
Randomness in Cryptography April 6, 2013

Lecture 12: Computational Key Derivation

Lecturer: Yevgeniy Dodis Scribe: Benjamin Fuller

In the previous lecture, we discussed methods of key derivation, in particular, how to
beat the RT bound for square-friendly applications and defined the notion of unpredictabil-
ity extractors. In this question, we’ll ask if we can do any better by allowing computational
assumptions. Such notions may be helpful for beating information-theoretic bounds for
applications that consider only computational adversaries.

We’ll begin with a recap of the information theoretic key derivation mechanisms from
the previous class.

1 Last Class

If we are giving a high entropy source R, H∞(R) ≥ k the problem of producing a uniform
key is known as key derivation. We will consider an application P that achieves security δ
when given a uniform key. We also consider a setting of parameters for δ = 2−64 and key
length m = 128.

1. Arbitrary Applications: Our first options works for any application P but has the
worst bounds. In setting we use a randomness extractor (e.g. a pairwise independent
hash function through leftover hash lemma [11]). This gives us the following bound:

δ′ ≤ δALL
def
= δ +

√
2m−k.

Achieve δ′ = O(δ) when k ≥ m+2 log 1/δ. We also consider a concrete parameters
δ = 2−64 and m = 128. For these parameters, need k = 256.

Achieve no security when k = m. Concrete parameters, achieve δ′ = 1.

2. Square friendly applications: Again we use LHL, but consider only square friendly
applications. Let P be a square friendly application with security δ and square security

σ = O(δ). Then we achieve real security δ′ ≤ δSQF
def
= δ +

√
δ2m−k.

Achieve δ′ = O(δ) when k ≥ m+ log 1/δ. Concrete parameters need k = 192.

Achieve security δ′ ≈
√
δ when k = m. Concrete parameters achieve δ′ = 2−32.

3. Unpredictability applications: This was the major new mechanism introduced in
the previous class. We first showed the following theorem:

Theorem 1 Let h : {0, 1}n × {0, 1}ν → {0, 1}m be a O(log 1/δ)-independent hash.
Then h is a (k, δ, δ′)-unpredictability extractor (this is equivalent to a good H∞-

condensor) for δ′ ≤ δUNP
def
= δ + O(δ log(1/δ2m−k)). This means for all unpre-

dictability applications P with ideal security δ we achieve (k, δ′)-security in the real
model.

Lecture 12, Page 1

An unpredictability extractor works for any unpredictability application P . Achieving
security as above. In particular, this yields the following bounds:

Achieve δ′ = O(δ) when k ≥ m+ log log 1/δ. Concrete parameters need k = 138.

Achieve security δ′ = O(δ log 1/δ) when k = m. Concrete parameters achieve
δ′ = 2−57.9.

4. Heuristic Security: We will use a random oracle as a reference point for compar-
ison1. This is a heuristic KDF, we assume that h acts as a random oracle, then we
achieve δ′ ≤ δRO = δ+q/2k where q is the number of queries an adversary can make to
the random oracle. For most applications q ≤ δ2m. This means that δRO = δ+δ2m−k.

Achieve δ′ = O(δ) when k = m. Concrete parameters need k = 128

Achieve security δ′ = O(δ) when k = m. Concrete parameters achieve δ ≈ 2−64.

Question: Can we beat these bounds using computational assumptions? We’ll first
consider whether these bounds are optimal in the information-theoretic setting.

2 Optimality of bounds for 1.-3.

2.1 LHL

We begin with the bound for an arbitrary application. Radhakrishnan and Ta-Shma [13]
showed that to achieve a (k, ε) extractor then ε ≥

√
2m−k. They showed for any candidate

extractor Ext there exists a source X and a distinguisher D that fools it. In [13] both
the source X and D are inefficient. It was an open question [3] whether both items must
be inefficient. This is called the SRT conjecture. In [5], it was shown that having X be
efficiently samplable does not change the bound. This result is unconditional in the sense
that the bound still applies if Ext is not required to be efficient.

Open Question: Can the RT bound be overcome for inefficient sources and efficient
distinguishers?

2.2 Square-Friendly LHL

For square-friendly applications can we achieve on δ′ = O(
√
δ2m−k)? In the previous

lecture we showed this answer is no. That is, there is a SQF application P such that
δ′ = O(

√
δ2m−k) is tight for all Ext. In this setting as above we can make X efficiently

samplable but D is inefficient. Recall the application was a square-friendly key derivation
function.

