On Extractors, Error-Correction and Hiding All Partial Information

Yevgeniy Dodis

New York University

Based on several joint works with the following co-authors: Xavier Boyen, Jonathan Katz, Rafail Ostrovsky, Leonid Reyzin and Adam Smith
Imperfect Random Sources

• Randomness is crucial in many areas
 - Especially cryptography (i.e., secret keys)

• Usually, assume a source of truly random bits

• However, often deal with imperfect randomness
 - Physical sources
 - Biometric data
 - Partial knowledge about secrets

• Necessary assumption: must have (min-)entropy
 - (Min-entropy) k-source: $\Pr[X=x] \leq 2^{-k}$, for all x

• Can we extract (nearly) perfect randomness from such realistic, imperfect sources?
Extractors: 1st attempt

- A function $\text{Ext} : \{0,1\}^n \rightarrow \{0,1\}^m$ such that $\forall k$-source X, $\text{Ext}(X)$ is “close” to uniform.

- Impossible! \exists set of 2^{n-1} inputs x on which first bit of $\text{Ext}(x)$ is constant \Rightarrow “flat” $(n-1)$-source X, bad for Ext.
Modern Extractors [NZ]

- **Def:**

 A (k,ε)-extractor is $\text{Ext} : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$

 s.t. $\forall k$-source X, $\text{Ext}(X, U_d)$ is ε-close to U_m.

- **Key point:** seed can be much shorter than output.
- **Goals:** minimize seed length, maximize output length.
Strong Extractors

• Output looks random even after seeing the seed
 - Very handy in some applications!
 - Ex: only “remember” biometric secret X, publish seed I
 is and use $\text{Ext}(X, I)$ as the “effective” secret key.

• Def: Ext is a (k, ε) strong extractor if

\[
\text{Ext}'(x; i) = i \circ \text{Ext}(x, i) \text{ is a } (k, \varepsilon)\text{-extractor}
\]

• Optimal: $d \approx \log(n-k) + \log(1/\varepsilon)$,
 $m \approx k - 2\log(1/\varepsilon)$
 - In many crypto applications, OK to have $d = O(n)$
Leftover Hash Lemma

• Universal Hash Family \(\{ h_i : \{0,1\}^n \rightarrow \{0,1\}^m \} \):

\[\forall x \neq y, \quad \Pr_I(h_I(x) = h_I(y)) = 2^{-m} \]

• Leftover Hash Lemma [HILL]: universal hash functions \(\{h\} \) yield strong extractors:

\((I, h_I(X)) \approx_\epsilon (I, U_m) \)

- optimal output length: \(m = k - 2 \log(1/\epsilon) \)
- seed length: \(d = O(n) \)

• Ex: \(\text{Ext}(x;a) = \text{first } m \text{ bits of } a \cdot x \text{ in } GF(2^n) \)

• Many generalizations known (stay tuned !)

Aren’t We Cheating?

• Need **truly random** seed to extract randomness??
 - Remember, extract much more than invest!
 - In some applications have “local randomness”
 - Sometimes go over all seeds for derandomization

• Indeed, many applications!
 - Derandomization [Sip, GZ, MV, STV, NZ, INW, RR, GW, ...]
 - Distributed and Network Algorithms [WZ, Zuc, RZ, Ind]
 - Hardness of Approximation [Zuc, Uma, MU]
 - Data Structures [Ta]
 - Pseudorandom number generation [BH]
 - **Cryptography**!
 [CDHKS, DSS, KZ, GRS, MW, Lu, Vad, Din, DS1, DS2, DRS, BDKOS...]
When to Use Extractors?

• The obvious usage is for extracting good randomness (key derivation)
• Less known: for arguing privacy!

1. Output of extractor hides the actual distribution on X

2. [DS1]: in fact, it “hides every deterministic function of X“!

