
On Extractors,
ErrorCorrection and

Hiding All Partial
Information

Yevgeniy Dodis

New York University

Based on several joint works with the following coauthors:
Xavier Boyen, Jonathan Katz, Rafail Ostrovsky, Leonid Reyzin and Adam Smith

2

Imperfect Random Sources
• Randomness is crucial in many areas

– Especially cryptography (i.e., secret keys)

• Usually, assume a source of truly random bits

• However, often deal with imperfect randomness
– Physical sources

– Biometric data

– Partial knowledge about secrets

• Necessary assumption: must have (min)entropy
– (Minentropy) ksource: Pr[X=x] ≤≤≤≤ 2k, for all x

• Can we extract (nearly) perfect randomness
from such realistic, imperfect sources?

3

Extractors: 1st attempt
• A function Ext : {0,1}n →→→→ {0,1}m such that

∀ ∀ ∀ ∀ ksource X, Ext(X) is “close” to uniform.

• Impossible! ∃∃∃∃ set of 2n-1 inputs x on which first bit of
Ext(x) is constant ⇒⇒⇒⇒ “flat” (n-1)-source X, bad for Ext.

EXT

k-source of length n

m almostuniform bits

4

Modern Extractors [NZ]

• Def: (k,ε)extractor is Ext : {0,1}n××××{0,1}d →→→→ {0,1}m

s.t. ∀∀∀∀ ksource X, Ext(X,Ud) is εclose to Um.

• Key point: seed can be much shorter than output.

• Goals: minimize seed length, maximize output length.

d random bits

“seed”

EXT

k-source of length n

m almostuniform bits

6

Strong Extractors
• Output looks random even after seeing the seed

– Very handy in some applications !

– Ex: only “remember” biometric secret X, publish seed I

is and use Ext(X, I) as the “effective” secret key.

• Def: Ext is a (k,ε) strong extractor if

Ext′′′′(x;i) = i ◦◦◦◦ Ext(x, i) is a (k,ε)extractor

• Optimal: d ≈≈≈≈ log(n-k) + log(1/ε), m ≈≈≈≈ k− 2log(1/ε)

– In many crypto applications, OK to have d = O(n)

7

Leftover Hash Lemma
• Universal Hash Family { hi:{0,1}n→{0,1}m }:

• Leftover Hash Lemma [HILL]: universal
hash functions {h} yield strong extractors:
(I , hI (X)) ≈≈≈≈εεεε (I , Um)

– optimal output length: m = k − 2 log(1/ε)

– seed length: d = O(n)

• Ex: Ext(x;a) = first m bits of a

x in GF(2n)

• Many generalizations known (stay tuned !)

8

Aren’t We Cheating?
• Need truly random seed to extract randomness??

– Remember, extract much more than invest !

– In some applications have “local randomness”

– Sometimes go over all seeds for derandomization

• Indeed, many applications !
– Derandomization [Sip,GZ,MV,STV,NZ,INW,RR,GW,…]

– Distributed and Network Algorithms [WZ,Zuc,RZ,Ind]

– Hardness of Approximation [Zuc,Uma,MU]

– Data Structures [Ta]

– Pseudorandom number generation [BH]

– Cryptography !
[CDHKS,DSS,KZ,GRS,MW,Lu,Vad,Din,DS1,DS2,DRS,BDKOS…]

9

• The obvious usage is for extracting
good randomness (key derivation)

• Less known: for arguing privacy !

1. Output of extractor hides the actual

distribution on X

2. [DS1]: in fact, it “hides every
deterministic function of X“ !

• Some applications need both usages !

When to Use Extractors?

10

• A map S() is called (k,ε)–entropically secure
if ∀∀∀∀ ksource X, ∀∀∀∀ predictors, ∃∃∃∃ simulator,
∀∀∀∀ functions f, seeing S(X) “does not help”:

• Also say S() hides all functions of X

• Notice, S() must be probabilistic (f = S)

• S() must also be oneway (f = identity)

• Identical to semantic security [GM], but
for highentropy distributions

Entropic Security [CMR,RW]

�PredictorS(X) f(X)Pr Simulator f(X)Pr +ε

11

• Shannon Security: S(X) is independent of X
– Very strong, hides all “aposteriori” functions

– As such, S(X) can’t be “useful” for anything

• Esecurity “only” hides “apriori” functions
– Can leak “useless” info while still being “useful”

