On Extractors, Error-Correction and Hiding All Partial Information

Yevgeniy Dodis

New York University

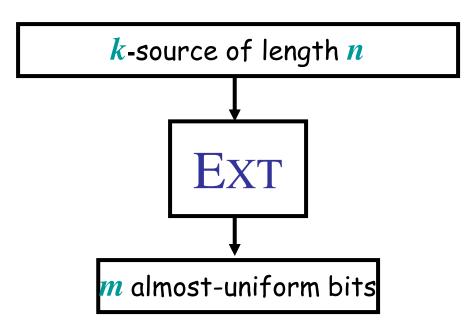
Based on several joint works with the following co-authors: Xavier Boyen, Jonathan Katz, Rafail Ostrovsky, Leonid Reyzin and Adam Smith

Imperfect Random Sources

- Randomness is crucial in many areas
 - Especially cryptography (i.e., secret keys)
- Usually, assume a source of truly random bits
- However, often deal with imperfect randomness
 - Physical sources
 - Biometric data
 - Partial knowledge about secrets
- Necessary assumption: must have (min-)entropy
 - (Min-entropy) k-source: $Pr[X=x] \le 2^{-k}$, for all x
- Can we extract (nearly) perfect randomness from such realistic, imperfect sources?

Extractors: 1st attempt

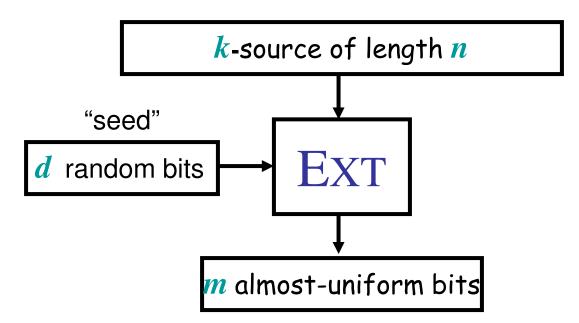
• A function $Ext : \{0,1\}^n \to \{0,1\}^m$ such that $\forall k$ -source X, Ext(X) is "close" to uniform.



• Impossible! \exists set of 2^{n-1} inputs x on which first bit of Ext(x) is constant \Rightarrow "flat" (*n*-1)-source X, bad for Ext.

Modern Extractors [NZ]

• Def: (k,ε) -extractor is Ext: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ s.t. $\forall k$ -source X, Ext (X, U_d) is ε -close to U_m .



- Key point: seed can be *much* shorter than output.
- Goals: minimize seed length, maximize output length.

Strong Extractors

- Output looks random even after seeing the seed
 - Very handy in some applications !
 - Ex: only "remember" biometric secret X, publish seed I
 is and use Ext(X, I) as the "effective" secret key.
- Def: Ext is a (k, ε) strong extractor if

 $Ext'(x;i) = i \circ Ext(x, i)$ is a (k,ε) -extractor

- Optimal: $d \approx \log(n-k) + \log(1/\epsilon)$, $m \approx k 2\log(1/\epsilon)$
 - In many crypto applications, OK to have d = O(n)

Leftover Hash Lemma

- Universal Hash Family { $h_i: \{0,1\}^n \rightarrow \{0,1\}^m$ }: $\forall x \neq y, \ \Pr_I(h_I(x) = h_I(y)) = 2^{-m}$
- Leftover Hash Lemma [HILL]: universal hash functions {h} yield strong extractors: $(I, h_I(X)) \approx_{\epsilon} (I, U_m)$
 - optimal output length: $m = k 2 \log(1/\epsilon)$
 - seed length: d = O(n)
- Ex: $Ext(x;a) = first m bits of a \cdot x in GF(2^n)$
- Many generalizations known (stay tuned !)

Aren't We Cheating?

- Need truly random seed to extract randomness??
 - Remember, extract much more than invest!
 - In some applications have "local randomness"
 - Sometimes go over all seeds for derandomization
- Indeed, many applications !
 - Derandomization [Sip,GZ,MV,STV,NZ,INW,RR,GW,...]
 - Distributed and Network Algorithms [WZ,Zuc,RZ,Ind]
 - Hardness of Approximation [Zuc,Uma,MU]
 - Data Structures [Ta]
 - Pseudorandom number generation [BH]
 - Cryptography !
 [CDHKS,DSS,KZ,GRS,MW,Lu,Vad,Din,DS1,DS2,DRS,BDKOS...]

When to Use Extractors?

- The obvious usage is for extracting good randomness (key derivation)
- Less known: for arguing privacy !
- 1. Output of extractor hides the actual distribution on X
- 2. [DS1]: in fact, it "hides every deterministic function of X"!
- Some applications need both usages !

