheme, we need to ensure that it is possible
to label the edges of G in such a way that knowing the index i and the i-th neighbor v
of a vertex w under this labeling, we can recover w back. We call such natural labelings
invertible. Luckily, Hall’s marriage theorem implies that every 2d-regular graph has an
invertible labeling, although this labeling does not have to be efficient. In all our examples,
however, the corresponding labeling will indeed be efficient. It remains to construct such
extractor with the smallest degree 2d, since d will translate to the length of the seed (i.e.,
the secret key).

Here we give three different invertible (n, k, n, ε)-extractors:

1. Ramanjun expander graphs. is obtained by using (optimal) Ramanujan expander
graphs, which indeed have d = n− k+ 2 log (1/ε) +O(1). However, the constructions
of such optimal graphs is relatively complex.

2. “Sparse One-Time Pad”: Using 2 log(n/δ) bits (I), we sample δ-biased X of length
n and we get W ⊕ X ≈ε Un where ε = δ2(n−k)/2. This extractor can achieve seed
length d = n− k + 2 log (1/ε) + 2 logn+O(1) when using optimal δ-biased sets, but
such sets are still non-trivial to construct.

3. “LHL-based semi-strong extractor”: the seed I consists of a secret part Is of length
` = n−k+2 log (1/ε)+O(1), which is just a random point x ∈ {0, 1}`, and a public part
Ip, which samples a random hash function hJ from any family H = {hj : {0, 1}` →
{0, 1}n}j of XOR-universal hash functions. The extractor is Ext(W ; (X,J)) = hJ (X)⊕
W .

Lecture 16, Page 3

To argue the correctness of the last construction we use a variant of LHL.

Lemma 2 ([6] LHL′: One-Time Pad Extractor) If H = {hj : {0, 1}` → {0, 1}n}j is
XOR-universal and X and W are two independent distributions on {0, 1}` and {0, 1}n, re-
spectively, satisfying H∞(X)+H∞(W) ≥ n+2 log (1/ε)+1, then SD(J , hJ (X)⊕W), (J , Un) ≤
ε. ♦

The third construction follows from this result by taking ` = n − k + 2 log (1/ε) + 1
and having X to be uniform on {0, 1}`. Applied to the a · x XOR-universal family, we get
the following very simple entropically-secure encryption scheme: view GF [2`] as a subset
of GF [2n] (where XOR coincides with field addition) and encrypt message w by sending
(a, a · x+ w), where a ∈ GF [2n] is a public randomizer, and x ∈ GF [2`] is the secret key.

3 Adding Collision-Resistance: Perfectly One-Way Hash Func-
tions

The next special property we consider is (computational) collision-resistance. We say that
an extractor Ext is collision resistant, if it is (computationally) infeasible to find two in-
puts (w, i) 6= (w, i) such that Ext(w; i) = Ext(w; i). A small technicality here is that the
definition of collision-resistance against non-uniform adversaries requires an extra key (key)
to be generated at the beginning of the game, so we will do the same: i.e., our extractor
will also have “collision-resistant” key, in addition to its seed i. Also, we will consider only
strong extractors, which output their seed i as part of their output. This means that: (a)
an output (z, i) can be verified by presenting w alone (by checking if z = Extkey(w; i)); and
(b) the definition of collision resistance states that, for a random key key, it is hard to find
w 6= w and a seed i such that Extkey(w; i) = Extkey(w

′; i). Combined, this means that the
value (z, i) is a “commitment” to w, which can be “opened” by presenting w alone! Of
course, the price we pay for such a nice decommitment procedure comes from a weaker
privacy guarantee: since extractors are entropically secure, we can only say that the “com-
mitment” value (z, i) hides all functions of w (for any key key, but for a random seed i), as
long as w has high entropy. Thus, publishing (z, i) allows anybody to test (without either
false positives or false negatives!) whether or not some input w is equal to the “correct”
secret input w, and yet without leaking any particular function of w. We also notice that
entropic security/indistinguishability is all we need in this application (i.e., we do not care
if the extractors output is close to the uniform as opposed to some other fixed distribution).
We call such (k, ε)-indistinguishable (but not necessarily extractor) maps, collision-resistant
maps (k, ε)-privately binding.