2.3 Unpredictability Applications

In [5], the authors show that the bound of 3. is essentially optimal for unpredictability
applications. They also show how to reduce seed length from O(n log 1/δ) to O(k log k) ≤

1Note that this technique only works for computationally secure applications. It does not work for
applications like one time encryption or MAC.

Lecture 12, Page 2

O(n log n) We know that by combinatorial arguments that O(log n+ log 1/δ) seed length is
possible.

Open Question: Do there exists efficient schemes that achieve seed length O(log n +
log 1/δ)?

Open Question: Is this bound tight for natural applications P like CPA encryption
or a weak PRF?

Instead of viewing the result of [5] as an unpredictability extractor we can view it as a
randomness condenser that is Ext(X;S), S ≈δ (Y, S) where H∞(Y |S) ≥ m − ` where ` is
entropy deficiency. Where ` = 0 this is an extractor and subject to the same bounds as 1.
when ` = 1 then we only need k ≥ m+ log log 1/δ and when ` = log log 1/δ + O(1) we get
k ≥ m. Thus, a slight entropy deficiency is very helpful. We now return to our original
question, can we do beat these bounds in computational settings?

3 Computational Key Derivation

As described in [3], a natural replacement to an extractor is a computational extractor:
Definition 1 Let Ext : {0, 1}n × {0, 1}ν → {0, 1}m. Ext is a (t, k, ε)-computational

extractor if for all t-bounded distinguishers D,

∆D(Um,Ext(X;S)|S) ≤ ε

We can also state this bound as CDt(Um,Ext(X;S)|S) ≤ ε. ♦

Observation 2 If P is a (t, δ)-secure application and Ext is a (t, k, ε)-computational ex-
tractor then using Ext(X;S) results in (t, δ′)-real security for δ′ = δ + ε.

3.1 Extract-then-expand

A reasonable idea to build a computational extractor is to first build an extractor and
then expand the output using a pseudorandom generator. We first define a pseudorandom
generator:

Definition 2 Let G : {0, 1}m′ → {0, 1}m be a function. We say that G is a (t, ε)-
pseudorandom generators if for all t-bounded D,∆D(G(Um′), Um) ≤ ε ♦

Lemma 1 (Extract-then-expand [12]) If G : {0, 1}m′ → {0, 1}m is a (t, εprg)-pseudorandom
generator and Ext′ : {0, 1}n × {0, 1}ν → {0, 1}m′ is a (k, εext)-extractor then Ext(x, s) =
G(Ext′(x, s)) is a (t, k, ε′) computational extractor where ε′ = εext + εprg.

Consider an application P with ideal security δ. Using a computational extractor we
achieve security δ′ ≤ δ+ εext+ εprg. As before, we would like to set εext ≈ εprg ≈ δ and find
out what k is necessary. Recall for an extractor to get εext = δ we need k ≥ m′ + 2 log 1/δ.

We also need a (t, δ)-secure pseudorandom generator from m′ to m bits. The good news
is that once we can stretch from m′ → m′ + 1 we can stretch from m′ to m with a little
cost. So we just need a (t, δ)-secure PRG from m′ → m′ + 1. So how low can m′ be?

Lecture 12, Page 3

Practice: A reasonable setting of m′ = 128 (64 is considered too low). In this set-
ting there is no need to expand our key, we can just directly use 128 bits. No explicit
pseudorandom generator is necessary.

Theory: In [4], De, Tulsiani, and Trevisan show that m′ must be at least 2 log 1/εprg
when t = O(m′). They also provide a general (non-uniform) bound: m′ ≥ 2 log 1/εprg +
log t/m′.

These two results imply that for the extract-then-expand strategy to be helpful we need
k ≥ 2 log 1/δ+m′ ≥ 2 log 1/δ+2 log 1/δ = 4 log 1/δ. So to achieve δ = 2−64 we need k ≥ 256
to obtain arbitrary key length output.

Question 1 Is extract-then-expand helpful?

Yes: In the medium-to-high entropy regimes, extract-then-expand easily beats the RT
bounds and achieves m >> k − 2 log 1/δ.
No: Extract-then-expand fails in the low entropy regimes we most care about improving (i.e.
when k ≤ 256). We could also consider formulations other than δ = εext = εprg.

Aside: Is a pseudorandom generator (or a one-way function) necessary to beat the RT
bound computationally?