Entropic Security [CMR,RW]

 A map S() is called (k, ε)-entropically secure if ∀ k-source X, ∀ predictors, ∃ simulator, ∀ functions f, seeing S(X) "does not help":

$$\Pr\left(\mathbf{S}(\mathsf{X}) \rightarrow \operatorname{Predictor} \rightarrow \mathsf{f}(\mathsf{X})\right) \leq \Pr\left(\operatorname{Simulator} \rightarrow \mathsf{f}(\mathsf{X})\right) + \mathcal{E}$$

- Also say S() hides all functions of X
- Notice, S() must be probabilistic (f = S)
- S() must also be one-way (f = identity)
- Identical to semantic security [GM], but for high-entropy distributions

Comparing to Shannon

- Shannon Security: S(X) is independent of X
 - Very strong, hides all "a-posteriori" functions
 - As such, S(X) can't be "useful" for anything
- E-security "only" hides "a-priori" functions
 - Can leak "useless" info while still being "useful"
- Equivalent without min-entropy constraint
- Warning: E-security does not compose well
 - Like most i.t. notions, can only be used once (e.g., S(X;r₁), S(X;r₂) might potentially leak X)

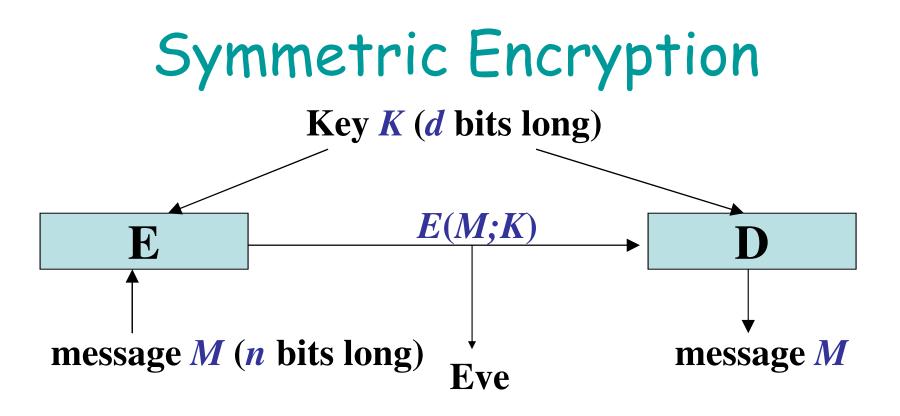
High-Entropy Indistinguishability

- A map S() is called (k,ε) -indistinguishable if $\forall k$ -sources X, Y, S(X) is ε -close to S(Y)
 - In particular, all of them are ε -close to S(U)
 - (k,ε) -extractors are also $(k,2\varepsilon)$ -indistinguishable
- <u>Thm</u> [DS1]: If S() is (k,ε) -indistinguishable then it is $(k+2,8\varepsilon)$ -entropically secure
- <u>Corollary</u>: extractors for min-entropy k hide all functions for sources of min-entropy k+2
- <u>Punchline</u>: to argue entropic security, enough to construct a "special-purpose" extractor

"Special-Purpose" Extractors

- Sometimes, plain extractors are not enough!
 - Need extractors with "extra properties"
- <u>Scenario 1</u>: more robust key derivation
 - Local computability (bounded storage model)
 - Noise-tolerance (biometrics)
- <u>Scenario 2</u>: when extraction is merely a convenient tool for arguing entropic security
 - Invertibility (for encryption)
 - Collision-resistance (for hash functions)
 - Error-correction (for information-reconciliation)
 - Unforgeability (for message authentication)
- <u>Scenario 3</u>: combination of scenarios 1 & 2

Adding Invertibility: Entropically-Secure Encryption



- Shannon: Symmetric Encryption without computational assumptions requires $d \ge n$ (achieved by one-time pad)
- Russell and Wang [RW]: What can be said when the message is guaranteed to have high entropy?

Entropically-Secure Encryption

- Require E to be (k,ε) -entropically secure
 - Ciphertext hides all functions of plaintext
 - Note: Shannon security corresponds to k = 1
- [RW]: can beat Shannon's bound when k > 1
 Pretty ad-hoc and complicated
- [DS1]: suffices to construct E(M;K) which is an extractor for min-entropy k-2!
 - Leads to better (optimal !) constructions
 - Much simpler to understand/analyze than [RW]
- Thus, need (k,ε) -extractor whose source can be recovered from its output and its seed.

Invertible Extractors

- If C = E(M; K), then we want
 - 1. $C \approx$ random, if K random and M has entropy k
 - 2. One can recover ("decrypt") M from C and K
 - 3. Goal: minimize d = |K|
- Note, $|C| \ge |M| = n$ (by invertibility)
- Also, C has $|C| \ge n$ bits of entropy (since it is random)
- Since M only has k bits of entropy, we must have key length $|K| \ge n k$
- Can we achieve it???

