
Randomness in Cryptography April 18, 2013

Lecture 14: Robust Extractors and Their Limitations

Lecturer: Yevgeniy Dodis Scribe: Umut Orhan

1 Robust Extractors

How to authenticate the seed S? As a motivating example it might be instructive to think
about following two scenarios:

1. one-party ”remembers” secret X and stores public S to help extract R = Ext(X;S)
(many times)

• where to store S?

• what if S is modified to S̃ 6= S
(R̃ = Ext(X; S̃) could be correlated to R)

2. A(X)
S←$

S→
∣∣∣∣

Eve

S̃→ B(X) (a type of attack)

Question 1 Can we ”authenticate” S?

• using what? X itself !

Good news: can authenticate S using weak X if K = H∞(X) ≤ n
2 (n = |X|)

Bad news: need k > n
2

Worse news: even for k > n
2 have circularity

We essentially have the following problem

T = TagX(S), R = Ext(X;S)

• maybe T leaks info about R

• maybe R helps forge T

Lecture 14, Page 1

Syntax: (Gen,Rep), where Gen corresponds to generation and Rep corresponds to repro-
duction

• Gen(X;S) = (R︸︷︷︸
extracted key

, P︸︷︷︸
public helper

), where R ∈ {0, 1}m.

(sometimes call R = Ext(X;S), P = Auth(X;S))

• Rep(X; P̃) = R̃ ∈ {0, 1}m ∪ {⊥}

(sometimes call Ver(X;P) = [Rep(X;P)
?
6=⊥]))

• Correctness requirement: P = P̃ ⇒ R = R̃

2 Security

3 parameters for security

• K = H∞X min-entropy

• ε extraction security

• δ authentication security

Define (K, ε, δ)-robust extractor

2.1 Extraction security

SD(R;Um|P) ≤ ε (note before conditioned on S)

2.2 Authentication Security (Robustness)

Attempt 1 (Definition 1): ∀K-source X, ∀A, Adv(A) ≤ δ, where S ← $ and A corre-
sponds to attacker. Gen(X;S) = (R,P), A(P)→ P̃ , A wins if Rep(X; P̃) /∈ {R,⊥}.

This attempt is problematic. Because R vs ⊥ decision potentially leaks info about X
and might kill ”composition”.

Artificial Counter Example: GenX;S: Gen′(X;S)← (R′, P ′) set R = R′, P = (P ′, 0, 0)
and Rep′(X; (R̃′, i︸︷︷︸

index

, b︸︷︷︸
bit

)): if Xi > 0&Xi = b output ⊥, else Rep(X; P̃) Claim (Gen′,Rep′)

satisfies Definition 1 but horrible for repeated use (can learn X).

Attempt 2 (Definition 2, Pre-application Robustness): Same as Attempt 1, but
attacker wins if P̃ 6= P and Rep(X; P̃) 6=⊥

”Composition”: ARep(X;·) can’t cause R̃ ∈ {R,⊥}.
Definition 1 ; composition

Definition 2 ; ”strong” composition, t attempts ⇒ Pr(breaking) ≤ tδ

Lecture 14, Page 2

Attempt 3 (Definition 3, Post-application Robustness): S ← $ (R,P)← Gen(X;S), A(R,P)→
P̃
Win: P̃ = P and Rep(X;P) 6=⊥. Pr(win) ≤ δ

Idea 1: Set P = (S, T), R = Ext(X;S)
T = TagX(S) ← MAC with weak X (so k > n

2). Reject if Tag fails else run Extractor.

h(X;S) = (R, T) = (Ext(X;S),TagX(S))

-Essentially, A gets f(X;S) in both ext/auth experiments.

For extraction security; it is enough if h(X;S) is extractor with seed S (universality with key S)
For authentication security; it is enough if h(X;S) is pairwise independent with key X

Is there an h satisfying both?

h(X︸︷︷︸
pairwise independent

, S︸︷︷︸
universal

)

x = (a, b), |a| = |b| = |s| = n

2
, h((a, b), s) = as+ b

Claim 1: h is universal keyed by S.

∀(a, b) = (a′, b′), Pr
S

(aS + b = a′S + b′) = Pr
S

((a− a′)S = b− b′) =

{
0, if a = a′, b 6= b′

2−n/2, if a 6= a′

Claim 2: ∀s 6= s̃, (As̃+B|As+B) ≡ (Un/2|As+B). Let Y = h(X;S) = AS +B.
How to split Y into (R, T)?
-Set |R| = m < n

2 , |T | = n
2]−m and calculate ε, σ.

Extraction:

(R,P) = (R, (T, S)) ≡ ((R, T)︸ ︷︷ ︸
Y

, S) ≈
ε′

(Un/2, S) ≡ (Um, (Un/2−m, S))

≈
ε′

(Um, (T, S)
q

truncation of AS+B

)

≡ (Um, P),

where ε′
LHL
↓
= 1

2

√
2

n
2
−k.

ε = 2ε′ =
√

2nfrm−e−k ⇒ k ≥ n

2
+ 2 log

1

ε
(1)

Lecture 14, Page 3

Authentication (Post-Robustness): δ = δ′2n−k, where δ′-security with uniform
X ≡ Un. What is δ′?