Theorem 3 Let s be a security parameter and let Ext : {0, 1}n(·) × {0, 1}ν(·) → {0, 1}m·

be a family of (t(s), k(s), ε(s))-computational extractors. If m >> k − 2 log 1/ε− Ω(1) and
t(s) ≥ poly(s) and ε(s) = negl(s), then a (t′, ε′)-PRG exists for t′ ≥ poly(s) and ε′ = negl(s).

Proof:[Sketch] We will use the following result of Goldreich [10]:

Theorem 4 [10] Let c1, c2 > 0 be two constants with c1 < c2. Let A,B be efficiently
samplable distributions such that A,B are computationally indistinguishable (for all poly-t,
∆t(A,B) < c1ε) and SD(A,B) ≥ c2ε, then one-way functions (and thus pseudorandom
generators exist)2.

Using the above result we know that being the RT bound there must exist an efficiently
samplable distribution X such that SD((S,Ext(X;S)), (S,Um)) > 5ε. However, since we
have a computational extractor:

∆t((S,Ext(X;S)), (S,Um)) < ε.

These two statements satisfy the conditions of Theorem 4, thus, pseudorandom generators
exist.

Thus, we know in order to build a computational extractor we must build a pseu-
dorandom generator. We now ask if we run a condenser instead of an extractor to get
savings (recall our constructions of condensers are significantly better than constructions of
extractors).

2The original statement of the theorem is that the statistical distance is 1/poly while the computational
distance is negl.

Lecture 12, Page 4

3.2 Condense-Expand-Extract

As we saw in the previous section, extract-then-expand requires a significant amount of
starting entropy, we will try a new paradigm, extracting from a pseudoentropy generator,
we start by providing definition of a computational condenser:

Definition 3 An efficient function PEG : {0, 1}n → {0, 1}m is a (n−d
′

n → m−d
m , t, ε)-

pseudoentropy generator if for all X where H∞(X) ≥ n − d′ there exists a distribution Y
where H∞(Y |S) ≥ m− d and for all t-bounded D,

∆D((PEG(X,S), S), (Y, S)) ≤ ε.

♦
Note: It should be clear for a pseudoentropy generator d ≥ d′ as the source can simply

fix bits of the output of PEG. Thus, our goal is to increase the overall entropy not decrease
the entropy gap. It is still an interesting object if we increase the entropy gap, that is:
d > d′.

The hope is that a pseudoentropy generator can be built significantly efficiently than
a computational extractor. Essentially, we want a “pseudorandom generator” that works
when given any high entropy distribution. If we could build a pseudoentropy generator more
efficiently than extract-then-expand we could then extract its output. The construction is
below:

Theorem 5 Let PEG : {0, 1}n → m′ be a (n−d
′

n → m′−d
m′ , t, εpeg)-pseudoentropy generator

and let Ext′ : {0, 1}m′ × {0, 1}ν → {0, 1}m be a (m′ − d, εext) extractor, then Ext(X;S) =
Ext′(PEG(X);S) is a (t, n− d′, εpeg + εext) computational extractor.

Thus, if we could build a pseudoentropy generator efficiently we may be able to avoid
the problems encountered in the extract-then-expand paradigm. Note that a pseudoentropy
generator is a difficult task, it expand the apparent entropy of all high entropy distributions.
We’ll start by asking how well pseudorandom generators perform on slightly deficient distri-
butions. The hope is that we can then use a condenser (where constructions are significantly
better than extractors) followed by a pseudorandom generator (to build a pseudoentropy
generator).

Construction 1 Let Cond : {0, 1}n × {0, 1}µ → {0, 1}m1 be a (kn →
m1−d′
m1

, ε) condenser
and let G : {0, 1}m1 → {0, 1}m2 be a (t, εprg) pseudorandom generator. Define PEG(x; s) =
G(Cond(x; s)), s.

In order to show that Construction 1 is a pseudoentropy generator we must show that
a pseudorandom generator still works on slightly deficient distributions. This is known as
the dense model theorem and appears in several works [7, 14, 8, 9] (see Appendix B of [8]
for a comparison).

Theorem 6 Let G : {0, 1}m1 → {0, 1}m2 be a (t, εprg) pseudorandom generator. Let

εdense > 0 be a parameter, G is a (m1−d′
m1

→ m2−d′
m2

, tε2dense, ε2
d + εdense) pseudoentropy

generator.

