Proof of Theorem 2

Theorem 2: For b< log n — loglogn — 1, there
is an n-bit S which is (b, 0)-encryptable,
but not (1, €)-extractable, where

1 ~(20—25) 1 1 1
825_2 2 22 16?12__5_0(1)

Theorem 2" For b < logn — loglogn — 1,
there is a b-bit E = (Enc,Dec) for which
Good(E) is not (1, €)-extractable, where

Good(E) = {K|E is Shannon-secure under K}
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Our Encryption Scheme

+ Let N=2% B=20: Ss.t. N=S(S—1)...(S—B+1)
* Note, N < 5%,s0 S>N"2(>Bfor our params)
* Message space M = {1,....B}

» Ciphertext space C={1,....S}

+ Key space K = {all B-tuples of ciphertexts}

K={k=(c|...c)) I c;#cfori#j}

y Encryp’rion: Enc(m, (c,...cg))=c,,

» Decryption: Dec(c, (¢,...cy))=ms.t.c, = c
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Our Encryption Scheme

» Our Goal: show that the set of
"perfect encryption distributions”
on K is highly non-extractable

C1= EPC(I, k)

k=(c...cp):
every subset of
B ciphertexts
is a possibility
under some key

Cp= EPC(Z, k) g

Cm= EPC(B, k)
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Proof of Theorem 2
» Take any Ext: [N] — {0,1}

» Case 1: have O-monochromatic perfect K
- Fix Ext to O with K, done

» Case 2: no such O-monochromatic perfect K

- Main Lemma: if we cannot fix Ext to O, then

3 perfect K s.t. Pr[Ext(K) = 0] B2/N \/B

+ Sublemma 1: certain condition implies Ext[k] = 1

+ Sublemma 2: 3K uniform over S keys with at most B°
keys not satisfying the condition of Sublemma 1
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Sublemma 1

+ Sublemma 1: certain condition = Ext[k] = 1

- Step 1. No 0-monochromatic perfect K =
certain linear system has no solutions x >0

- Step 2. Use Farkas' Lemma: Ax =e has ho
solutions x>0 iff 3y s.t. yA>0,ye<0
» Easy direction: 0 <(yA)x=y(Ax)=ye<0

- Step 3. Deduce the condition using the y above
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Step 1: Perfect Distributions

- Distribution K = {p,} is perfect for
b-bit encryption iff Vp=eand p>0

* V and e encode these constraints on p:

-2p. =1
—p,=Pr[K=k]>0 forall k
-V (1<m<B,1<c<S), Ency(1)=Enc(m):

Z Pk — Z pr =0

k=(c1,..., cp),c1=c k=(c1,..,¢B),Cm=cC
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Step 1: Perfect Distributions

» Distribution K = {p,} is perfect for
b-bit encryption iff Vp=e and p>0

* No O-monochromatic perfect p

I

* No perfect p whose support is inside
7 = {k: Ext(k) = 0) 1

* Ax =e has nho solutions x>0
— A and x - restrictions of Vand p to Z
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Steps 2 & 3: Apply Farkas Lemma

+ (Farkas' Lemma) Ax = e no solution x >0 iff
3y such that yA >0 and ye < 0.
(A and x - restrictions of V and p to 7)

* Our situation:
- For any k s.t. Ext(k) =0 (i.e., k in Z)
0= (YAR =V =Y+ Znst Ome; — Yime,,)
~y;=ye<0.Thus, 0<Z ., (Ve = Yime )

Thm: if y, .~ Yme, <0 for allm>1 = Ext[k]=1
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Sublemma 2

* For any numbers {y, .} 3 perfect K which is
uniform over S keys s.t. at most B> keys
k=(cy,...,c3) do not satisfy the condition:

Yine, — Yme, =0 forall m> 1

+ Special case b=1: for any numbers {y_} 3
perfect K which is uniform over S keys s.t.
at most 4 (we'll get 1, in fact) keys k = (c,c’)
do not satisfy the condition:

Ye= Yo =0
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Sublemma 2: Case b=1

* For any reals {y.} 3 perfect K which is uniform
over S keys s.t. at most 4 (we'll get 1, in fact) keys
k= (c,c’) do not satisfy the condition:
Ye= Yo =0
* Letc,...cgbeanorderings.t.y, <y, =..<y.
» Define K uniform on (c,.c,).....(cq (,Cs),(Cq,Cy)
- Indeed a perfect distribution
© ALY = Ye) D= Yey)s - (Vg — Yey) are < 0. QED
» Could have found this using matchings
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Sublemma 2: Case b=1

Bipartite graph G with vertices labeled with {c}

An edge runs fromc to ¢ iff y.—y. < O

G has a matching of size S -1

- Hall's theorem: if every subset T of “left"
set X has IN(T)l > ITl, then X is "matchable”

- Here true for X = {c,...cq}:
N({c;, any other c’swithi<j<S})={c,....c5}
Complete to get a perfect K
(possibly using a 0-key)
- All keys but the last one are "1-keys"
(since they belong to G)
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Sublemma 2: General Case

* Our K is uniform on S keys

* Instead of choosing ki, ..., kq,

* ... we inductively choose E(1), E(2), ..., E(B)
E(1) E2) .. E@m) .. E(B)

Key 1
Key 2

Key c

Key S




Sublemma 2: General Case

Each column m is a permutation = of {1.....S}
- Ensures the distribution is perfect ( E(m) is random !)

- Constraints:

— m,(c)#m,(c) for all c, m # m’ (unique decodability for a fixed key)
- Want many rows satisfying v, . )~ Yoz =0forallm>1

E() EQ2 .. Em .. E®
Key I |m() [m® | ;) | 7w
Key2 |m®@ |m®) M@ | )
Keyc |m@© m© | |m@© | ... |%(©
KZYS TS TS ... Ta.(S) | ... T5(S)




Sublemma 2: General Case

- Constraints:

— 7, (c)#m,(c) for all c, m# m’ (unique decodability for a fixed key)
- Want many rows satisfying y,, ) = Y.z =0 forallm>1

+ Call t(c) red if v, 1) = Y 50 = 0 & T(c) # T,0(c), V m’<m
— Note: 7,(c)...my(c) red implies Ext[c]| = 1

E(l) E(2) E(m) .. E(B)
Key 1 (D) [T . (D | [ m(D)
Key 2 T,(2) |72 |... (2 | ... T5(2)

Key c

Key S TS | TBS) ... (S | ... T(S)




Sublemma 2: Induction

+ Call (c) red if y, 10 = Y n = 0 & T, () # 7T,(c), V. m’<m

Key inductive step: can select a permutation column #m
which has <2m non-red n_(c)’s!
- Generalizes the Hall's matching argument we saw for b=1

E(1) = E(m) .. E(B)
Key 1 [m@D [m) [ my(1)
/k
Key 2 m,(2) |72 T5(2)
) //- . e
Key C 7T, (c) T,(c) Tp(C)
Key S T(S) [ T(S) m5(S)




Sublemma 2

After iteration j, row c is still good if we have

Y, 71() ~ Ym, i) =0 for l<m< j
Key Step: At iteration m, at most 2m rows become bad

B messages

S keys

<2(14+243+...+B-1) < B?> bad keys by induction