Application: Perfectly one-way hash functions.
Definition 4 ([3]) An ensemble of keyed randomized functions H = {Hkey|key ∈ Kn, n ∈

N}with domain {0, 1}n (where n is the security parameter), key space Kn and randomness
space Rn is (k, ε)-perfectly one-way if there is a polynomial-time verification algorithm Ver
such that

Lecture 16, Page 4

• For all keys key ∈ Kn, inputs w ∈ {0, 1}n, and strings i ∈ Rn, Ver(key, w,Hkey(w; i)) =
acc.

• For any efficient adversary A, the probability over key ∈ Kn that A(k) outputs
(w,w′, y) satisfying w 6= w′ and Ver(key, w, y) = Ver(key, w′, y) = acc is negligible
in n.

• For all keys key ∈ Kn, the randomized map W 7→ Hkey(W ; I) is (t, ε)-entropically
secure: for all t-sources W , the value Hkey(W ; I) hides all functions of W with leakage
ε, when I is chosen at random from Rn.

♦

As we can see from Theorem 1, a (k+2, ε)-privately binding map E is (k, ε)-entropically
secure, and thus immediately gives a (k, ε)-POWHF H of the following form: Hkey(w; i)
outputs (Ekey(w; i), i), and Ver(key, w, (z, i)) accepts if and only if Ekey(w; i) = z. Here we
construct a perfectly one-way hash function. We start from a yet another variant of the
leftover hash lemma. It states that combining a pairwise independent hash function h with
an arbitrary function f (of small enough output domain) yields an indistinguishable map:
that is, the output may not be random, but it will look the same for all input distributions
of sufficiently high entropy.

Lemma 3 ([7] LHL′′: Composing with arbitrary function) Let f : {0, 1}N → {0, 1}m
be an arbitrary function. If H = {hi : {0, 1}n → {0, 1}N}i is a family of pairwise indepen-
dent hash functions and W is a k-source over {0, 1}n with tk ≥ m + 2 log (1/ε) + 1, then
SD(I, f(hI(W))), (I, f(UN)) ≤ ε. ♦

Contrary to intuition, this statement does not follow directly from the usual LHL, since
the hash function hI might be length-increasing (i.e., there is no constraint on N), and thus
the intermediate distribution hI(W) might not be close to uniform. On the other hand,
we do need a slightly stronger assumption on our hash family that universality: pairwise
independence. Namely, for any x 6= y, the value hI(x) and hI(y) should be truly random
and independent from each other (i.e., (hI(x), hI(y)) ≡ (UN , UN)). Constructively, one can
turn the a ·x construction of universal hash functions into that of pairwise independent hash
function, by also sampling a random b ∈ GF [2max(n,N)] together with a (i.e., i = (a, b)),
and setting hi(x) to be the first N bits of a · x+ b.

We can now apply this lemma as follows. The function f will be a (computationally)
collision-resistant hash function Ckey whose output length m ≤ k−2 log (1/ε)−1 (and whose
choice will fix the collision-resistant key key). As for the family of pairwise independent hash
functions, we will take a family of pairwise independent permutations: here hI(x) and hI(y)
look like a pair of random distinct elements. Although they are technically not pairwise
independent functions, they are 2−n-close to them, which will not affect Lemma 3. In the
a · x+ b construction, this is achieved by restricting a to be non-zero.

We now get the following construction of a (k, ε)-privately binding map: Ekey(w, i) =
Ckey(hi(w)). Its (k, ε)-indistinguishability follows directly from Lemma 3, while its collision-
resistance follows from that of Ckey and the fact that hi is a permutation, for any i. Also
notice that if the collision-resistant function Ckey is regular, i.e. Ckey(UN) ≡ U`, then we

Lecture 16, Page 5

indeed get a collision-resistant randomness extractor. See [3] for a construction of such
regular collision-resistant functions.

4 Adding locally computablity: Key derivation in Bounded
storage model

In Bounded Storage Model, Alice and Bob share a short random key K. In this model a
large random (or at least with high entropy) string X of length N is broadcast to both Alice
and Bob. Eve is allowed to store any function Z = f(X) of length γN , for some γ < 1.
The fact that Eve cannot store the entire X, makes X to look imperfect to Eve. Here the
goals are:

1. Key agreement: to extract randomness R from X, using K. In particular, we want R
to be much longer than K and look random to Eve, regardless of the storage function
f .