Lecture 12, Page 5

Proof:[Sketch] Let X be a distribution with H∞(X) ≥ m1−d′. The overall idea is to show
if for any Y with entropy H∞(Y) ≥ m2− d′ there exists a distinguisher D for G(X) and Y
is also a good distinguisher for G(Um1) and Um2 .

The proof proceeds in two stages: first we show if we have a distinguisher D that
works for all high min-entropy distributions Y (this is a weaker statement, in the theorem a
different distinguisher may work for each Y) then we show that D distinguishes G(Um1) and
Um2 . Second, we show how to build a distinguisher for all high min-entropy distributions Y
out of distinguishers for each distribution Y . The second stage of the proof comes from [1,
Theorem 5.2]3. We focus on the first part. The proof proceeds roughly as follows,

1. Suppose D distinguishes G(X) from any distribution Y of min-entropy m2 − d′ with
advantage ε′ (ε′ = ε2d

′
the remainder of the loss in parameters occurs in the second

part).

2. Show that one of two conditions holds:

For all Y with min-entropy m2 − d′, E[D(Y)] is lower than E[D(G(X)] by ε′,

Or for all such Y , E[D(Y)] is higher than E[D(G(X))] by at least ε′.

This follows by convexity of min-entropy distributions: if there were a Y1 Y2 with
D(Y1) < D(G(X)) and D(Y2) > D(G(X)) then we could build a distribution Y3 out
of Y1, Y2 with D(Y3) = D(G(X)).

3. Assume the former without loss of generality. This initial step allows us to remove
absolute values and to find a high-entropy distribution Y + on which E[D(Y +)] is the
highest.

4. Show that for every y outside of Y +, D outputs 0, and that Y + is essentially flat (roughly,
all points where D outputs 1 occur with the same probability). Use these two facts
to show an upper bound on E[D(Um2)].

5. Provide a lower bound on E[D(G(Um1))] based the performance of D on G(X).

Parameter Settings There is a significant loss in Theorem 6. One possible option for
parameters is to set εdense = t−1/3 this makes t′ = tεdense = t1/3 and ε′ = ε2d + t−1/3. For
most natural settings ε′ will be dominated by the second term giving t′ = t1/3 and ε′ ≈ t−1/3.
Another possible option is to try keep ε′ = O(ε2d

′
) this means setting εdense = ε2d

′
. This

leads to settings ε′ = ε2d
′

and t′ = t(ε)222d
′
. For most reasonable settings of ε, t this is not

a very meaningful security guarantee.
We now look back at Construction 1 using the analysis from Theorem 6:

Corollary 2 Let P be an unpredictability application with ideal security δ. Let Cond :
{0, 1}n × {0, 1}ν → {0, 1}m1 be a (kn →

m1−log log 1/δ
m1

, δ) condenser and let G : {0, 1}m1 →
{0, 1}m2 be a (t, εprg). Then using G(Cond(X;S)), S results in real security δ′ = δ +
εprg log 1/δ+ εdense + δ = 2δ+ εprg log 1/δ+ t−1/3 and t′ = tε2dense = t1/3 for εdense = t−1/3.

3There are several technical conditions in this theorem. The distinguisher is deterministic and output
values in a range, much of the work in the first part of the proof is dealing with these conditions.

Lecture 12, Page 6

For practical parameters k = 128, εprg = 2−64, t = 264 and δ = 2−64 this yields δ′ =
2−6426 +2−64/3 ≈ 2−21 the last term εdense is the term that makes this solution impractical.

Note: we could then extract from Construction 1 to yield a computational extractor
but the loss in Theorem 6 prevents this from being very useful. This would make the
construction applicable in all applications (not just unpredictability applications).

We now have two options for a computational extractor: extract-then-expand and
condense-expand-extract. Extract-then-expand has decent parameters but only in the mid-
to-high entropy regimes while parameter losses in condense-expand-extract make it imprac-
tical for use. We will now discuss our last technique to build a computational extractor.

3.3 wPRF’s

Up until now we have used a truly random seed and stretching the input to an extractor.
We will now try the opposite, using computational techniques to stretch the seed of an
extractor. We begin by reviewing weak pseudorandom functions:

Definition 4 Let F represent the set of all functions from {0, 1}n → {0, 1}m. Let
KeyGen(1n) → {0, 1}ν be a function. The family of functions f : {0, 1}n × {0, 1}ν →
{0, 1}m (indexed by s generated by KeyGen) is a (q, t, ε) if the following holds. Let X1, ..., Xq

be uniformly sampled from {0, 1}n for all t-bounded distinguishers D:

Pr
s←KeyGen(·)

[D((X1, fs(X1)), ..., (Xq, fs(Xq)))]−Pr[g ← F][D((X1, g(X1)), ..., (Xq, f(Xq))] < ε.

