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Lecture 13: Seed-Dependent Key Derivation

Lecturer: Yevgeniy Dodis Scribe: Eric Miles

In today’s lecture, we study seeded key-derivation functions (KDFs) in the setting where
the source of weak randomness X is dependent on the seed S, and we give two approaches
to constructing KDFs in this setting. Then, we generalize the setting to one in which the
attacker is given some additional “side information” that depends on X and S; we define a
notion of condensers that are secure in the presence of such attackers, and show how they
can be applied to instantiate the Fiat-Shamir heuristic.

1 Introduction

So far in this class, we have studied seeded key-derivation functions (KDF). Namely, we
have constructed functions KDF : {0, 1}n ×{0, 1}v → {0, 1}m, and computed our secret key
as R := KDF(X,S), where X is the weak source of randomness and S is a truly random
seed. We have been implicitly using the following two assumptions.

(a) The source X is independent of the seed S.

(b) The seed S is authentic. (We will discuss formally what this means in future lectures.)

Assumption (a) could be problematic in a number of scenarios. For instance, in models for
leakage-resilient cryptography it may be the case that the attacker can learn some informa-
tion about S before influencing the distributionX. It could also be problematic in real-world
random number generators: think of the weak randomness X being the temperature of the
computer, which is affected by the computation producing the seed S.

In today’s lecture, we will will build KDFs in scenarios where there is some dependence
between the seed and the weak source of randomness.

2 Seed-dependent key derivation

To start, how should we model the seed dependency? We will think of having a probabilistic
sampling algorithm A that sees the seed and produces the weak source of randomness, i.e.
we will have X ← A(S). As usual we will require that X has some level of entropy, e.g.
H∞(X|S) ≥ k for some parameter k.

It is not hard to see that constructions from previous lectures will not work “off the shelf”
in this scenario. This is because we can use a sampler A to break a (standard) extractor
Ext : {0, 1}n × {0, 1}v → {0, 1}m using essentially the same ideas that show deterministic
extraction is impossible. Namely, given a seed s ∈ {0, 1}v , A will choose X uniformly over
the set {x | Ext(x, s)1 = 0} of strings for which the first bit of Ext’s output is 0. This is
a distribution of min-entropy essentially n− 1 and yet for every s, Ext(A(s), s) is far from
uniform. Even if we require that X is efficiently samplable, the sampler A(s) can choose
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(say) n uniform values of x ∈ {0, 1}n, and output the first such that Ext(x, s)1 = 0 (or an
arbitrary one if none satisfy this).

We will consider two interpretations of this impossibility result.

Interpretation 1: We cannot allow the sampler to run the extractor.

There are several interesting options for how to model such a restricted sampler. One
is to use a so-called “split state” model, in which the sampler is made up of two (non-
interacting) functions A1 and A2, the seed s is split as (s1, s2), and the source X is computed
as X := A1(s1) ◦ A2(s2). Another, which we will examine now, is to restrict the running
time of the sampler to be less than that of the extractor.

In fact, we have already seen in previous lectures how this can be helpful. Recall that
we proved the following theorem.

Theorem 1 Let X = {Xi} be a set of distributions over {0, 1}n such that |X | ≤ T and
H∞(Xi) ≥ k for all Xi ∈ X . Then if H = {h : {0, 1}n → {0, 1}m} is an O(log T )-wise
independent hash family where m ≤ k − 2 log(1/ε) − log log T −O(1), we have

Pr
h←H

[∃Xi ∈ X : SD(h(Xi), Um |h) ≥ ε] ≤ 2−n.

To apply this to our setting, note that (the description of) the function h ∈ H is the
seed, and imagine that we restrict the sampler so that for every h, A(h) outputs some
distribution Xi ∈ X . Then the above theorem guarantees that Ext(A(h), h) will be close to
uniform with overwhelming probability over the choice of h.

The only question is how to enforce this restriction on the distributions that A outputs.
To do this, we allow A to choose a circuit Ch of size ≤ t after seeing h, and then Ch is
applied to uniformly random bits to output a sample. (An even more restricted option
would be to allow a single size-t circuit with two inputs, where the first is set to h and
the second is uniformly random.) As the number of circuits of size ≤ t is 2O(t log t), we can
set T = 2O(t log t) and apply the above theorem, with X being the set of all distributions
of min-entropy ≥ k samplable by circuits of size ≤ t, to guarantee that A can break the
extractor with probability at most ε + 2−n. Note that the time needed to compute the
extractor (i.e. the hash function) is Ω(log T ) = Ω(t log t), which is indeed greater than the
time t allowed to the sampler.

Interpretation 2: We cannot allow the KDF to be a good extractor.