Using Graphs for Encryption

- Graph on 2ⁿ vertices of degree 2^d
- Consider $\mathbf{E}(M,K) = N(M,K)$
 - Random step from M
 - Decryption assumes labeling is "invertible", which is easy to get (Cayley graphs)
- <u>Goal</u>: get to uniform from any minentropy $\geq k$ distribution on M
 - Expansion ! Want any set of size $\geq 2^k$ to expand to all vertices in 1 step!
- Can achieve $d = n k + 2 \log(1/\epsilon)$ (using the Ramanujan expanders)

N(M,1)

N(M,K)

M

 $N(M,2^d)$

G

N(M,2)

Sparse One-Time Pad

- For r.v. X over $\{0,1\}^n$ and $\alpha \in \{0,1\}^n$, let bias_{α}(X) = 2(Pr[$\alpha \odot X = 0$] - $\frac{1}{2}$) = $\mathbb{E}[(-1)^{\alpha \odot X}]$
 - X is δ -biased if $|bias_{\alpha}(X)| \leq \delta$ for all $\alpha \neq 0$
 - Can sample δ -biased X with $2\log(n/\delta)$ bits
- Fact: If X is δ -biased, M is *k*-source then $M \oplus X \approx_{\epsilon} \text{uniform}$, where $\epsilon = \delta \cdot 2^{(n-k)/2}$
- Use optimal δ -biased sets and get "sparse one-time pad" with $d = n k + 2 \log(n/\epsilon)$

Probabilistic One-Time Pad

- Modified LHL:
 - $\mathsf{E}(M; K) = (I, M \oplus h_I(K))$
 - probabilistic encryption (I is not part of K)
 - Here $\{h_i: \{0,1\}^d \rightarrow \{0,1\}^n\}$ is "XOR-universal":

 $\forall a \in \{0,1\}^n, x \neq y, \ \mathsf{Pr}_I(h_I(x) \oplus h_I(y) = a) = 2^{-n}$

• LHL' [new]: If $\{h_i\}$ is XOR-universal and $k \ge n - d + 2\log(1/\epsilon)$ then

 $(I, M \oplus h_I(K)) \approx_{\epsilon} (I, U_n)$ Probabilistic one-time pad: $d = n - k + 2\log(1/\epsilon)$

Invertible Extractors

- <u>Theorem</u> [DS1]: three constructions
 - From expander graphs, achieve optimal $d = n k + 2 \log(1/\epsilon)$, where ϵ is the "error"
 - "Sparse One-time Pad: $E(M; K) = M \oplus S(K)$, where $d = n - k + 2 \log(n/\epsilon)$
 - S(K) is a point sampled from $(\varepsilon \cdot 2^{(k-n)/2})$ -biased set
 - "Probabilistic OTP": get $d = n k + 2\log(1/\epsilon)$
 - $\mathsf{E}(M; K) = (I, M \oplus h_I(K))$
 - probabilistic encryption (I is not part of K)
 - Here $\{h_i: \{0,1\}^d \rightarrow \{0,1\}^n\}$ is "XOR-universal"

Adding Collision-Resistance: Perfectly One-Way Hash Functions

Collision-Resistant Extractors

- Collision: (w,i) ≠ (w',i') s.t. Ext(w;i) = Ext(w';i')
 Strong extractors: i, w≠w' s.t. Ext(w;i)=Ext(w';i)
- "Commit" to w by publishing (i, Ext(w;i))
 Great decommitment: simply present w !
- Entropic Security: if entropy of W is at least k, then (I, Ext(W;I)) hides all functions of W (weaker than usual hiding)
- Note: don't need full power of extractors, suffices to have (k,ε) -indistinguishability

Construction

- Yet another variant of LHL:
 - $Ext(W ; I) = f(h_I(W))$
 - f: $\{0,1\}^N \rightarrow \{0,1\}^m$ is arbitrary function

- $\{h_i: \{0,1\}^n \rightarrow \{0,1\}^N\}$ are pairwise independent:

 $\forall x \neq y, \ (h_I(x), h_I(y)) \equiv (U_N, U_N)$

• LHL" [DS2]: If $\{h_i\}$ is pairwise independent and $k \ge m + 2\log(1/\epsilon)$ then

(I, f($h_I(W)$)) \approx_{ϵ} (I, f(U_N))

(gives an extractor if $f(U_N)$ is uniform)

Construction

• LHL": If $\{h_i\}$ is pairwise independent and $k \ge m + 2\log(1/\epsilon)$ then

 $(I, f(h_I(W))) \approx_{\epsilon} (I, f(U_N))$

 Apply with f = CRHF and family of pairwise independent permutations (e.g., {ax+bla≠0})

- Permutations ensure collision-resistance

• Gives Perfectly One-Way Hash Functions and Obfuscators for Equality for inputs with entropy > output of CRHF + $2\log(1/\epsilon)$

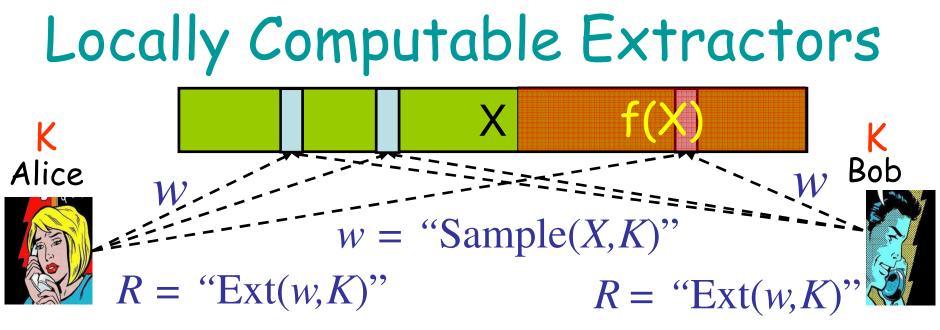
Adding Locally Computable Aspect: Key Derivation in Bounded Storage Mode