♦
The double run trick works for wPRF’s giving the following result:

Theorem 7 [6, Theorem 3.2] Let F be a (2q, 2t, δ)-wPRF in the ideal model. Then F is
(q, t, δ))-square secure and (q, t,

√
2d−1δ)-secure in the (m− d)-real2 model.

Thus, a wPRF secure for 2 queries yields a key derivation function secure against one
query in the ideal model (note that it beats the bounds in Theorem 6). This means
wPRF’s are computational Renyi entropy extractors. Thus, we try to construct an effi-
cient wPRFsecure against two queries.

Lemma 3 Let G : {0, 1}m → {0, 1}2m be a (t, ε)-pseudorandom generator and let h :
{0, 1}m×{0, 1}2m → {0, 1}m be a pairwise independent hash function (for example h(a,b)(s) =
as+ b). Define the function fx(s) = hg(x)(s). The following hold:

1. f is a (t, 2, ε+ 1
2m)-wPRF.

2. f is (t, 1, ε+ 1
2m)-square secure.

3. f is a
(
t,m− d,

√
2d(ε+ 1

2m

)
-computational extractor (for H2) that produces an m-

bit key.

Proof:[Sketch] Let h : {0, 1}m × {0, 1}2m → {0, 1}m be any pairwise independent hash
function. Then h is a (∞, 2, 2−m)-secure wPRF. The only problem is that we need 2m bits
as the seed for h. By a hybrid argument hG(Um)(Um) is a (2t, 2, εprg + 2−m)-wPRF. The
lemma follows by application of Theorem 7.

Lecture 12, Page 7

Notes: We have removed the dependence of t′, ε′ that occurred in Theorem 6, this
allows for significantly better parameters in most cases. We also only require that H2 is
high allowing for a larger class of sources.

We can also compose the efficient condensers we constructed in the previous lecture to
produce a stronger key derivation function:

Corollary 4 Let Cond : {0, 1}n × {0, 1}µ → {0, 1}m be a (kn →
m−d
m , ε)-condenser and let

f : {0, 1}m×{0, 1}m → {0, 1}m be the wPRF defined above. Let Ext : {0, 1}n×{0, 1}µ+m →
{0, 1}m be defined as g(x, s1, s2) = hG(Cond(x;s1))(s2). Then Ext is a (t, k,

√
2d(εprg + 1

2m) +

ε)-computational extractor. In particular, let P be an application with ideal security δ, using
our optimal condenser we achieve real security δ′ = δ +

√
εprg2m−k.

References

[1] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of entropy.
In 11th International Conference on Random Structures and Algorithms, pages 200–215,
2003.

[2] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory delegation.
In CRYPTO, pages 151–168, 2011.

[3] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computa-
tional Extractors and Pseudorandomness in TCC 2012.

[4] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks
against one-way functions and prgs. Advances in CryptologyCRYPTO 2010. Springer
Berlin Heidelberg, 2010. 649-665.

[5] Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. ”Key Derivation Without En-
tropy Waste.” (2013).

[6] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. Theory of Cryptography.
Springer Berlin Heidelberg, 2013. 1-22.

[7] S. Dziembowski and K. Pietrzak. Leakage-Resilient cryptography. In IEEE 49th Annual
IEEE Symposium on Foundations of Computer Science, 2008., pages 293–302, 2008.

[8] Benjamin Fuller, Adam O’Neill, and Leonid Reyzin. A unified approach to deterministic
encryption: New constructions and a connection to computational entropy. Cryptology
ePrint Archive, Report 2012/005, 2012.

[9] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. STOC. ACM, New York, pages 99–108, 2011.

[10] Oded Goldreich. A note on computational indistinguishability. Information Processing
Letters 34.6 (1990): 277-281.

[11] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

Lecture 12, Page 8

[12] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
Advances in CryptologyCRYPTO 2010. Springer Berlin Heidelberg, 2010. 631-648.

[13] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and
depth-two superconcentrators. SIAM Journal on Discrete Mathematics 13.1 (2000): 2-
24.

[14] O. Reingold, L. Trevisan, M. Tulsiani, and S. Vadhan. Dense Subsets of Pseudorandom
Sets. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages
76–85. IEEE, 2008.

Lecture 12, Page 9