Another way to circumvent the impossibility result is to allow the sampler to run in
more time than the KDF, but to not require that the KDF computes an extractor. This
will lead us to the notion of seed-dependent condensers, defined as follows.

Definition 1 Let c ∈ {2,∞}. A function Cond : {0, 1}n×{0, 1}v → {0, 1}m is a (k, d, ε, t)c-
seed-dependent-condenser (SD-condenser) if for every A running in time ≤ t that computes
a distribution X ← A(S) where S ≡ Uv and Hc(X |S) ≥ k, there exists a distribution Y
such that

1. SD(Cond(X,S), Y |S) ≤ ε, and

2. Hc(Y |S) ≥ m− d.
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♦
A few notes are in order. First, the differences from the seed-independent setting are

that the sampler A gets S and that A is restricted to run in time ≤ t. When the entropy
deficiency d is 0 we recover the notion of seed-dependent extractors, but as we have seen this
necessitates tCond > t (where tCond denotes the running time of the condenser). Unlike the
extractor setting, for condensers it may be possible to achieve ε = 0, i.e. it may be possible
to have Hc(Cond(X,S) |S) ≥ m− d. Finally, the attack mentioned at the beginning of this
section essentially shows that we must have d ≥ log(t/tCond), which is not too bad for us if
we can make it tight. (See [1] for more details on this last bound.)

We conclude this section by recalling two lemmas from a previous lecture, which easily
generalize to today’s setting. By the “(t, k)c-real model”, we specify that the sampler A
must run in time ≤ t and output a distribution X such that Hc(X |S) ≥ k.

Lemma 1 If P is a (T, δ)-secure unpredictability application and Cond is a (k, d, ε, t)∞-SD-
condenser, then P is (T, δ′)-secure in the (t, k)∞-real model when using Cond as a KDF,
where δ′ ≤ ε+ δ · 2d.

Lemma 2 If P is a (T, σ)-square-secure application and Cond is a (k, d, ε, t)2-SD-condenser,
then P is (T, δ′)-secure in the (t, k)2-real model when using Cond as a KDF, where δ′ ≤
ε+
√
σ · 2d.

3 Seed-dependent condensers

In this section we show how to construct SD-condensers. Our main focus will be a direct,
simple, and even “philosophically interesting” construction in the H2 setting. We will also
mention a generic conversion from H2 SD-condensers to H∞ SD-condensers. It is open
to get better SD-condensers in the H∞ setting than those resulting from this conversion,
unlike in the seed-independent setting which we saw how to improve in previous lectures.

Recall that in the seed-independent setting, condensers were simply universal hash func-
tions. Namely we had Cond(x, h) := h(x) where h was chosen uniformly from a set H such
that Prh←H[h(x) 6= h(x′)] ≤ 2−m for all x 6= x′. In the seed-dependent setting, we will in-
stead use collision-resistant hash functions, defined next. It is natural that we should look
to cryptographic hash functions to achieve SD-condensers, because we are trying to fool a
large class of sampling algorithms (e.g. all efficiently samplable distributions). Furthermore,
this gives some justification for the widespread practice of using (say) SHA-1 as a KDF in
real-world applications; this is the “philosophically interesting” point mentioned earlier.

Definition 2 A set H = {h : {0, 1}n → {0, 1}m} is a (t, δ)-collision-resistant (CR) hash
family if for all probabilistic B running in time ≤ t

Pr
h←H

[B(h)→ (x1, x2) : h(x1) = h(x2) ∧ x1 6= x2] ≤ δ.

H is (t, δ)-independent-collision-resistant (iCR) if for all probabilistic A running in time ≤ t

Pr
h←H

[

A(1)(h)→ x1, A
(2)(h)→ x2 : h(x1) = h(x2) ∧ x1 6= x2

]

≤ δ
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where A(1) and A(2) denote two independent executions of A. ♦
We give a few remarks on what can be achieved. It is not hard to see that every (2t, δ)-

CR hash family is also (t, δ)-iCR. If we allow non-uniform attackers then every (t, δ)-iCR
hash family is also (t, 2δ)-CR, because A can hardwire the best randomness for B and then
choose randomly whether to output x1 or x2. By the standard “birthday attack”, the best
δ that we can hope to achieve for CR hash families is Ω(t2/2m). In fact, this is also the
best δ that we can achieve for iCR hash families, as follows. Imagine an attacker A that
chooses t uniformly random inputs, runs h on each, and if there is a collision h(x) = h(x′)
then A randomly outputs one of x or x′. This attack succeeds with probability Ω(t2/2m)
if we can guarantee that A chooses the same t inputs in both executions, which we can
do by (non-uniformly) hardwiring A’s randomness to the value that maximizes its success
(though A still of course randomly outputs one of x or x′).