A(R,P)→ P̃ = (S̃, T̃) 6= (S, T)

If S̃ = S ⇒ A lost as T̃ won’t match.
So assume S̃ 6= S, then by pairwise independence to learn AS +B,

Pr(can predict [AS̃ +B]n
2
−m) ≤ 2m−

n
2 ⇒ δ′ ≤ 2m−n/2

δ = δ′ ∗ 2n−k = 2m−n/2+n−k = 2m+n/2−k

m

k ≤ n

2
+m+ log

1

δ

m

m ≤ k − n

2
− log

1

δ
(2)

Theorem 1 ∀εδ and ∀k > n
2 + max(2 log 1

ε , log 1
δ), ∃(k, ε, δ)-post-application robust extrac-

tor with output length m = k − n
2 − log 1

δ .

X︷ ︸︸ ︷
n/2

A

n/2

B

×
s

As

⊕

B

R T

B was added to both R (post-application, not needed for extraction) and T .

Lecture 14, Page 4

New idea:

X︷ ︸︸ ︷
n−v
A

v

B

×
s

As︷ ︸︸ ︷
R W

⊕

B

R T

n = m+ 2v, v =
n−m

2

-R already universal, for extraction this is enough.
-only T is pairwise independent.

New pre-application: Let v = n−m
2 (m = n − 2v), Gen(X;S) : X = (A,B), |B| =

v, |A| = n− v,

S
$← GF [2n−v].

Let Y = AS,R = [Y]m,W = [Y]n−vm+1, T = W ⊕B,P = (S, T)

Rep((A,B), (S̃, T̃)) check if T̃ is correct if so extract.

Extraction security:

ε = 2ε′ =
√

2n−v−k =

√
2n−

n−m
2
−k =

√
2

n
2
+m

2
−k

k ≥ n

2
+
m

2
+ 2 log

1

ε
(previously amp. k ≥ n

2
+ log

1

ε
)

Authentication: δ = 2n−k. δ′ = 2n−k−v = 2n−k−
n−m

2 = 2
n
2
+m

2
−k

k ≥ n

2
+
m

2
+ log

1

δ
(amp. k ≥ n

2
+m+ log

1

δ
)

m̃ = 2(n2 − k −max(2 log 1
ε , log 1

δ) twice as large if log 1
δ > 2 log 1ε.

Theorem 2 ∀ε, δ,∀k ≥ n
2+max(2 log 1

ε , log 1
δ) pre-app with m = 2(k−n

2−max(2 log 1
ε , log 1

δ)).
Almost twice as much, but same k.

Lecture 14, Page 5

We can pose two interesting questions,

Question 2 Is k > n
2 essential? (YES)

Question 3 Is k > n
2] essential for probab. MACs w/ weak keys? (YES)

Lemma 1 ∀ randomized Auth : {0, 1}n → {0, 1}t, Ver : {0, 1}n×{0, 1}t → {0, 1}, ∀ρ (we’ll
use ρ = 1), at least one pf the following holds:

(1) ∃(n, k)-source X s.t. Prcoins of Auth(Ver(X,Auth(X)) < ρ
(2) ∃(n, k)-source X and P ∈ {0, 1}t s.t. Pr(Ver(X,P) = 1) > ρ

2
(3) ∃(n, k)-source X s.t. H∞(X|Auth(X)) ≤ max(0, 2k − n) + log 1

ρ + 2

Corollary 2 For ρ = 1 and perfect correctness, either ∃X fixed p s.t. Pr(Ver(X, p) = 1) >
1
2 or ∃X s.t. H∞(X,Auth(X)) ≤ 2+ max(0, 2k−n), if k ≤ n

2 , H∞(X|Auth(X)) ≤ 2. Proof
is at Appendix C of [2].

Corollary 3 ∀(k, ε, δ) pre-application robust extractor with key length m ≥ 4, ε < 1
16 ,

δ < 1
2 must have k > n

2 and |P | ≥ n− k − 2

Corollary 4 ∀ even probabilistic (k, δ) secure MAC (even for 1 bit) where δ < 1
4 must have

k > n
2 and |T | ≥ n− k − 2.

Proof: Auth(X) = TagX(0)
cond(2) ⇒ can forge TagX(0) w/ pr> 1

2
cond(3) ⇒ can forge TagX(1)|TagX(0) w/ pr> 1

4

open problem: k > n
2 prove upper band on m. (almost sloved for pre-app, how about

post-app?)

Computational Robust Extractors? Can we beat k > n
2 , if A for robustness is com-

putationally bounded? -Yes in RO model.[1] Set R = Ext(X;S), T = H(X,S), H-random
oracle (X is independent of H)

Intuition: H∞(X|R)-high and T doesn’t help unless A queries H(X,S). Hence ∀s̃ 6= s
hard to predict H(X, s̃.

δ = qpred(X|R,S) = q2m−k, m = k −max(2 log 1ε, log q)∀k

Big open question: Instantiate H? -Idea 1: get rid of ”weak” X by Ext(X;S) = (R, k),
T = Tagk(S). Now s→ s̃, k → k̃ related key Tag.

Lecture 14, Page 6

References

[1] Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., & Smith, A. (2005). Secure remote
authentication using biometric data. In Advances in CryptologyEUROCRYPT 2005
(pp. 147-163). Springer Berlin Heidelberg.

[2] Dodis, Y., & Wichs, D. (2009, May). Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In Proceedings of the 41st annual ACM symposium on
Theory of computing (pp. 601-610). ACM.

[3] Dodis, Y., Katz, J., Reyzin, L., & Smith, A. (2006). Robust fuzzy extractors and au-
thenticated key agreement from close secrets. In Advances in Cryptology-CRYPTO 2006
(pp. 232-250). Springer Berlin Heidelberg.

Lecture 14, Page 7