• Some applications need both usages!
Entropic Security [CMR,RW]

- A map $S()$ is called (k,ε)-entropically secure if $\forall k$-source X, \forall predictors, \exists simulator, \forall functions f, seeing $S(X)$ “does not help”:

$$\Pr\left(S(X) \xrightarrow{\text{Predictor}} f(X)\right) \leq \Pr\left(S(X) \xrightarrow{\text{Simulator}} f(X)\right) + \varepsilon$$

- Also say $S()$ hides all functions of X
- Notice, $S()$ must be probabilistic ($f = S$)
- $S()$ must also be one-way ($f = \text{identity}$)
- Identical to semantic security [GM], but for high-entropy distributions
Comparing to Shannon

• Shannon Security: \(S(X) \) is independent of \(X \)
 - Very strong, hides all “a-posteriori” functions
 - As such, \(S(X) \) can’t be “useful” for anything
• E-security “only” hides “a-priori” functions
 - Can leak “useless” info while still being “useful”
• Equivalent without min-entropy constraint
• Warning: E-security does not compose well
 - Like most i.t. notions, can only be used once
 (e.g., \(S(X;r_1), S(X;r_2) \) might potentially leak \(X \))
High-Entropy Indistinguishability

• A map $S()$ is called (k, ε)-indistinguishable if
 \[\forall k \text{-sources } X, Y, S(X) \text{ is } \varepsilon\text{-close to } S(Y) \]
 - In particular, all of them are ε-close to $S(U)$
 - (k, ε)-extractors are also $(k, 2\varepsilon)$-indistinguishable

• **Thm [DS1]:** If $S()$ is (k, ε)-indistinguishable then it is $(k+2, 8\varepsilon)$-entropically secure

• **Corollary:** extractors for min-entropy k hide all functions for sources of min-entropy $k+2$

• **Punchline:** to argue entropic security, enough to construct a “special-purpose” extractor
“Special-Purpose” Extractors

- Sometimes, plain extractors are not enough!
 - Need extractors with “extra properties”

- **Scenario 1:** more robust **key derivation**
 - Local computability (bounded storage model)
 - Noise-tolerance (biometrics)

- **Scenario 2:** when extraction is merely a **convenient tool** for arguing entropic security
 - Invertibility (for encryption)
 - Collision-resistance (for hash functions)
 - Error-correction (for information-reconciliation)
 - Unforgeability (for message authentication)

- **Scenario 3:** combination of scenarios 1 & 2
Adding Invertibility:
Entropically-Secure Encryption
Symmetric Encryption

- Shannon: Symmetric Encryption without computational assumptions requires $d \geq n$ (achieved by one-time pad)
- Russell and Wang [RW]: What can be said when the message is guaranteed to have high entropy?
Entropically-Secure Encryption

• Require E to be (k, ε)-entropically secure
 - Ciphertext hides all functions of plaintext
 - Note: Shannon security corresponds to $k = 1$

• [RW]: can beat Shannon’s bound when $k > 1$
 - Pretty ad-hoc and complicated

• [DS1]: suffices to construct $E(M;K)$ which is an extractor for min-entropy $k-2$!
 - Leads to better (optimal !) constructions
 - Much simpler to understand/analyze than [RW]

• Thus, need (k, ε)-extractor whose source can be recovered from its output and its seed.
Invertible Extractors

• If \(C = E(M; K) \), then we want
 1. \(C \approx \text{random} \), if \(K \) random and \(M \) has entropy \(k \)
 2. One can recover (“decrypt”) \(M \) from \(C \) and \(K \)
 3. Goal: minimize \(d = |K| \)

• Note, \(|C| \geq |M| = n \) (by invertibility)

• Also, \(C \) has \(|C| \geq n \) bits of entropy (since it is random)

• Since \(M \) only has \(k \) bits of entropy, we must have key length \(|K| \geq n - k \)

• Can we achieve it???
Using Graphs for Encryption

- Graph on 2^n vertices of degree 2^d
- Consider $E(M,K) = N(M,K)$
 - Random step from M
 - Decryption assumes labeling is "invertible", which is easy to get (Cayley graphs)
- **Goal**: get to uniform from any min-entropy $\geq k$ distribution on M
 - Expansion! Want any set of size $\geq 2^k$ to expand to all vertices in 1 step!
- Can achieve $d = n - k + 2 \log(1/\varepsilon)$ (using the Ramanujan expanders)
Sparse One-Time Pad