The following lemma shows that iCR hash families suffice to construct SD-condensers
in the H2 setting.

Lemma 3 If H = {h : {0, 1}n → {0, 1}m} is a (t, δ)-iCR hash family where δ = 2d−1/2m,
then Cond(x, h) := h(x) is a (k, d, 0, t)2-SD-condenser for any k ≥ m− d+ 1.

Proof: Let A : H → {0, 1}n be any sampler running in time ≤ t, and consider the following
calculation where as usual Col denotes collision probability.

Col(h(A(h)) |h) = Pr
[

A(1)(h)→ x1, A
(2)(h)→ x2 : h(x1) = h(x2)

]

≤ Pr[x1 = x2] + Pr[h(x1) = h(x2) ∧ x1 6= x2]

≤ Col(A(h) |h) + δ.

Observe that Col(A(h) |h) ≤ 2−k ≤ 2d−1/2m by the assumption on the H2 entropy of A’s
output distribution. Since also δ ≤ 2d−1/2m, we have Col(h(A(h)) |h) ≤ 2d/2m and thus
Cond is a (k, d, 0, t)2-SD-condenser.

Combining Lemmas 2, 3, and the preceding discussion gives the following corollary.

Corollary 4 If P is a (t, σ)-square-secure application then, when using a (2t, δ)-CR hash
family as a KDF, P is (t, δ′)-secure in the (t, log(1/δ))2-real model, where δ′ ≤

√
σ · δ · 2m+1.

In particular, if σ is negligible and t is polynomial, then δ′ is negligible.
The following lemma gives a generic conversion from SD-condensers in the H2 setting

to those in the H∞ setting.

Lemma 5 If Cond is a (k, d, 0, t)2-SD-condenser, then for every γ > 0 Cond is also a
(k, d+ log(1/γ), γ, t)∞-SD-condenser.

4 Condensers with side-information

In this section we generalize the previous setting, and allow the sampler A to pass some
additional information Z to the predictor P . More precisely, where before we had A(S)→
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S ← $
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Figure 1: Condenser with side-information

X, now we will have A(S) → (X,Z) where H∞(X |S,Z) ≥ k and Z is given to P in
addition to the output R (which is either uniformly random or is Cond(X,S)).

Unfortunately this is not achievable in general: A(S) can choose X uniformly at random
and send Z := Cond(X,S) to P . This satisfies H∞(X |S,Z) ≥ n −m, but clearly allows
P to perfectly distinguish the output of the condenser. To get around this limitation,
we also pass Z to the condenser. This notion, called a (k, d, ε, t)∞-condenser with side
information, is depicted in Figure 1. Observe that if we can build such a condenser, then
we can prove versions of Lemmas 1 and 2 in the “(t, k)∞-real model with side information”,
where k = n− ℓ and ℓ is the bit-length of the side information.

This is already non-trivial to achieve when the sampler A is restricted to choosing X
uniformly at random, and for the rest of this section we will restrict ourselves to this special
case. Note that we can thus view the jointly distributed (X,S) as a single uniform source
X (which is input to both A and the condenser). The following definition formalizes the
construction we wish to obtain, and is depicted in Figure 2.

Definition 3 A function Cond : {0, 1}n×{0, 1}ℓ → {0, 1}m is an (ℓ, d, ε, t)-leaky condenser
if for every A running in time ≤ t that computes a distribution Z ← A(X) where X ≡ Un,
there exists a distribution Y such that

1. (Y,Z) ≈ε (Cond(X,Z), Z), and

2. H∞(Y |Z) ≥ m− d.

♦
It is unknown if such leaky condensers exist, and obtaining a construction under any

standard cryptographic assumption is an important open problem. Note that the construc-
tion from CR hash functions (Lemma 3) breaks down, because the second time around you
need to run A(h) conditioned on some fixed Z. It is even open to obtain a construction in
the Random Oracle (RO) model; one difficulty here is specifying the right formalization for
the min- and Rényi-entropy of the RO. Still, it seems reasonable to conjecture that leaky
condensers (and condensers with side information) exist with roughly the same parameters
as in the seed-dependent setting of Lemma 3.
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Figure 2: Leaky condenser

One potential approach (which according to the lecturer seems “likely to fail”) is to use
distributional collision-resistant hash functions, defined as follows.

Definition 4 A setH = {h : {0, 1}n → {0, 1}m} is a (t, δ)-distributional-collision-resistant
(DCR) hash family if for all probabilistic B running in time ≤ t, the following holds. Sample
(x, z)← B(h), and let X ′ be the marginal distribution on the first element of B(h)’s output
conditioned on the second being z. Then, Pr[h(x) = h(X ′) ∧ x 6= X ′] ≤ δ. ♦

Question 1 Can DCR hash families be used to construct leaky condensers, analogously to
Lemma 3?