• Equivalent without minentropy constraint

• Warning: Esecurity does not compose well
– Like most i.t. notions, can only be used once

(e.g., S(X;r1), S(X;r2) might potentially leak X)

Comparing to Shannon

12

• A map S() is called (k,ε)–indistinguishable if
∀∀∀∀ ksources X, Y, S(X) is εclose to S(Y)
– In particular, all of them are εclose to S(U)

– (k,ε)–extractors are also (k,2ε)–indistinguishable

• Thm [DS1]: If S() is (k,ε)–indistinguishable
then it is (k+2,8ε)–entropically secure

• Corollary: extractors for minentropy k hide
all functions for sources of minentropy k+2

• Punchline: to argue entropic security, enough
to construct a “specialpurpose” extractor

HighEntropy Indistinguishability

13

• Sometimes, plain extractors are not enough!
– Need extractors with “extra properties”

• Scenario 1: more robust key derivation
– Local computability (bounded storage model)

– Noisetolerance (biometrics)

• Scenario 2: when extraction is merely a convenient
tool for arguing entropic security
– Invertibility (for encryption)

– Collisionresistance (for hash functions)

– Errorcorrection (for informationreconciliation)

– Unforgeability (for message authentication)

• Scenario 3: combination of scenarios 1 & 2

“SpecialPurpose” Extractors

14

Adding Invertibility:

EntropicallySecure

Encryption

15

Symmetric Encryption

• Shannon: Symmetric Encryption without
computational assumptions requires d ≥ n
(achieved by onetime pad)

• Russell and Wang [RW]: What can be said when
the message is guaranteed to have high entropy?

E D

Key K (d bits long)

message M (n bits long) message M
Eve

E(M;K)

16

• Require E to be (k,ε)–entropically secure
– Ciphertext hides all functions of plaintext
– Note: Shannon security corresponds to k = 1

• [RW]: can beat Shannon’s bound when k > 1
– Pretty adhoc and complicated

• [DS1]: suffices to construct E(M;K) which is
an extractor for minentropy k−2 !
– Leads to better (optimal !) constructions
– Much simpler to understand/analyze than [RW]

• Thus, need (k,ε)–extractor whose source can
be recovered from its output and its seed.

EntropicallySecure Encryption

17

Invertible Extractors
• If C = E(M; K), then we want

1. C ≈ random, if K random and M has entropy k
2. One can recover (“decrypt”) M from C and K
3. Goal: minimize d = |K|

• Note, |C| ≥ |M| = n (by invertibility)

• Also, C has |C|≥ n bits of entropy (since
it is random)

• Since M only has k bits of entropy, we
must have key length |K| ≥ n − k

• Can we achieve it???

19

Using Graphs for Encryption
• Graph on 2n vertices of degree 2d

• Consider E (M,K) = N (M,K)

– Random step from M

– Decryption assumes labeling is
“invertible”, which is easy to get
(Cayley graphs)

• Goal: get to uniform from any min
entropy ≥ k distribution on M
– Expansion ! Want any set of size ≥ 2k

to expand to all vertices in 1 step!

• Can achieve d = n −−−− k + 2 log(1/ε)
(using the Ramanujan expanders)

G

M

N(M,1)

N(M,2)

N(M,2d)

N(M,K)

C

20

• For r.v. X over {0,1}n and α ∈ {0,1}n, let

biasα(X) = 2(Pr[α⊙X = 0] – ½) = E[(1)α⊙ X]

– X is δbiased if |biasα(X)|� δ for all α ≠ 0

– Can sample δbiased X with 2log(n/δ) bits

• Fact: If X is δbiased, M is ksource then

M ⊕⊕⊕⊕ X ≈≈≈≈εεεε uniform, where ε = δ
 2(n–k)/2

• Use optimal δbiased sets and get “sparse

onetime pad” with d = n −−−− k + 2 log(n/εεεε)

Sparse OneTime Pad

21

Probabilistic OneTime Pad
• Modified LHL:

– E(M; K) = (I, M ⊕ hI (K))

– probabilistic encryption (I is not part of K)

– Here {hi :{0,1}d→{0,1}n } is “XORuniversal”:

• LHL’ [new]: If {hi } is XORuniversal and
k ≥ n – d + 2log(1/ε) then

(I , M ⊕ hI (K)) ≈ε (I , Un)

Probabilistic onetime pad: d = n – k + 2log(1/ε)