- For r.v. X over $\{0,1\}^n$ and $\alpha \in \{0,1\}^n$, let $\text{bias}_\alpha(X) = 2(\Pr[\alpha \odot X = 0] - \frac{1}{2}) = \mathbb{E}[(-1)^{\alpha \odot X}]$
- X is δ-biased if $|\text{bias}_\alpha(X)| \leq \delta$ for all $\alpha \neq 0$
- Can sample δ-biased X with $2\log(n/\delta)$ bits

- Fact: If X is δ-biased, M is k-source then $M \oplus X \approx_\varepsilon \text{uniform}$, where $\varepsilon = \delta \cdot 2^{(n-k)/2}$
- Use optimal δ-biased sets and get “sparse one-time pad” with $d = n - k + 2 \log(n/\varepsilon)$
Probabilistic One-Time Pad

- **Modified LHL:**

 - $E(M; K) = (I, M \oplus h_I(K))$

 - probabilistic encryption (I is not part of K)

 - Here $\{h_i : \{0,1\}^d \rightarrow \{0,1\}^n\}$ is “XOR-universal”:

 $$\forall a \in \{0,1\}^n, x \neq y, \Pr_I(h_I(x) \oplus h_I(y) = a) = 2^{-n}$$

- **LHL’ [new]:** If $\{h_i\}$ is XOR-universal and $k \geq n - d + 2\log(1/\varepsilon)$ then

 $$E(I, M \oplus h_I(K)) \approx_\varepsilon E(I, U_n)$$

Probabilistic one-time pad: $d = n - k + 2\log(1/\varepsilon)$
Invertible Extractors

- **Theorem [DS1]:** three constructions
 - From expander graphs, achieve optimal $d = n - k + 2 \log(1/\epsilon)$, where ϵ is the “error”
 - “Sparse One-time Pad: $E(M; K) = M \oplus S(K)$, where $d = n - k + 2 \log(n/\epsilon)$
 - $S(K)$ is a point sampled from $(\epsilon \cdot 2^{(k-n)/2})$-biased set
 - “Probabilistic OTP”: get $d = n - k + 2\log(1/\epsilon)$
 - $E(M; K) = (I, M \oplus h_I(K))$
 - probabilistic encryption (I is not part of K)
 - Here $\{h_i : \{0,1\}^d \rightarrow \{0,1\}^n\}$ is “XOR-universal”
Adding Collision-Resistance: Perfectly One-Way Hash Functions
Collision-Resistant Extractors

• Collision: \((w,i) \neq (w',i')\) s.t. \(\text{Ext}(w;i) = \text{Ext}(w';i')\)
 - Strong extractors: \(i, w \neq w'\) s.t. \(\text{Ext}(w;i) = \text{Ext}(w';i)\)

• “Commit” to \(w\) by publishing \((i, \text{Ext}(w;i))\)
 - Great decommitment: simply present \(w\)!

• **Entropic Security**: if entropy of \(W\) is at least \(k\), then \((I, \text{Ext}(W;I))\) hides all functions of \(W\) (weaker than usual hiding)

• Note: don’t need full power of extractors, suffices to have \((k,\varepsilon)\)-indistinguishability
Construction

• Yet another variant of LHL:
 - \(\text{Ext}(W; I) = f(h_I(W)) \)
 - \(f : \{0,1\}^N \rightarrow \{0,1\}^m \) is arbitrary function
 - \(\{h_i : \{0,1\}^n \rightarrow \{0,1\}^N\} \) are pairwise independent:
 \[\forall x \neq y, (h_I(x), h_I(y)) \equiv (U_N, U_N) \]

• LHL” [DS2]: If \(\{h_i\} \) is pairwise independent and \(k \geq m + 2\log(1/\varepsilon) \) then
 \[(I, f(h_I(W))) \approx_\varepsilon (I, f(U_N)) \]
 (gives an extractor if \(f(U_N) \) is uniform)
Construction

• **LHL”**: If \{h_i\} is pairwise independent and
 \[k \geq m + 2\log(1/\varepsilon) \]
 then
 \[\left(I, f(h_I(W)) \right) \approx_\varepsilon \left(I, f(U_N) \right) \]

• Apply with \(f = \text{CRHF} \) and family of pairwise independent permutations (e.g., \(\{ax+b|a\neq0\} \))
 - Permutations ensure collision-resistance