Bounded Storage Model [Mau]

- <u>Setting</u>:
 - Alice and Bob share a short random key K
 (have local randomness, although not needed)
 - A huge random (high entropy enough) string X
 of length N is broadcast to them
 - Eve is allowed to store any function Z = f(X) of length γN , for some $\gamma < 1$
 - Thus, from Eve's perspective, X is imperfect, although still has high entropy

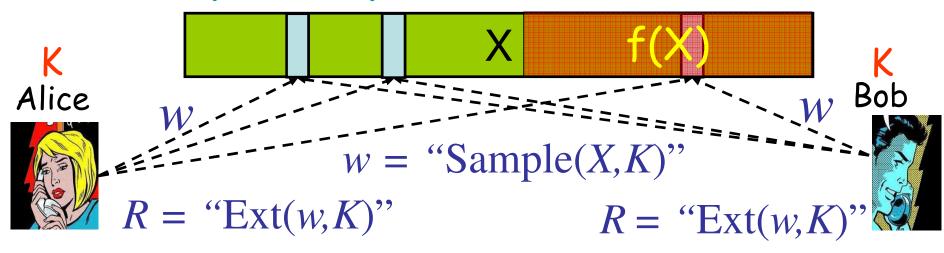
Bounded Storage Model

- Goal 1: Key Agreement
 - extract a much longer random key R from X using K
 - R is secret from Eve, for any storage function f
- <u>Goal 2</u>: Key Reuse
 - keep using the same K with subsequent (new) X's
- Goal 3: Everlasting security
 - R should be secure even if K is leaked later
- <u>Simple solution</u>: apply a strong extractor to X with seed K
- Satisfies goals 1-3, but requires Alice and Bob to read the entire X, which even Eve cannot do



- Example [AR]:
 - K consists of t random indices $i_1, ..., i_t \in \{1...N\}$
 - $-w = X[i_1] \dots X[i_t]$, extract bit $R = w_1 \oplus \dots \oplus w_t$
 - Can argue secure if $\gamma < 1/5$ and t "large enough"
 - Rate inefficient, but illustrates the point (indeed, improved by [DM, Lu, Vad])

Locally Computable Extractors



"Sample-then-Extract" [Lu,Vad]

- $K = (K_s, K_e), K_s \& K_e$ - sampling & extraction keys

- Use K_s to sample small subset of bits w from X
- If "good" K_s is used, w still has high minentropy from Eve's point of view
- Use K_e as a seed to any good strong extractor

KXf(X)AliceWW</tr

- "Sample-then-Extract" [Lu,Vad]
 K = (K_s,K_e), K_s & K_e sampling & extraction keys
- With optimal sampler and extractor:
 - can have key $|K| = O(\log N + \log 1/\epsilon)$
 - extract m bits by reading O(m) bits w from X

Adding Noise-Tolerance: Fuzzy Extractors and Secure Sketches

Biometrics

- <u>Setting</u>:
 - Want to use imperfect biometric data W as your secret key
 - Have local randomness, but can't "remember" it
- Simple Solution:
 - Apply strong randomness extractor
 - Store seed I for strong extractor in the public
 - Use Ext(W; I) as your "actual" secret key
- <u>Problem</u>: noisy nature of biometrics
 - Two different readings of W are likely to be different, although "close"

New Primitive: Fuzzy Extractor

- Reliably extract randomness out of w
- First time: generate random R from w (+ seed)

$$\begin{array}{c} w \longrightarrow \\ \text{seed} \longrightarrow \\ \end{array} \begin{array}{c} \text{Gen} \longrightarrow \\ P \end{array}$$

• Subsequently: reproduce R from P and any $w' \approx w$

$$\begin{array}{c} w' \longrightarrow \\ P \longrightarrow \end{array} \quad \mathsf{Rep} \longrightarrow R \end{array}$$

- *R* is nearly uniform given *P* if *w* has sufficient min-entropy (can put usual *n*, *m*, *k*, *t*, ε) distance
- <u>Punchline</u>: trade-off |R| = m for error-tolerance (distance t) and non-uniformity (min-entropy k)₃₆

What does "Close" mean?