22

Invertible Extractors
• Theorem [DS1]: three constructions

– From expander graphs, achieve optimal

d = n −−−− k + 2 log(1/ε), where ε is the “error”

– “Sparse Onetime Pad: E(M; K) = M ⊕ S(K),
where d = n −−−− k + 2 log(n/εεεε)

• S(K) is a point sampled from (ε
 2(k–n)/2)biased set

– “Probabilistic OTP”: get d = n – k + 2log(1/ε)

• E(M; K) = (I, M ⊕ hI (K))

• probabilistic encryption (I is not part of K)

• Here {hi :{0,1}d→{0,1}n } is “XORuniversal”

24

Adding

CollisionResistance:

Perfectly OneWay

Hash Functions

25

CollisionResistant Extractors
• Collision: (w,i) ≠ (w’,i’) s.t. Ext(w;i) = Ext(w’;i’)

– Strong extractors: i, w≠w’ s.t. Ext(w;i)=Ext(w’;i)

• “Commit” to w by publishing (i, Ext(w;i))
– Great decommitment: simply present w !

• Entropic Security: if entropy of W is at
least k, then (I, Ext(W;I)) hides all
functions of W (weaker than usual hiding)

• Note: don’t need full power of extractors,
suffices to have (k,ε)–indistinguishability

26

Construction
• Yet another variant of LHL:

– Ext(W ; I) = f(hI (W))

– f:{0,1}N→{0,1}m is arbitrary function

– {hi :{0,1}n→{0,1}N } are pairwise independent:

• LHL’’ [DS2]: If {hi} is pairwise independent
and k ≥ m + 2log(1/ε) then

(I , f(hI (W))) ≈≈≈≈εεεε (I , f(UN))
(gives an extractor if f(UN) is uniform)

27

Construction
• LHL’’: If {hi} is pairwise independent and

k ≥ m + 2log(1/ε) then

(I , f(hI (W))) ≈ε (I , f(UN))

• Apply with f = CRHF and family of pairwise
independent permutations (e.g., {ax+b|a≠ 0})
– Permutations ensure collisionresistance

• Gives Perfectly OneWay Hash Functions
and Obfuscators for Equality for inputs
with entropy > output of CRHF + 2log(1/ε)

28

Adding Locally
Computable Aspect:

Key Derivation in
Bounded Storage

Model

29

Bounded Storage Model [Mau]

• Setting:

– Alice and Bob share a short random key K

(have local randomness, although not needed)

– A huge random (high entropy enough) string X

of length N is broadcast to them

– Eve is allowed to store any function Z = f(X) of

length γN, for some γ < 1

– Thus, from Eve’s perspective, X is imperfect,

although still has high entropy

30

Bounded Storage Model
• Goal 1: Key Agreement

– extract a much longer random key R from X using K

– R is secret from Eve, for any storage function f

• Goal 2: Key Reuse
– keep using the same K with subsequent (new) X’s

• Goal 3: Everlasting security
– R should be secure even if K is leaked later

• Simple solution: apply a strong extractor to X
with seed K

• Satisfies goals 13, but requires Alice and Bob to
read the entire X, which even Eve cannot do � !

31

Locally Computable Extractors

• Example [AR]:

– K consists of t random indices i1,…,it ∈ {1...N}

– w = X[i1] … X[it], extract bit R = w1 ⊕ … ⊕ wt

– Can argue secure if γ < 1/5 and t “large enough”

– Rate inefficient, but illustrates the point
(indeed, improved by [DM, Lu, Vad])

Bob

R = “Ext(w,K)”

Alice

XK K

w = “Sample(X,K)”

w

R = “Ext(w,K)”

w

f(X)

32

Locally Computable Extractors

• “SamplethenExtract” [Lu,Vad]
– K = (Ks,Ke), Ks & Ke – sampling & extraction keys

– Use Ks to sample small subset of bits w from X

– If “good” Ks is used, w still has high min
entropy from Eve’s point of view

– Use Ke as a seed to any good strong extractor

Bob

R = “Ext(w,K)”

Alice

XK K

w = “Sample(X,K)”

w

R = “Ext(w,K)”

w

f(X)

33

Locally Computable Extractors

• “SamplethenExtract” [Lu,Vad]
– K = (Ks,Ke), Ks & Ke – sampling & extraction keys

• With optimal sampler and extractor:

– can have key |K| = O(log N + log 1/ε)

– extract m bits by reading O(m) bits w from X

Bob

R = “Ext(w,K)”

Alice

XK K

w = “Sample(X,K)”

w

R = “Ext(w,K)”

w

f(X)

34

Adding
NoiseTolerance:
Fuzzy Extractors

and

Secure Sketches

35

Biometrics
• Setting:

– Want to use imperfect biometric data W as
your secret key

– Have local randomness, but can’t “remember” it

• Simple Solution:
– Apply strong randomness extractor
– Store seed I for strong extractor in the public
– Use Ext(W; I) as your “actual” secret key

• Problem: noisy nature of biometrics
– Two different readings of W are likely to be

different, although “close”

36

New Primitive: Fuzzy Extractor
• Reliably extract randomness out of w

• First time: generate random R from w (+ seed)

• Subsequently: reproduce R from P and any w’ ≈ w

• R is nearly uniform given P if w has sufficient
minentropy (can put usual n, m, k, t, ε)

• Punchline: tradeoff |R| = m for errortolerance
(distance t) and nonuniformity (minentropy k)

P
RRep

w’

w R
Gen Pseed

distance

37

What does “Close” mean?
• Depends on the “natural” metric space for the

underlying application!

– Hamming Metric (featureextraction systems)

– Set Difference (“favorite” set in a large universe)

– Edit Metric (handwriting / typing)

– Permutation Metric (rankingbased preferences)

– “Real” Metrics: (complicated)

• Different metrics require different techniques!

• [DORS]: General framework, specific algorithms

39

• Add reliability by publicly storing sketch S(w)

• Recover w from S(w) and any w’ ≈ w (w’ close to w)

• w has “high” minentropy even given S(w)

– Entropy loss: how much entropy S(w) revealed about w

– Note, Entropy loss ≤ |S(w)| (good to have short sketch)

• Punchline: tradeoff entropy for error$tolerance

Building Block: Secure Sketch

w S(w)S

S(w)
wRec

w’

41

Secure Sketch in Hamming Space
• Idea: what if w is a codeword in an ECC?

• Decoding finds w from w’

w’

w

42

Secure Sketch in Hamming Space
• Idea: what if w is a codeword in an ECC?

• Decoding finds w from w’

• If w not a codeword,
simply shift ECC to
contain w and just
remember the shift !

w
w’

S(w)

-s
+s dec

43

CodeOffset Construction

• If ECC expands a bits → n bits and has
distance d:
– Correct t = d/2 errors

– S(w) has n – a bits ⇒ entropy loss at most n – a

– Optimal if code is optimal (sketch ⇒ ECC)
– Works for nonbinary alphabets too (i.e., RS

codes give optimal entropy loss = 2t log q)

• Appears in [BBR88, Cré97, JW02] under
various guises

• [DORS]: also sketches for other metrics

S(w) = syndrome(w) OR S(w;r) = w ⊕ ECC(r)

45

Using Secure Sketches

� SS + strong extractor ⇒ fuzzy extractor
• Namely, set P = (S(w), I), R = Ext(w ; I)

• Extract |R| ≈ residual minentropy – 2log(1/ε)

� InformationReconciliation

w ≈ w’

“Sketch” S(w)
Recover w

Still high
uncertainty

about w

w

BobAlice

w’

Eve

But I still
learned S(w)!

Can we design
sketches which leak

no “useful”
information about w?

I think we
can !!!

46

Correcting Errors
Without Leaking

Partial Information:
EntropicallySecure

Sketches

47

EntropicallySecure Sketches
• Design sketch S(w) such that

– Can recover w from S(w) and any w’ close to w

– S() is (k,ε)entropically secure

• Notice, implies residual entropy ≥ log(1/ε)

• Converse false: codeoffset leaked syn(w)

• Suffices to construct (k,ε)extractor which

is also a sketch !

– Goal: minimize number of “extracted” bits

49

ErrorCorrecting Extractors
w

w’Srandom coins

S(w)
Recover

noise (� t flipped bits)

w
uniform

≈ε

Theorem [DS2]: If minentropy k =Ω(n), then ∃ (strong)
extractor S(
) (for Hamming errors) such that

• Can correct t = Ω(n) errors efficiently
• Error ε = 2–Ω(n). In particular, H∞(W | S(W)) = Ω(n)

• Output “only” k (1Ω(1)) bits

Compare with invertible extractors:
• not having w’ ≈ w “forces” to extract ≥ ≥ ≥ ≥ n bits !