• **Gives** Perfectly One-Way Hash Functions and Obfuscators for Equality for inputs with entropy > output of CRHF + 2\log(1/\varepsilon)
Adding Locally Computable Aspect:
Key Derivation in Bounded Storage Model
Bounded Storage Model [Mau]

• **Setting:**
 - Alice and Bob share a short random key K (have local randomness, although not needed)
 - A huge random (high entropy enough) string X of length N is broadcast to them
 - Eve is allowed to store any function $Z = f(X)$ of length γN, for some $\gamma < 1$
 - Thus, from Eve’s perspective, X is imperfect, although still has high entropy
Bounded Storage Model

• **Goal 1**: Key Agreement
 - extract a much longer random key R from X using K
 - R is secret from Eve, for any storage function f

• **Goal 2**: Key Reuse
 - keep using the same K with subsequent (new) X’s

• **Goal 3**: Everlasting security
 - R should be secure even if K is leaked later

• **Simple solution**: apply a strong extractor to X with seed K

• Satisfies goals 1-3, but requires Alice and Bob to read the entire X, which even Eve cannot do 😞!
Locally Computable Extractors

- Example [AR]:
 - K consists of t random indices $i_1, \ldots, i_t \in \{1\ldots N\}$
 - $w = X[i_1] \ldots X[i_t]$, extract bit $R = w_1 \oplus \ldots \oplus w_t$
 - Can argue secure if $\gamma < 1/5$ and t "large enough"
 - Rate inefficient, but illustrates the point (indeed, improved by [DM, Lu, Vad])

$R = \text{"Ext}(w,K)"$
Locally Computable Extractors

- “Sample-then-Extract” [Lu,Vad]
 - $K = (K_s,K_e)$, K_s & K_e - sampling & extraction keys
 - Use K_s to sample small subset of bits w from X
 - If “good” K_s is used, w still has high min-entropy from Eve’s point of view
 - Use K_e as a seed to any good strong extractor
Locally Computable Extractors

- “Sample-then-Extract” [Lu,Vad]
 - $K = (K_s, K_e)$, K_s & K_e - sampling & extraction keys

- With optimal sampler and extractor:
 - can have key $|K| = O(\log N + \log 1/\varepsilon)$
 - extract m bits by reading $O(m)$ bits w from X
Adding Noise-Tolerance: Fuzzy Extractors and Secure Sketches
Biometrics

- **Setting**:
 - Want to use *imperfect* biometric data W as your secret key
 - Have *local randomness*, but can’t “remember” it
- **Simple Solution**:
 - Apply strong randomness extractor
 - Store seed I for strong extractor in the public
 - Use $\text{Ext}(W; I)$ as your “actual” secret key
- **Problem**: noisy nature of biometrics
 - Two different readings of W are likely to be different, although “close”
New Primitive: Fuzzy Extractor

- Reliably extract randomness out of \(w \)
- First time: generate random \(R \) from \(w \) (+ seed)

\[
\begin{array}{c}
w \\
\text{seed}
\end{array} \quad \xrightarrow{\text{Gen}} \quad \begin{array}{c}
R \\
P
\end{array}
\]

- Subsequently: reproduce \(R \) from \(P \) and any \(w' \approx w \)

\[
\begin{array}{c}
w' \\
P
\end{array} \quad \xrightarrow{\text{Rep}} \quad R
\]

- \(R \) is nearly uniform given \(P \) if \(w \) has sufficient min-entropy (can put usual \(n, m, k, t, \varepsilon \))

- **Punchline**: trade-off \(|R| = m\) for error-tolerance (distance \(t \)) and non-uniformity (min-entropy \(k \))
What does “Close” mean?

• Depends on the “natural” metric space for the underlying application!
 - Hamming Metric (feature-extraction systems)
 - Set Difference ("favorite" set in a large universe)
 - Edit Metric (handwriting / typing)
 - Permutation Metric (ranking-based preferences)
 - “Real” Metrics: 🧠 (complicated) 😞

• Different metrics require different techniques!