2. Key reuse: to Keep using K with new X.

3. Everlasting security: R should look random even if K is leaked later.

The first simple solution is to apply a strong extracter to X using K as the seed. The
problem with this approach is that Alice and Bob need to read the entire X to extract from
it, which is not possible since we are assuming X is too big even for Eve to read it.

In [14], K consists of k random indices i1, i2, ..ik ∈ [N] and we use these indices to
sample k bits from X and let w = X[i1]...X[ik] and then Let R be the parity of bits of w.
[14] shows that R is secure as long as γ < 1/5 and k is large enough. Although this method
is inefficient but it does achieve all three goals.

We next describe another method known as sample-then- extract [15]. The idea is to
parse K into two keys Ks,Ke, sampling key and extraction key. Then we use Ks to sample
a small subset of bits W from X and then use any good strong extractor with seed Ke

to extract R from W . With a “good” Ks, W will have high entropy from Eve’s point of
view and therefore R will be secure. With an optimal sampler and extractor we can have
|K| = O(logN + log (1/ε)) and extract m bits by reading O(m) bits W from X.

5 Adding noise tolerance: Fuzzy extractors and Secure sketches

Fuzzy extractors were introduced in [5] to cope with keys derived from biometrics and other
noisy measurements. The idea is to extract a random key R from the biometric W together
with the error-correction information P , such that R is random even given P , but R can
be recovered from any noisy variant W ′ of W using P . Equivalently, it gives a one-round
secret key agreement protocol over a public channel, where the transmission of P allows
the communicating parties to agree on the same key R, despite initially receiving different
versions of some noisy data. Formally, assuming W lives in a metric space M equipped
with a distance function dist(·, ·),

Lecture 16, Page 6

Definition 5 ([5]) An (M, k,m, t, ε)-fuzzy extractor is a given by two efficient procedures
(Gen,Rep).

1. Gen is a probabilistic generation procedure, which on input w ∈ M outputs an “ex-
tracted” string R ∈ {0, 1}m and a public string P , such that for any k-source W , if
(R,P)← Gen(W), then SD(R,P), (Um, P) ≤ ε.

2. Rep is a deterministic reproduction procedure which allows one to recover R from
the corresponding public string P and any vector w′ close to w: for all w,w′ ∈ M
satisfying dist(w,w′) ≤ t, if (R,P)← Gen(w), then we have Rep(w′, P) = R.

The entropy loss of a fuzzy extractor is defines as k −m. ♦

While the above definition is general enough to deal with arbitrary metrics M, in the
following we will restrict ourselves with M = Fn, where F is a finite set equipped with
the usual Hamming metric: dist(w,w′) is the number of positions i where wi 6= w′i. (See [5]
for constructions over different metrics.) In this case we call the corresponding extractor
(n, k,m, t, ε)-fuzzy. The binary case F = {0, 1} will be of special importance.

Secure Sketch. Notice that in the “error-free” case (t = 0) strong extractors achieve
this functionality, by setting P = I. A natural way to extend strong extractors into fuzzy
extractors is to publish, as part of P , some “error-correction information” S about W ,
which will allow to recover W from W ′ and S, after which we can apply a strong extractor
to this recovered W . A formalization of this idea leads to a new primitive of independent
interest called secure sketch [5].

Definition 6 ([5]) A (n, k, k′, t)-secure sketch (over F) is a pair of efficient (possibly ran-
domized) maps S : Fn → {0, 1}∗ and Rec : {0, 1}∗ → Fn such that:

• For all pairs of strings w,w′ of distance at most t, we have Rec(w′, S(w)) = w with
probability 1.

• For all k-sources W , we have H̄∞(W | S(W)) ≥ k′.

The entropy loss of a sketch is defined as k − k′. ♦ ♦

Intuitively, a secure sketch allows one to correct errors in W while giving up the smallest
amount of entropy about W (which is exactly the entropy loss k− k′). Also notice that the
most direct way to bound the entropy loss is to make the output length of the sketch as
small as possible: indeed, it is easy to see that k−k′ ≤ |S(W)|. Bounding the length of the
sketch is also important from the perspective of communication complexity for information
reconciliation: if Alice wants to transmit her string W to Bob (who knows some noisy
version W ′ of W), sending a shorter sketch will result in a more communication-efficient
protocol.