• We want to optimize

extraction error

• Want to minimize

output length!

50

ErrorCorrecting Extractors
• Idea 1: Recall, S(W; X) = W ⊕ ⊕ ⊕ ⊕ X ≈≈≈≈εεεε uniform,

if X is (ε
 2(k–n)/2)biased

• Idea 2: Recall, S(W; X) = W ⊕ ⊕ ⊕ ⊕ X, is a good

sketch if X is a random codeword in a good code

• Can we achieve both simultaneously?
– Yes for nonlinear codes, but no explicit constructs �

– No for linear codes (any α in the dual has α⊙X ≡ 0) �

• Idea 3: use a family of (carefully chosen)

linear codes to get the best of both worlds !

Recently constructed
by Shpilka’05

(bad params though)

51

Construction
• Design family of codes {ECCi} and set

S(w;i) = (i, syni (w)) OR S(w;i,r) = (i, w ⊕ ECCi (r))

w

w’Si

syni(w)
Recover w

uniform

≈ε

i

Theorem [DS2]: There exist efficiently
decodable codes with “needed parameters”
• for “large” alphabets get optimal parameters!

52

Construction
• Design family of codes {ECCi} and set

• Theorem [DS2]: If entropy k =Ω(n), there
exists codes giving (strong) extractors s.t.

– Can efficiently correct t =Ω(n) errors

– Have (entropic) error ε = 2–Ω(n)

– Output “only” t (1Ω(1)) bits

• Compare with invertible extractors:

– not having w’ ≈ w “forces” to extract ≥ ≥ ≥ ≥ n bits !

S(w;i) = (i, syni (w)) OR S(w;i,r) = (i, w ⊕ ECCi (r))

53

App: Private Fuzzy Extractors

• Recall, SS + strong extractor ⇒ fuzzy
extractor: set P = (S(w), I), R = Ext(w ; I)

– Let’s use “extractorsketches” instead !

• Get FE where (P, R) ≈≈≈≈εεεε (U1, U2)

– Even joint pair (P, R) hides all functions of W !

• Called Private Fuzzy Extractors:
– As opposed to usual fuzzy extractors, public

data P does not reveal anything “useful” about

the biometric W, even if the key R is leaked !

55

App: Fuzzy POWHFs
• Recall, POWHFs allow to publish a value

Z = “Commit(w)” s.t. given input w’

– Verify(Z,w’) accepts if and only if w=w’

– Moreover, Z is (k,ε)entropically secure

• What if want to test if distance(w,w’) < t ?

• Attempt: use secure sketch and publish (Z, S(w))
– Preserves collisionresistance ☺

– Does not preserve entropic security �

• Solution: use entropicallysecure sketch. Get
– Fuzzy POWHFs

– Equivalently, (weak) obfuscators for proximity queries

56

App: Bounded Storage Model

• Shared secret sampling key sk
• Goal: H(Wsk | S(Wsk), sk) “high” for Eve
• “Everlasting security”: can we reuse sk?
• [Ding]: Not with usual sketches!

– S(Wsk) leaks info on sk

• Extracting sketch: S(Wsk1) ≈≈≈≈ S(Wsk2) !

“Sketch” S(wsk)
Recover wsk

Bob

wsk

Alice

w’sk

X

Eve
???

noise

sk sk

Solves the
main open

problem from
[Ding’05]

f(X)

58

Adding
Authentication:

entropicallysecure
MACs,

Robust FE/SS, …

59

App: Bounded Storage Model

• Need to authenticate S

• No problem: add MAC key µ to sk
– send MACµ(S) together with S

• But which MAC???
– Computational: lose informationtheoretic security �

– Informationtheoretic: cannot reuse µ �

S(w)
Recover w

Bob

w

Alice

w’

X

Eve
Change

!

noise

sk sk

S’

???

µ µ

MACµ(S)

I Lost… check MAC
of S

60

I know S
☺☺☺☺

MACµ(S)

App: Bounded Storage Model

• Idea [DKRS]: authenticate w instead of S !!!
– send MACµ(w) instead of MACµ(S)

• Why does this help?

• Because W has high entropy for Eve !
– “extractorMAC”: MACµ(W) ≈ random

– OK to reuse µ (if can build extractorMACs) !!