• [DORS]: General framework, specific algorithms
Building Block: Secure Sketch

- Add reliability by **publicly storing sketch** $S(w)$

 $$w \xrightarrow{} S \xrightarrow{} S(w)$$

- **Recover** w from $S(w)$ and **any** $w' \approx w$ (w' close to w)

 $$w' \xrightarrow{} \text{Rec} \xrightarrow{} w$$

 $$S(w) \xrightarrow{} \text{Rec} \xrightarrow{} w$$

- w has “high” min-entropy even given $S(w)$
 - **Entropy loss**: how much entropy $S(w)$ revealed about w
 - Note, **Entropy loss** $\leq |S(w)|$ (good to have short sketch)

- **Punchline**: trade-off *entropy for error-tolerance*
Secure Sketch in Hamming Space

• Idea: what if w is a codeword in an ECC?
• Decoding finds w from w'
Secure Sketch in Hamming Space

- Idea: what if \(w \) is a codeword in an ECC?
- Decoding finds \(w \) from \(w' \)
- If \(w \) not a codeword, simply shift ECC to contain \(w \) and just remember the shift!
Code-Offset Construction

\[S(w) = \text{syndrome}(w) \quad \text{OR} \quad S(w;r) = w \oplus \text{ECC}(r) \]

- If ECC expands \(a \) bits \(\rightarrow n \) bits and has distance \(d \):
 - Correct \(t = d/2 \) errors
 - \(S(w) \) has \(n - a \) bits \(\Rightarrow \) entropy loss at most \(n - a \)
 - Optimal if code is optimal (sketch \(\Rightarrow \) ECC)
 - Works for non-binary alphabets too (i.e., RS codes give optimal entropy loss = \(2t \log q \))
- Appears in [BBR88, Cré97, JW02] under various guises
- [DORS]: also sketches for other metrics
Using Secure Sketches

- SS + strong extractor \Rightarrow fuzzy extractor
 - Namely, set $P = (S(w), I)$, $R = \text{Ext}(w; I)$
 - Extract $|R| \approx \text{residual min-entropy} - 2\log(1/\varepsilon)$

Information-Reconciliation

Can we design sketches which leak no "useful" information about w?

But I still learned $S(w)$!

Still high uncertainty about w.

I think we can !!!
Correcting Errors Without Leaking Partial Information: Entropically-Secure Sketches
Entropically-Secure Sketches

• Design sketch $S(w)$ such that
 - Can recover w from $S(w)$ and any w' close to w
 - $S()$ is (k, ε)-entropically secure

• Notice, implies residual entropy $\geq \log(1/\varepsilon)$

• Converse false: code-offset leaked $\text{syn}(w)$

• Suffices to construct (k, ε)-extractor which is also a sketch!
 - **Goal**: minimize number of “extracted” bits
Error-Correcting Extractors

Theorem [DS2]: If min-entropy $k = \Omega(n)$, then \exists (strong) extractor $S(\cdot)$ (for Hamming errors) such that

- Can correct $t = \Omega(n)$ errors efficiently
- Error $\varepsilon = 2^{-\Omega(n)}$. In particular, $H_\infty(W \mid S(W)) = \Omega(n)$
- Output “only” $k (1-\Omega(1))$ bits

Compare with invertible extractors:
- not having $w' \approx w$ “forces” to extract $\geq n$ bits!

Diagram:
- w is input
- Random coins
- S is extractor
- $S(w)$ is output
- Recover
- \approx_{ε} uniform
- \exists (strong) extractor $S(\cdot)$ (for Hamming errors)
Error-Correcting Extractors

• Idea 1: Recall, \(S(W; X) = W \oplus X \approx \epsilon \) uniform, if \(X \) is \(\epsilon^2 \) biased

• Idea 2: Recall, \(S(W; X) = W \oplus X \) is a good sketch if \(X \) is a random codeword in a good code

• Can we achieve both simultaneously?
 - Yes for non-linear codes, but no explicit constructs 😞
 - No for linear codes (any \(\alpha \) in the dual has \(\alpha \odot X = 0 \)) 😞

• Idea 3: use a family of (carefully chosen) linear codes to get the best of both worlds!