Code-Offset Construction. The following well known construction builds secure sketches
for the Hamming space Fn, where F is a field. Recall that a linear [n, `, d]-code consists of
a `-dimensional subset C of the vector space Fn, with the property that any two distinct
vectors x, y ∈ C have Hamming distance at least d (called the minimal distance of C).

Lecture 16, Page 7

A parity-check matrix H for C is any matrix whose rows generate the orthogonal space
C⊥. Fixing such a matrix, for any v ∈ Fn we can define the syndrome of v w.r.t. C as
synC(v)

def
= Hv. I.e., the syndrome of a vector is its projection onto subspace that is orthog-

onal to the code, and can thus be intuitively viewed as the vector modulo the code. Note
that v ∈ C ⇔ synC(v) = 0. Note also that H is an (n− `)× n matrix, and thus synC(v) is
(n−`) field-elements long. Also, it is well known that any error vector e of Hamming weight
less than d/2 is (in principle) uniquely determined from its syndrome synC(e). Moreover,
efficiently decodable codes can recover this e in polynomial time from its syndrome.

Given an efficiently decodable [n, `, d]-code, where d = 2t + 1, we now define S(w) =
synC(w). As for the recovery procedure, notice that if dist(w,w′) ≤ t < d/2, then w − w′
defines a vector e of Hamming weights less than d/2. Moreover, synC(e) = synC(w) −
synC(w′) = S(w)− synC(w′) can be recovered from S(w) and w′. By efficient decodability
of the code, this means we can recover e, and thus w = w′ + e. Overall, we obtain a secure
sketch for Fn with entropy loss at most |S(w)| = (n − k) log |F|. (This loss was shown to
be nearly optimal in [5].) For example, in case |F| ≥ n, we can use Reed-Solomon codes
which have k = n− d+ 1 = n− 2t, obtaining (optimal) entropy loss 2t log |F|.

Fuzzy Extractors From Secure Sketches. As noticed by [5], secure sketches natu-
rally combine with the leftover hash lemma (more generally, with any strong extractor) to
yield nearly optimal fuzzy extractors, whose entropy loss is that of the secure sketch plus
2 log (1/ε).

Lemma 4 (Fuzzy Extractors from Sketches [5]) Assume (S,Rec) is an (n, k, k′, t)-secure
sketch, and let Ext be the (n, k′,m, ε)-strong extractor based on universal hashing (in partic-
ular, m = k′− 2 log (1/ε)). Then the following (Gen,Rep) is a (n, k,m, t, ε)-fuzzy extractor:

• Gen(w; (r, i)): set P = (S(w; r), i) and R = Ext(w; i).

• Rep(w′, (s, i)): output R = Ext(Rec(w′, s), i). ♦

6 Correcting errors without leaking partial information: En-
tropically Secure Sketches

We now combine the notions of error-correction and entropic security. For a motivation,
we saw that secure sketches allow one to correct errors in W without significantly lowering
its entropy. They do, however, leak information about W : for example, the syndrome
construction revealed the entire syndrome of W . Can we build secure sketches which leak
no information about W? Unfortunately, we know that secure sketches must leak “Shannon
information” about W [2]; i.e., the entropy of W must drop given S(W). Surprisingly
enough, it was shown in [7] that (for the Hamming distance) it is nevertheless possible for
the secure sketches to hide all functions of W ; i.e., to be entropically secure! Put differently,
it is possible to correct errors in W without revealing a-priori information about W .

Theorem 2 ([7]) (Binary Alphabet) There exist efficient (n, k, k′, t)-secure sketches for
inputs in {0, 1}n which are also (k, ε)-entropically secure, such that

Lecture 16, Page 8

1. the tolerated error t and residual entropy k′ are Ω(n);

2. the information leakage ε is exponentially small in n,

whenever the original min-entropy k is linear in n. That is, whenever k = Ω(n), we can
find entropically secure sketches where t, k′ and log (1/ε) are Ω(n).