- Depends on the "natural" metric space for the underlying application!
 - Hamming Metric (feature-extraction systems)
 - Set Difference ("favorite" set in a large universe)
 - Edit Metric (handwriting / typing)
 - Permutation Metric (ranking-based preferences)
 - "Real" Metrics:
- Different metrics require different techniques!
- [DORS]: General framework, specific algorithms

Building Block: Secure Sketch

• Add reliability by publicly storing sketch S(w)

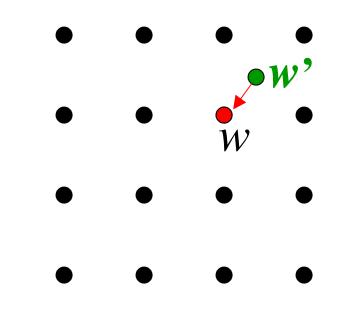
• Recover w from S(w) and any $w' \approx w$ (w' close to w)

$$w' \longrightarrow \mathbb{Rec} \longrightarrow w$$

- w has "high" min-entropy even given S(w)
 - Entropy loss: how much entropy S(w) revealed about w
 - Note, Entropy loss $\leq |S(w)|$ (good to have short sketch)
- <u>Punchline</u>: trade-off entropy for error-tolerance

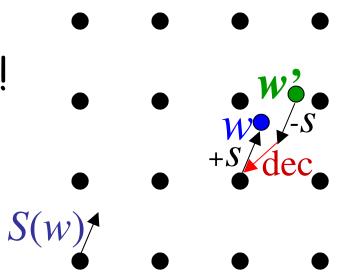
Secure Sketch in Hamming Space

- Idea: what if w is a codeword in an ECC?
- Decoding finds w from w'



Secure Sketch in Hamming Space

- Idea: what if w is a codeword in an ECC?
- Decoding finds w from w'
- If w not a codeword, simply shift ECC to contain w and just remember the shift !



Code-Offset Construction

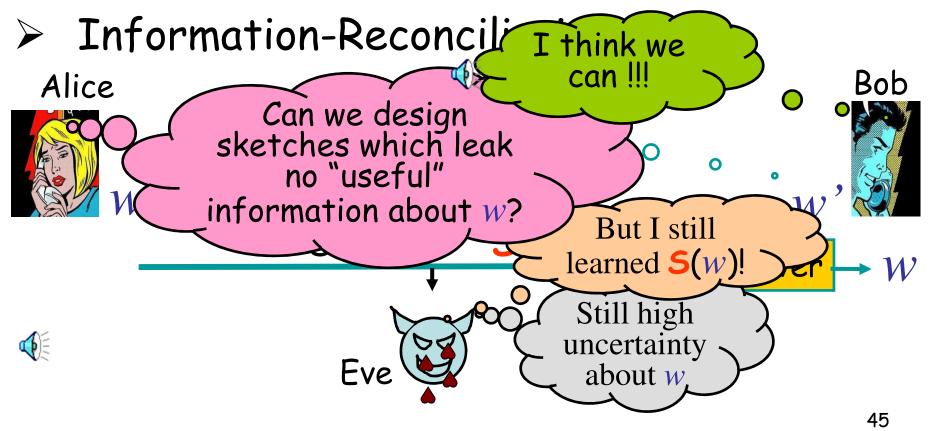
 $S(w) = \text{syndrome}(w) \quad \text{OR} \quad S(w;r) = w \oplus \text{ECC}(r)$

- If ECC expands a bits $\rightarrow n$ bits and has distance d:
 - Correct t = d/2 errors
 - -S(w) has n-a bits \Rightarrow entropy loss at most n-a
 - Optimal if code is optimal (sketch \Rightarrow ECC)
 - Works for non-binary alphabets too (i.e., RS codes give optimal entropy loss = 2t log q)
- Appears in [BBR88, Cré97, JW02] under various guises
- [DORS]: also sketches for other metrics

Using Secure Sketches

 \blacktriangleright SS + strong extractor \Rightarrow fuzzy extractor

- Namely, set P = (S(w), I), R = Ext(w; I)
- Extract $|R| \approx \text{residual min-entropy} 2\log(1/\epsilon)$



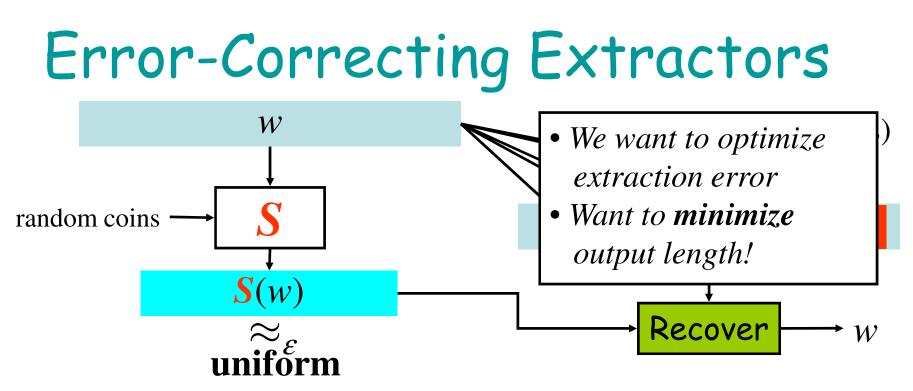
Correcting Errors Without Leaking Partial Information: Entropically-Secure Sketches

Entropically-Secure Sketches

- Design sketch S(w) such that
 - Can recover w from S(w) and any w' close to w

-S() is (k, ε)-entropically secure

- Notice, implies residual entropy $\geq \log(1/\epsilon)$
- Converse false: code-offset leaked syn(w)
- Suffices to construct (k, ε) -extractor which is also a sketch !
 - <u>Goal</u>: minimize number of "extracted" bits



Theorem [DS2]: If min-entropy $k = \Omega(n)$, then \exists (strong) extractor $S(\cdot)$ (for Hamming errors) such that

- Can correct $t = \Omega(n)$ errors efficiently
- Error $\varepsilon = 2^{-\Omega(n)}$. In particular, $H_{\infty}(W \mid S(W)) = \Omega(n)$
- Output "only" $k(1-\Omega(1))$ bits

Compare with invertible extractors:

• not having $w' \approx w$ "forces" to extract $\geq n$ bits !