S(w)
Recover w

Bob

w

Alice

w’

X

Eve

noise

sk skµ µ

I don’t
know w

����

check MAC
of S

MACµ(w)

check MAC
of w

62

ExtractorMACs
• Strong Extractor: (I , Ext(X, I)) ≈≈≈≈εεεε (Ud , Um) if X

has minentropy at least k

– Goal 1: minimize d (note: opt = O(log n + log(1/ε))),

– Goal 2: maximize m (note: opt = k − 2log(1/ε) − O(1))

• (Strong) Onetime MAC: for any x ≠≠≠≠ x’ , y , y’

PrI (Ext(x’, I) = y’ | Ext(x, I) = y)| ≤ δ

– Goal 1: minimize d (note: opt = O(log n + log(1/δ))),

– Goal 2: minimize m (note: opt = log(1/δ) + O(1))

• Together: ExtractorMAC

– Goals 1 & 2: minimize d, minimize m (MAC “wins”)

– Goal 3: minimize k (since want small m)

63

ExtractorMACs
• Strong Extractor: (I , Ext(X, I)) ≈≈≈≈εεεε (Ud , Um) if X

has minentropy at least k

– Goal 1: minimize d (note: opt = O(log n + log(1/ε))),

– Goal 2: maximize m (note: opt = k − 2log(1/ε) − O(1))

• (Strong) Onetime MAC: for any x ≠≠≠≠ x’ , y , y’

PrI (Ext(x’, I) = y’ | Ext(x, I) = y)| ≤ δ

– Goal 1: minimize d (note: opt = O(log n + log(1/δ))),

– Goal 2: minimize m (note: opt = log(1/δ) + O(1))

• Together: ExtractorMAC. We achieve optimal

– d = O(log n + log(1/δ) + log(1/ε)), m = log(1/δ) + O(1),

if k ≥ m + 2log(1/ε) + O(1) = log(1/δ) + 2log(1/ε) +O(1)

65

ExtractorMACs

• Idea 1: pairwise independent hash functions are

both extractors (universality) and onetime MACs

– Optimal m = log(1/δ) ☺, but long d = n + log(1/δ) �

• Idea 2: compose with “almost universal” hash

function before pairwise independence

– Extractor part: OK if collision probability ≤ 2-mε2 (so

total ≤ 2-m(1+ε2) and can still apply LHL),

– MAC part: OK since pairwise independent MAC
composes well with universal hash

• Optimize parameters to get the result

66

Robust Sketches & Extractors

• If the user can store only biometric w, how can

he be sure that P or S(w) are correct [BDKOS] ?

– Robust Secure Sketches / Fuzzy Extractors

– Server can only refuse to help or give correct P/S(w)

– Applications to biometric authenticated keyexchange

secure against maninthemiddle attacks

• Idea: add “authentication information” H(pub,w)

to the public information pub, for a special H

– most work: finding H that works w/o leaking much info

67

Robust Sketches & Extractors
• Which H(pub,w) will produce a good MAC?

• [BDK+05]:
– H = Random Oracle. Works (still tricky)

• [DKRS06]: recall, pub=(S(w),h)
– Use “interconnected” extractor h and MAC H

– Works only if k ≥ n/2 (inherent in this model �)

– Extract (much) less than in “nonrobust” case �

• [CDF+08]: regain optimality using a CRS!
– Idea: set pub=S(w), CRS = h and … more tricks

73

• Randomness extractors are useful for
– Key derivation

– Privacy (entropic security!)

– Many Combinations

• In many cases plain extractors not enough
– Need “specialpurpose” extractors

Concluding

74

• Adding Invertibility:
– EntropicallySecure Encryption

• Adding CollisionResistance:
– Perfect oneway hash functions (POWHF)

• Adding ErrorCorrection:
– Fuzzy extractors (FE), secure sketches (SS)

• Correcting errors w/o leaking partial info
– Private FEs and SSs, fuzzy POWHFs

– Errorcorrection in the bounded storage model

• Adding Authentication, Local Computability…

Special Purpose Extractors

75

• Randomness extractors are useful for
– Key derivation

– Privacy (entropic security!)

– Many Combinations

• In many cases plain extractors not enough
– Need “specialpurpose” extractors

• Variants of leftover hash lemma very useful

• Unexpected tools, connections, subtleties

• Elegant techniques, nice insights

• Exciting area, many open questions left !!!

Concluding

76