(Large Alphabet) If |F| = q > n and k > 2t log(q), there exist efficient (n, k, k′, t)-
entropically secure sketches with leakage ε over Fn such that k′ = k − 2t log(q) and ε =
O(2−k

′/2). Both of these parameters are optimal. ♦

A few comments are in place. First, if an (n, k, k′, t)-secure sketch is also (k, ε)-entropically
secure, then k′ is bounded below by log (1/ε) (roughly), since by the definition of entropic
security the adversary’s probability of predicting the identity function f(W) = W is at most
ε+2−k ≈ ε. Thus, good entropic security automatically gurantees high residual min-entropy
k′. Second, by Corollary 1, to demonstrate Theorem 2 it suffices to construct randomness
extractors which are simultaneously secure sketches! In fact, [7] even constructed a strong
randomness extractor (whose output included the seed) with this property. Namely, they
constructed a strong extractor Ext such that w can be recovered from Ext(w; i), the seed
i and any w′ close to w. Unlike the standard rational for extractors, however, the objec-
tive of such “secure-sketch extractors” is to minimize their output length, since this length
corresponds to the length of the secure sketch, which directly bounds the entropy loss of
the sketch. In other words, the purpose of this extractor is the recovery of w using the
minimal amount of information, and not the randomness extraction (which only serves as
a convenient tool to argue privacy).

Finally, it is also instructive to compare such invertible extractors with the invertible
extractors studied in Section 2. There we could also recover w from Ext(w; i) and the seed
i, but without the string w′ close to w. As a consequence, the output length such extractors
had to be at least n. Here, by also giving a string w′ close to w, the objective is to push
the output length down as much as possible: not only below n, but also significantly below
the min-entropy k!

Construction. The secure sketch/strong extractor construction of [7] used a special
family {Ci}i of [n, `, d = 2t+ 1]-codes (for “appropriate” `), and set S(w; i) = (i, synCi

(w)).
The challenge was to obtain the largest possible dimension ` such that, for a random code Cm

and for any k-source W , (m, synCm
(W)) is close to uniform. We refer to [7] for the details on

how to build such codes in order to prove Theorem 2, here only stating (without proof) the
actual construction for the large alphabet case. We start from a fixed code C equal to the
[n, n− 2t, 2t+ 1]-Reed-Solomon code. Given an index i = (a1, . . . an) consisting of non-zero
elements of F , we define Ci = {(a1 · c1, . . . , an · cn) ∈ Fn | (c1, . . . , cn) ∈ C}. (Restricting
aj ’s to be non-zero ensures that each Ci still has minimal distance 2t + 1.) The resulting
family is {C(a1,...,an) | a1 6= 0, . . . , an 6= 0}. Theorem 2 states that the resulting secure
skecth matches the entropy loss of the regular, “entropically insecure” sketch presented in
Section 5!

Application: Private Fuzzy Extractors. A (n, k,m, t, ε1)-fuzzy extractor (see Defi-
nition 5) is called (k, ε)-private, if its generation procedure Gen(W) → (R,P) is (k, ε)-
indistinguishable (and, thus, (k + 2, O(ε))-entropically secure). Such extractors imply that

Lecture 16, Page 9

no a-priori information about W is leaked both from the extracted randomness R and the
public value P . Even stronger, such an extractor is called (k, ε)-uniform if SD(R,P), (U|R|, U|P |) ≤
ε. Namely, in the latter case Gen(W) → (R,P) by itself could be viewed as a randomness
extractor, whose first part of the output R could be the recovered from the second (inde-
pendent!) part P and any string W ′ close to the source W .

It is easy to see that applying the construction from Lemma 4 to any (k, ε2)-indistinguishable
sketch S gives an (k, ε1 + ε2)-private fuzzy extractor. And if the sketch by itself is an ex-
tractor, we get a (k, ε1 + ε2)-uniform fuzzy extractor! Assuming k = Ω(n) and applying
now the construction from Theorem 2, we get a (k, ε)-uniform fuzzy extractor all of whose
parameters are optimal up to a constant factor: m, t, log (1/ε) = Ω(n), and |P | = O(n).
Moreover, this fuzzy extractor is “strong” in a sense that P contains (together with other
data) all the randomness m used by Gen.