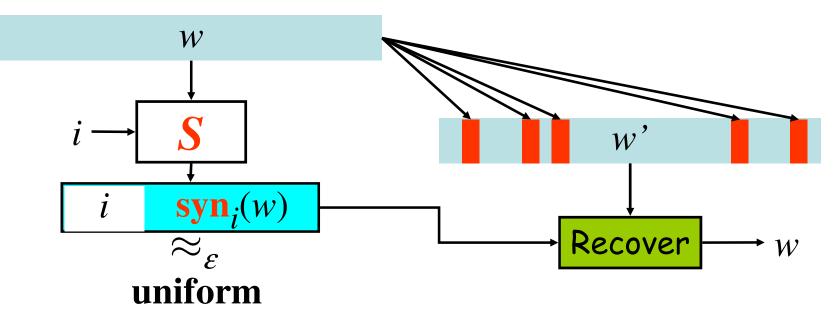
Error-Correcting Extractors

- <u>Idea 1</u>: Performance
 if X is Recently constructed by Shpilka'05
 <u>Ideo</u> (bad params though) sketching
- · Can we achieve both simultaneous ?
 - Yes for non-linear codes, but no explicit constructs 😕
 - No for linear codes (any α in the dual has $\alpha \odot X \equiv 0$) \otimes
- <u>Idea 3</u>: use a family of (carefully chosen) linear codes to get the best of both worlds !

Construction

Design family of codes {ECC_i} and set

 $S(w;i) = (i, \operatorname{syn}_i(w))$ OR $S(w;i,r) = (i, w \oplus \operatorname{ECC}_i(r))$



Theorem [DS2]: There exist efficiently decodable codes with "needed parameters"

for "large" alphabets get optimal parameters!

Construction

Design family of codes {ECC_i} and set

 $S(w;i) = (i_s \operatorname{syn}_i(w)) \text{ OR } S(w;i,r) = (i_s w \oplus \operatorname{ECC}_i(r))$

- <u>Theorem</u> [DS2]: If entropy $k = \Omega(n)$, there exists codes giving (strong) extractors s.t.
 - Can efficiently correct $t = \Omega(n)$ errors
 - Have (entropic) error $\varepsilon = 2^{-\Omega(n)}$
 - Output "only" $t(1-\Omega(1))$ bits
- Compare with invertible extractors:
 - not having $w' \approx w$ "forces" to extract $\geq n$ bits !

App: Private Fuzzy Extractors

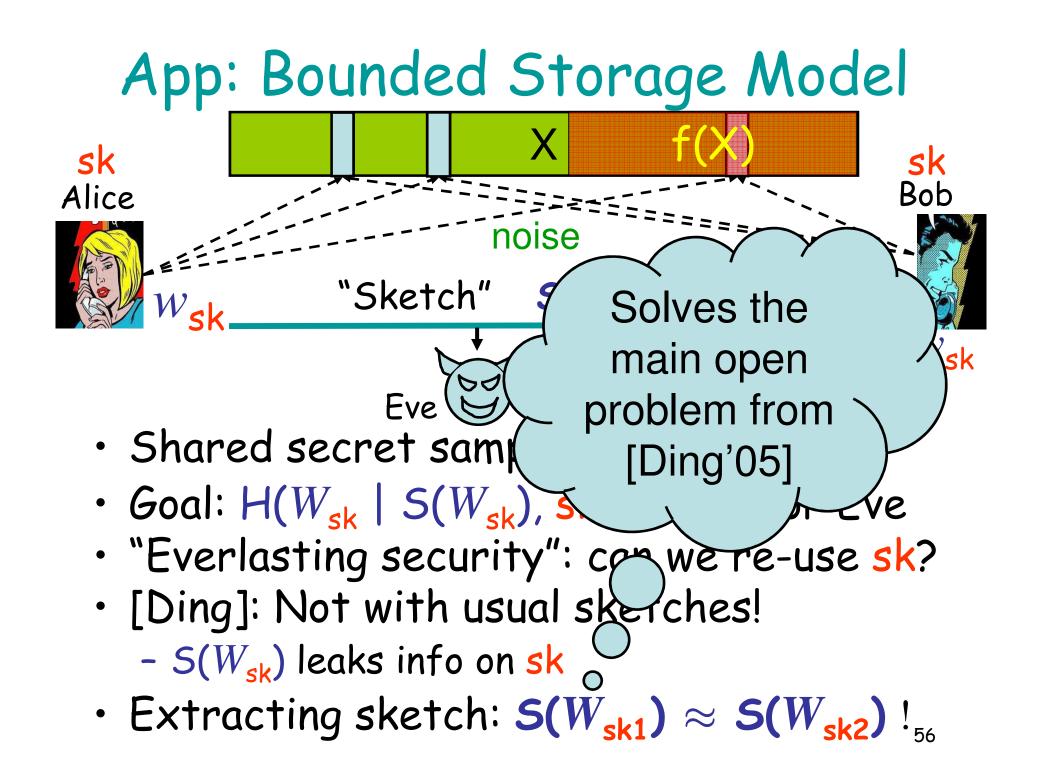
• Recall, SS + strong extractor \Rightarrow fuzzy extractor: set P = (S(w), I), R = Ext(w; I)