Recently constructed by Shpilka’05 (bad params though)
Construction

• Design family of codes \{\text{ECC}_i\} and set

\[S(w; i) = (i, \text{syn}_i(w)) \quad \text{OR} \quad S(w; i, r) = (i, w \oplus \text{ECC}_i(r)) \]

\[w \quad \downarrow \]

\[i \rightarrow S \]

\[i \]

\[\text{syn}_i(w) \approx \varepsilon \]

\[\text{uniform} \]

Theorem [DS2]: There exist efficiently decodable codes with “needed parameters”

• for “large” alphabets get optimal parameters!
Construction

• Design family of codes \{ECC_i\} and set

\[S(w;i) = (i, \text{syn}_i(w)) \text{ OR } S(w;i,r) = (i, w \oplus ECC_i(r)) \]

• **Theorem [DS2]:** If entropy \(k = \Omega(n) \), there exists codes giving (strong) extractors s.t.
 - Can efficiently correct \(t = \Omega(n) \) errors
 - Have (entropic) error \(\varepsilon = 2^{-\Omega(n)} \)
 - Output “only” \(t(1-\Omega(1)) \) bits

• Compare with invertible extractors:
 - not having \(w' \approx w \) “forces” to extract \(\geq n \) bits!
App: Private Fuzzy Extractors

• Recall, SS + strong extractor ⇒ fuzzy extractor: set $P = (S(w), I)$, $R = \text{Ext}(w; I)$

 - Let’s use “extractor-sketches” instead!

• Get FE where $(P, R) \approx_{\varepsilon} (U_1, U_2)$

 - Even joint pair (P, R) hides all functions of W!

• Called Private Fuzzy Extractors:

 - As opposed to usual fuzzy extractors, public data P does not reveal anything “useful” about the biometric W, even if the key R is leaked!
• Recall, POWHFs allow to publish a value $Z = \text{"Commit}(w)\"$ s.t. given input w'
 – Verify(Z,w') accepts if and only if $w = w'$
 – Moreover, Z is (k,ε)-entropically secure

• What if want to test if $\text{distance}(w,w') < t$?

• Attempt: use secure sketch and publish $(Z, S(w))$
 – Preserves collision-resistance 😊
 – Does not preserve entropic security 😞

• Solution: use entropically-secure sketch. Get
 – Fuzzy POWHFs
 – Equivalently, (weak) obfuscators for proximity queries
App: Bounded Storage Model

- Shared secret sampling key sk
- Goal: $\text{H}(W_{sk} | S(W_{sk}), sk)$, $\text{H}(|S(W_{sk})|, sk)$ for Eve
- "Everlasting security": can we re-use sk?
- [Ding]: Not with usual sketches!
 - $S(W_{sk})$ leaks info on sk
- Extracting sketch: $S(W_{sk1}) \approx S(W_{sk2})$!
Adding Authentication: entropically-secure MACs, Robust FE/SS, ...
App: Bounded Storage Model

- Need to authenticate S
- No problem: add MAC key μ to sk
 - send $\text{MAC}_\mu(S)$ together with S
- But which MAC???
 - Computational: lose information-theoretic security 😞
 - Information-theoretic: cannot reuse μ 😞
App: Bounded Storage Model

- Idea [DKRS]: authenticate \(w \) instead of \(S \) !!!
 - send \(MAC_{\mu}(w) \) instead of \(MAC_{\mu}(S) \)
- Why does this help?
 - Because \(W \) has high entropy for Eve !
 - “extractor-MAC”: \(MAC_{\mu}(W) \approx \) random
 - OK to reuse \(\mu \) (if can build extractor-MACs) !!
Extractor-MACs

• **Strong Extractor**: \((I, \text{Ext}(X, I)) \approx_{\varepsilon} (U_d, U_m)\) if \(X\) has min-entropy at least \(k\)
 - **Goal 1**: minimize \(d\) (note: \(\text{opt} = O(\log n + \log(1/\varepsilon))\)),
 - **Goal 2**: maximize \(m\) (note: \(\text{opt} = k - 2\log(1/\varepsilon) - O(1)\))

• **(Strong) One-time MAC**: for any \(x \neq x', y, y'\)
 \[
 \Pr_{I}(\text{Ext}(x', I) = y' \mid \text{Ext}(x, I) = y) \leq \delta
 \]
 - **Goal 1**: minimize \(d\) (note: \(\text{opt} = O(\log n + \log(1/\delta))\)),
 - **Goal 2**: minimize \(m\) (note: \(\text{opt} = \log(1/\delta) + O(1)\))