Finally, we end today’s lecture with an application of leaky condensers, namely instan-
tiating the Fiat-Shamir heuristic.

4.1 The Fiat-Shamir heuristic

The Fiat-Shamir heuristic [2] is a construction for transforming an interactive, constant-
round, public-coin protocol into a single-round (i.e. non-interactive) protocol. Its soundness
can be proven in the RO model, but today we will see how leaky condensers can be used to
instantiate the construction. We will focus on the following restricted case: transforming
3-round Σ-protocols (defined next) into 2-round public-coin protocols, or 1-round protocols
in the Common Reference String (CRS) model.

Definition 5 Let L be a language consisting of pairs (α, β). A Σ-protocol for L, between a
prover P who holds (α, β) and a verifier V who holds only α, is a 3-round protocol defined as
follows. P first sends a commitment z, next V responds with a uniformly random challenge
r, and finally P sends a response p.

The protocol is (t, δ)-sound if for every (possibly cheating) prover P ∗ who holds only α
and runs in time ≤ t, V (α) accepts with probability ≤ δ after interacting with P ∗(α), over
a uniform choice of α. ♦

As an example, we now describe the well-known Schnorr protocol [3] for discrete-log.
Let G be a cyclic group of order q, and let g ∈ G be a generator. Then the language L is
{(α, β) | α = gβ ∈ G; β ≤ q}. The protocol is the following.
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1. P chooses γ ≤ q uniformly at random, and sends z := gγ .

2. V chooses r ≤ q uniformly at random and sends it.

3. P computes and sends p := γ + rβ (mod q).

V accepts iff gp = z · αr.

This protocol is zero-knowledge, meaning that at the end V has learned nothing beyond
the fact that P knows β. It also satisfies the following special soundness condition: for any
two transcripts (z, r1, p1) and (z, r2, p2) with r1 6= r2, if they both cause V to accept then
β can be computed as β = (p1 − p2)/(r1 − r2). Thus, under the assumption that no time-t
algorithm can compute discrete-log in G except with probability ≤ δ over a uniform choice
of α, this protocol is (t, δ)-sound.

The Fiat-Shamir heuristic collapses any Σ-protocol (P, V ) to a 2-round protocol (P ′, V ′)
as follows. Let H be a family of functions to be specified. The protocol is the following.

1. V ′ chooses h←H uniformly at random and sends it.

2. P ′ computes z as P would, computes r := h(z), computes p from this r as P would,
and sends (z, p).

V ′ accepts iff V would on transcript (z, r, p). (Note that V ′ can compute r from z.)

Note that if the function h is specified by a shared random string (a.k.a. the CRS model),
this can be made into a 1-round (non-interactive) protocol. The following question is open.

Question 2 Can we construct hash families H such that (P ′, V ′) is sound for any sound
(P, V )?

Towards an answer to this question, let z ∈ {0, 1}ℓ and r ∈ {0, 1}m, and let Cond :
{0, 1}n × {0, 1}ℓ → {0, 1}m be an (ℓ, d, ε, t)∞-leaky condenser for some n. Then let h be
specified by a uniformly random X ← Un, and compute h(z) := Cond(X, z).

For intuition as to why this works, consider a cheating prover P ∗. P ∗ is given a random
X ∈ Un (i.e. the description of h) and to successfully convince V ′ to accept, P ∗ must
implicitly construct an accepting transcript (z, r = Cond(X, z), p). If we could guarantee
that r was ε-close to the uniform distribution, then this would increase the protocol’s
soundness error by an additive factor of ε. Instead, viewing the transcript as the side
information Z, the leaky-condenser property guarantees that r is ε-close to a distribution
with entropy deficiency d. Thus the soundness error increases by an additive factor of ε
and a multiplicative factor of 2d.

This intuition can be made formal, as follows [1, Thm. 6.1].

Theorem 2 If (P, V ) is a (t, δ)-sound Σ-protocol with ℓ-bit commitments and m-bit chal-
lenges, and Cond : {0, 1}n ×{0, 1}ℓ → {0, 1}m is an (ℓ, d, ε, t)∞-leaky condenser with n = ℓ,
then the protocol (P ′, V ′) using h = Cond as above is (t′, δ′)-sound for δ′ = 2d(ε + δ) and
t′ = t−O(ℓ).

The paper [1] also shows that some notion of leaky condensers are necessary for the
soundness of the Fiat-Shamir heuristic, and thus provide the right abstraction for what
type of construction is necessary.

We conclude with an open question.
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Question 3 Do H2 leaky-condensers suffice in the above construction?
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