- Let's use "extractor-sketches" instead !

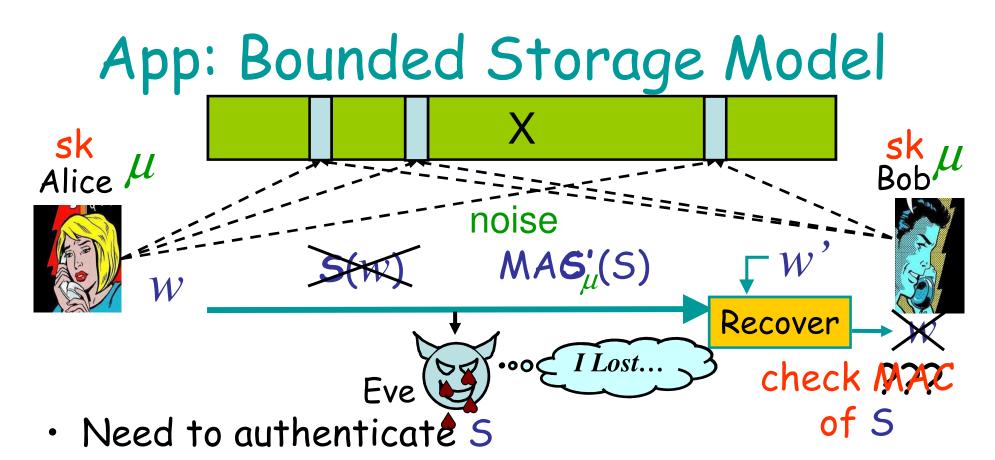
- Get FE where $(P, R) \approx_{\varepsilon} (U_1, U_2)$
 - Even joint pair (P, R) hides all functions of W!
- Called Private Fuzzy Extractors:
 - As opposed to usual fuzzy extractors, public data *P* does not reveal anything "useful" about the biometric *W*, even if the key *R* is leaked !

App: Fuzzy POWHFs

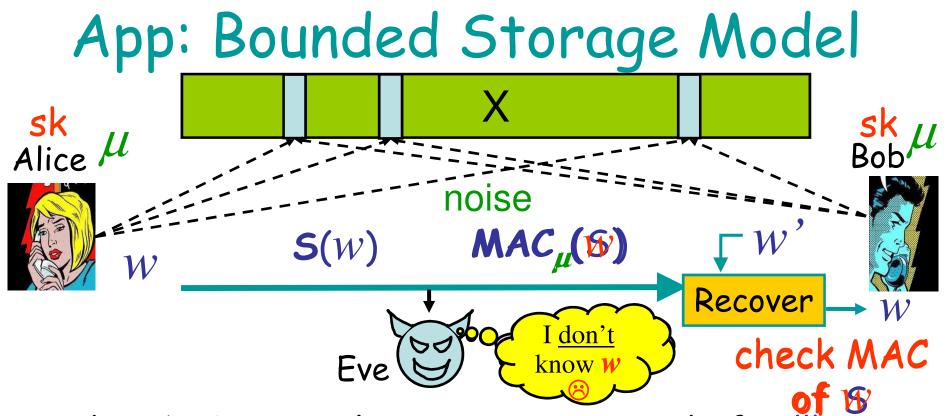
- Recall, POWHFs allow to publish a value
 Z = "Commit(w)" s.t. given input w'
 - -Verify(Z,w') accepts if and only if w=w'
 - Moreover, Z is (k, ε) -entropically secure
- What if want to test if distance(w,w') < t?
- Attempt: use secure sketch and publish (Z, S(W))
 - Preserves collision-resistance 😊
 - Does not preserve entropic security 😕
- Solution: use entropically-secure sketch. Get
 - Fuzzy POWHFs
 - Equivalently, (weak) obfuscators for proximity queries



Adding Authentication: entropically-secure MACs, Robust FE/SS, ...



- No problem: add MAC key μ to sk
 - send $MAC_{\mu}(S)$ together with S
- But which MAC???
 - Computational: lose information-theoretic security 🙁
 - Information-theoretic: cannot reuse $\mu~~\otimes~$



- Idea [DKRS]: authenticate w instead of S !!!
 - send $MAC_{\mu}(w)$ instead of $MAC_{\mu}(S)$
- Why does this help?
- Because W has high entropy for Eve !
 - "extractor-MAC": $MAC_{\mu}(W) \approx random$
 - OK to reuse μ (if can build extractor-MACs) !!