• **Together**: Extractor-MAC
 - **Goals 1 & 2**: minimize \(d, m\) (MAC “wins”)
 - **Goal 3**: minimize \(k\) (since want small \(m\))
Extractor-MACs

- **Strong Extractor:** \((I, \text{Ext}(X, I)) \approx_\epsilon (U_d, U_m)\) if \(X\) has min-entropy at least \(k\)
 - **Goal 1:** minimize \(d\) (note: \(opt = O(\log n + \log(1/\epsilon))\)),
 - **Goal 2:** maximize \(m\) (note: \(opt = k - 2\log(1/\epsilon) - O(1)\))

- **(Strong) One-time MAC:** for any \(x \neq x', y, y'\)
 \[\Pr_I(\text{Ext}(x', I) = y' | \text{Ext}(x, I) = y) \leq \delta\]
 - **Goal 1:** minimize \(d\) (note: \(opt = O(\log n + \log(1/\delta))\)),
 - **Goal 2:** minimize \(m\) (note: \(opt = \log(1/\delta) + O(1)\))

- **Together:** **Extractor-MAC.** We achieve optimal

 \[d = O(\log n + \log(1/\delta) + \log(1/\epsilon)), m = \log(1/\delta) + O(1),\]

 if \(k \geq m + 2\log(1/\epsilon) + O(1) = \log(1/\delta) + 2\log(1/\epsilon) + O(1)\)
Extractor-MACs

- **Idea 1:** pairwise independent hash functions are both extractors (universality) and one-time MACs
 - Optimal $m = \log(1/\delta)$ ☺️, but long $d = n + \log(1/\delta)$ ☹️

- **Idea 2:** compose with “almost universal” hash function before pairwise independence
 - **Extractor part:** OK if collision probability $\leq 2^{-m}\varepsilon^2$ (so total $\leq 2^{-m}(1+\varepsilon^2)$ and can still apply LHL),
 - **MAC part:** OK since pairwise independent MAC composes well with universal hash

- Optimize parameters to get the result
Robust Sketches & Extractors

• If the user can store only biometric w, how can he be sure that P or $S(w)$ are correct [BDKOS]?
 - Robust Secure Sketches / Fuzzy Extractors
 - Server can only refuse to help or give correct $P/S(w)$
 - Applications to biometric authenticated key-exchange secure against man-in-the-middle attacks

• Idea: add “authentication information” $H(pub, w)$ to the public information pub, for a special H
 - most work: finding H that works w/o leaking much info
Robust Sketches & Extractors

- Which $H(\text{pub},w)$ will produce a good MAC?
- $[\text{BDK}^+05]$:
 - $H =$ Random Oracle. Works (still tricky)
- $[\text{DKRS06}]$: recall, $\text{pub}=(S(w),h)$
 - Use “interconnected” extractor h and MAC H
 - Works only if $k \geq n/2$ (inherent in this model 😞)
 - Extract (much) less than in “non-robust” case 😞
- $[\text{CDF}^+08]$: regain optimality using a CRS!
 - Idea: set $\text{pub}=S(w)$, $\text{CRS} = h$ and ... more tricks
Concluding

• **Randomness extractors** are useful for
 - Key derivation
 - Privacy (entropic security!)
 - Many Combinations

• In many cases plain extractors not enough
 - Need “special-purpose” extractors
Special Purpose Extractors

• Adding **Invertibility**:
 – Entropically-Secure Encryption

• Adding **Collision-Resistance**:
 – Perfect one-way hash functions (POWHF)

• Adding **Error-Correction**:
 – Fuzzy extractors (FE), secure sketches (SS)

• **Correcting errors w/o leaking partial info**
 – Private FEs and SSs, fuzzy POWHFs
 – Error-correction in the bounded storage model

• Adding **Authentication, Local Computability**...
Concluding

- Randomness extractors are useful for
 - Key derivation
 - Privacy (entropic security!)
 - Many Combinations
- In many cases plain extractors not enough
 - Need “special-purpose” extractors
- Variants of leftover hash lemma very useful
- Unexpected tools, connections, subtleties
- Elegant techniques, nice insights
- Exciting area, many open questions left !!!