Application: Fuzzy POWHFs. It was also observed in [7] that entropically secure
sketches compose well with any ordinary POWHFs (see Definition 4), as long as the residual
min-entropy of the secret given the sketch is higher than the min-entropy requirement for
the POWHF. As a result, using the same notation as it Definition 4, [7] obtained a family
of what we call (k, t, ε)-fuzzy perfectly one-way hash functions, satisfying the following three
conditions:

• For all keys key ∈ Kn, inputs w,w′ ∈ {0, 1}n satisfying dist(w,w′) ≤ t, and strings
i ∈ Rn, we have Ver(key, w′, Hk(w; i)) = acc.

• For any efficient adversary A, the probability over k ∈ Kn that A(key) outputs a
triple (w,w′, y) such that dist(w,w′) > 2t and Ver(key, w, y) = Ver(key, w′, y) = acc
is negligible in n.

• For all keys key ∈ Kn, the randomized map W 7→ Hkey(W ; I) is (k, ε)-entropically
secure.

Thus, publishing Hk(w, i) allows anybody to test (without either false positives or false
negatives!) whether or not some input w′ is close to the “correct” secret input w, and
yet without leaking any particular function of w. Taking now the specific construction
of entropically secure sketches from Theorem 2 and the construction of POWHFs from
Section 3, we obtain, for any entropy level t = Ω(n), a (t, τ, ε)-fuzzy POWHF where both
τ and log (1/ε) are Ω(n).

Application: Key Reuse in the Noisy BSM. Perhaps as the most surprising application
of entropically secure sketches, [7] showed that they can be used to simultaneously achieve
error correction, key reuse and “everlasting security” in the so called bounded storage model
(BSM) [10]. This resolved the main open problem of [4]. We refer to [7] for more details
and references regarding this application.

References

[1] Noga Alon, Oded Goldreich, Johan H̊astad, René Peralta: Simple Constructions of
Almost k-Wise Independent Random Variables. FOCS 1990: 544-553

Lecture 16, Page 10

[2] Gilles Brassard, Louis Salvail. Secret-Key Reconciliation by Public Discussion. In Ad-
vances in Cryptology — EUROCRYPT 1993, p. 410–423.

[3] R. Canetti, D. Micciancio, O. Reingold. Perfectly One-Way Probabilistic Hash Func-
tions. In Proc. 30th ACM Symp. on Theory of Computing, 1998, pp. 131–140.

[4] Y.Z. Ding. Error Correction in the Bounded Storage Model. In Theory of Cryptography
Conference 2005, pp. 578–599.

[5] Y. Dodis, L. Reyzin and A. Smith. Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. In Advances in Cryptology — EUROCRYPT
2004.

[6] Y. Dodis and A. Smith. Entropic Security and the Encryption of High-Entropy Mes-
sages. In Theory of Cryptography Conference 2005.

[7] Y. Dodis and A. Smith. Correcting Errors Without Leaking partial Information. Proc.
37th ACM Symp. on Theory of Computing, 2005, pp. 654–663.

[8] J. H̊astad, R. Impagliazzo, L. Levin, M. Luby. A Pseudorandom generator from any
one-way function. In Proc. 21st ACM Symp. on Theory of Computing, 1989.

[9] C.-J. Lee, C.-J. Lu, S.-C. Tsai and W.-G. Tzeng. Extracting Randomness from Multiple
Independent Sources. In IEEE Transactions on Information Theory (SCI), 51(6):2224–
2227, 2005.

[10] U. Maurer. Conditionally-Perfect Secrecy and a Provably Secure Randomized Cipher.
Journal of Cryptology, 5(1):53–66, 1992.

[11] J. Naor, M. Naor. Small-Bias Probability Spaces: Efficient Constructions and Appli-
cations. In SIAM J. Comput. 22(4): 838-856 (1993).

[12] N. Nisan, D. Zuckerman. Randomness is Linear in Space. In JCSS, 52(1), pp. 43–52,
1996.

[13] A. Russell and Wang. How to Fool an Unbounded Adversary with a Short Key. In
Advances in Cryptology — EUROCRYPT 2002.

[14] Y. Aumann and M.O. Rabin. Information theoretically secure communication in the
limited storage model. In Advances in Cryptology — CRYPTO 1999.

[15] Salil P. Vadhan. Constructing Locally Computable Extractors and Cryptosystems in
the Bounded-Storage Model. J. Cryptology 17(1): 43-77 (2004).

Lecture 16, Page 11