Extractor-MACs

- <u>Strong Extractor</u>: $(I, Ext(X, I)) \approx_{\epsilon} (U_d, U_m)$ if X has min-entropy at least k
 - <u>Goal 1</u>: minimize d (note: $opt = O(\log n + \log(1/\epsilon))$),
 - <u>Goal 2</u>: maximize m (note: $opt = k 2\log(1/\epsilon) O(1)$)
- (Strong) One-time MAC: for any $x \neq x', y, y'$ $\Pr_{I}(\operatorname{Ext}(x', I) = y' | \operatorname{Ext}(x, I) = y) | \leq \delta$
 - <u>Goal 1</u>: minimize d (note: $opt = O(\log n + \log(1/\delta))$),
 - <u>Goal 2</u>: minimize m (note: $opt = log(1/\delta) + O(1)$)
- <u>Together</u>: Extractor-MAC
 - <u>Goals 1 & 2</u>: minimize *d*, minimize *m* (MAC "wins")
 - <u>Goal 3</u>: minimize k (since want small m)

Extractor-MACs

- <u>Strong Extractor</u>: $(I, Ext(X, I)) \approx_{\epsilon} (U_d, U_m)$ if X has min-entropy at least k
 - <u>Goal 1</u>: minimize d (note: $opt = O(\log n + \log(1/\epsilon))$),
 - <u>Goal 2</u>: maximize m (note: $opt = k 2\log(1/\epsilon) O(1)$)
- (Strong) One-time MAC: for any $x \neq x^{\dagger}$, y, y' $\Pr_{I}(\operatorname{Ext}(x', I) \neq y' | \operatorname{Ext}(x, I) = y) | \leq \delta$
 - <u>Goal 1</u>: minimize $d/(\text{note: } opt = O(\log n + \log(1/\delta)))$,
 - <u>Goal 2</u>: minimize m (note: $opt = log(1/\delta) + O(1)$)
- <u>Together</u>: Extractor-MAC. We achieve optimal $-d = O(\log n + \log(1/\delta) + \log(1/\epsilon)), m = \log(1/\delta) + O(1),$ if $k \ge m + 2\log(1/\epsilon) + O(1) = \log(1/\delta) + 2\log(1/\epsilon) + O(1)$

Extractor-MACs

- <u>Idea 1</u>: pairwise independent hash functions are both extractors (universality) and one-time MACs - Optimal $m = \log(1/\delta) \odot$, but long $d = n + \log(1/\delta) \odot$
- <u>Idea 2</u>: compose with "almost universal" hash function before pairwise independence
 - <u>Extractor part</u>: OK if collision probability $\leq 2^{-m} \epsilon^2$ (so total $\leq 2^{-m} (1+\epsilon^2)$ and can still apply LHL),
 - <u>MAC part</u>: OK since pairwise independent MAC composes well with universal hash
- Optimize parameters to get the result

Robust Sketches & Extractors

- If the user can store only biometric *w*, how can he be sure that *P* or *S*(*w*) are correct [BDKOS]?
 - Robust Secure Sketches / Fuzzy Extractors
 - Server can only refuse to help or give correct P/S(w)
 - Applications to biometric authenticated key-exchange secure against man-in-the-middle attacks
- <u>Idea</u>: add "authentication information" H(pub,w)
 to the public information pub, for a special H
 - most work: finding H that works w/o leaking much info

Robust Sketches & Extractors

- Which H(pub,w) will produce a good MAC?
- [BDK+05]:
 - H = Random Oracle. Works (still tricky)
- [DKRS06]: recall, pub=(S(w),h)
 - Use "interconnected" extractor \boldsymbol{h} and MAC \boldsymbol{H}
 - Works only if $k \ge n/2$ (inherent in this model \otimes)
 - Extract (much) less than in "non-robust" case $\boldsymbol{\otimes}$
- [CDF+08]: regain optimality using a CRS!
 - <u>Idea</u>: set pub=S(w), CRS = h and ... more tricks

Concluding

- Randomness extractors are useful for
 - Key derivation
 - Privacy (entropic security!)
 - Many Combinations
- In many cases plain extractors not enough
 - Need "special-purpose" extractors

Special Purpose Extractors

- Adding Invertibility:
 - Entropically-Secure Encryption
- Adding Collision-Resistance:
 - Perfect one-way hash functions (POWHF)
- Adding Error-Correction:
 - Fuzzy extractors (FE), secure sketches (SS)
- Correcting errors w/o leaking partial info
 - Private FEs and SSs, fuzzy POWHFs
 - Error-correction in the bounded storage model
- Adding Authentication, Local Computability...

Concluding

- Randomness extractors are useful for
 - Key derivation
 - Privacy (entropic security!)
 - Many Combinations
- In many cases plain extractors not enough
 Need "special-purpose" extractors
- Variants of leftover hash lemma very useful
- Unexpected tools, connections, subtleties
- Elegant techniques, nice insights
- Exciting area, many open questions left !!!

