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Abstract
Randomization is vital in cryptography: secret keys

should be randomly generated and most cryptographic
primitives (e.g., encryption)must be probabilistic. As a
common abstraction, it is assumed that there is a source of
truly randombits available to all the participants of the sys-
tem. While convenient, this assumption is often highly un-
realistic, and cryptographic systems have to be built based
on imperfectsources of randomness. Remarkably, this fun-
damental problem has received little or no attention so far,
despite the fact that a related question of simulating prob-
abilistic (BPP) algorithms with imperfect random sources
has a long and rich history.

In this work we initiate the quantitative study concerning
feasibility of building securecryptographicprimitives us-
ing imperfect random sources. Specifically, we concentrate
on symmetric-key encryption and message authentication,
where the shared secret key comes from an imperfect ran-
dom source instead of being assumed truly random. In each
case, we compare the class of “cryptographic” sources for
the task at hand with the classes of “extractable” and “sim-
ulatable” sources, where: (1) “cryptographic” refers to
sources for which the corresponding symmetric-key prim-
itive can be build; (2) “extractable” refers to a very narrow
class of sources from which one can extract nearly perfect
randomness; and (3) “simulatable” refers to a very general
class ofweak random sources which are known to suffice
for BPP simulation. For both encryption and authentica-
tion, we show that the corresponding cryptographic sources
lie strictly in between extractable and simulatable sources,
which implies that “cryptographic usage” of randomness is
more demanding than the corresponding “algorithmic us-
age”, but still does not require perfect randomness. Inter-
estingly, cryptographic sources for encryption and authen-
tication are also quite different from each other, which sug-
gests that there might not be an elegant way to describe im-
perfect sources sufficient for “general cryptographic use”.
We believe that our initial investigation in this new area will
inspire a lot of further research.

1 Imperfect Random Sources

Randomization has proved to be extremely useful and
fundamental in many areas of computer science, such as
approximation algorithms, counting problems, distributed
computing, primality testing, as well as cryptographic pro-
tocols (which is the topic of this paper). The common ab-
straction used to introduce randomness into computation
is that the underlying algorithm has access to a stream of
completely unbiased and independent random bits. This ab-
straction allows one to use randomness in a clean way, sep-
arating out the issue of actually generating such “strong”
random bits. Unfortunately, in reality we do not have
sources that emit perfectly uniform and independent ran-
dom bits. However, there are many sources whose outputs
(which need not be bits) are believed to be “somewhat ran-
dom”. Such sources are generally calledimperfect random
sources. We remark that the “imperfectness” of the source
does not only come from the fact that it does not generate
uniform random bits, but also because the exact source dis-
tribution is usuallyunknown; instead, only someproperty
the distribution is known (like no string is excessively likely,
etc.), and our proposed usage of a given source should work
for anydistribution satisfying this property. Thus, “imper-
fect source” literally means “an unknown source from a
given family of probability distributions”.

A large amount of research has been devoted to filling
in the gap between such realistic imperfect sources and the
ideal sources of randomness that are actually used in de-
signing various algorithms and protocols. As we will argue
below, the current body of knowledge nevertheless leaves
a large gap in understanding the usefulness of imperfect
sources for variouscryptographicpurposes. Indeed, we
can roughly separate the following two major questions that
have been addressed so far in studying imperfect random
sources, none of which directly dealing with cryptography:� Simulation:can we efficiently simulate a probabilis-

tic (BPP) algorithm with a given source?� Extraction: can we extract almost perfect random-
ness from a given source?



The first question addresses the problem if a given source
is acceptable for universal probabilistic computation of
decision or optimization problems (i.e., problems with a
unique “correct” output which are potentially solved more
efficiently using randomization). The second question goes
for a conceptually cleaner approach in trying to provide —
when possible – a “compiler” for a given imperfect source.
The complier first extracts almost perfect randomness from
the source, which can then be used foranyapplication orig-
inally designed to work with ideal random bits. Clearly,
extraction from a given source is a very desirable prop-
erty to have, since it solves a much broader problem that
BPP simulation. For example, “extractable” sources can be
used in anycryptographicapplication (like secure encryp-
tion), but not every “simulatable” source can [19] (see be-
low). Unfortunately, as shown below, the set of extractable
sources is also dramatically smaller than the set of simulat-
able sources.

SIMULATABLE SOURCES. It turns out that the class of
simulatable sources is extremely large. In particular, more
and more imperfect (so called “weak”) random sources have
been shown to be simulatable [32, 30, 8, 9, 35, 2], cul-
minating in using extremely weak sources [2]. The only
thing guaranteed about a weak source is that no particular
string has a very high probability of occurring. This is char-
acterized by a parameter` (called themin-entropyof the
source) by saying that no string (of some given length) oc-
curs with probability more than2�` (for any distribution of
the source). The optimal result of [2] then says thatBPP
simulation is possible for anyN -bit weak source of min-
entropy at leastN
 , for some (arbitrarily small)
 > 0.
Interestingly, we will see that weak sources are typically
far too general for any randomness extraction (e.g., none of
the sources [32, 30, 8, 9, 35, 2] is extractable). Instead, the
works above take advantage of the fact that even though it
is impossible to generate almost random bits from the cor-
responding weak sources, it is possible to generate random
strings, a majority of which avoid falling into the negligi-
bly small set of “bad” strings. Running the given algorithm
many times on various such pseudorandom strings and com-
puting some statistics, a correct answer is given with high
probability.

Unfortunately, most of the above methods are not ap-
plicable for cryptographic use, where the randomness is
needed by the applicationitself, and not mainly for the pur-
poses of efficiency. Indeed, McInnes and Pinkas [19] have
shown thatnoneof the simulatable sources above can be
used to securely encrypt even a single bit! (See Section 2).

EXTRACTION FROM IMPERFECTSOURCES. As we will
see, extraction is much harder to achieve than simulation,
even for relatively “structured” imperfect random sources.
In rough terms, we can separate three types of imperfect
random sources considered so far:streamingsources,bit-

fixingsources, and already mentionedweaksources (the lat-
ter being significantly more general than the former two).

STREAMING SOURCES. Like the ideal source, a stream-
ing source produces a stream of bits incrementally over
time, but these bits are not necessarily unbiased or inde-
pendent (exact details depend on the streaming source con-
sidered). The first works [34, 12, 5] considered stream-
ing sources which generated highlyindependent(but pos-
sibly biased) random bits. As a result, elegant techniques
were developed to extract manyideal random bits from
such highly “regular” sources. Unfortunately, once the
strong independence requirement was relaxed, many im-
possibility results were obtained. The first quite striking
negative result was obtained by Sántha and Vazirani [23],
who demonstrated that not even a single almost random bit
can be extracted ifeverybit of the source can beslightly
biased and depend on all the previous bits. Lichtenstein et
al. [18] showed a mix of positive and (mainly) negative re-
sults whenfewbits of the source could be arbitrarily biased
while the rest weretruly random. Dodis [10] showed even
more negative results for the common generalization of the
above two sources.

BIT-FIXING SOURCES. A bit-fixing source produces (at
once) a string ofN bits, some of which (say,b) are adver-
sarially fixed, but the other̀ = (N � b) are truly random.
The goal of extraction for such sources is to design a func-
tion (called aresilient function) whose output is “close” to
random no matter whichb input bits are fixed. It turns out
that there is a huge difference depending on whether theb
“fixed” bits get set before or after thèrandom bits are cho-
sen. In the first scenario (studied by [31, 7, 3, 13, 17, 11]),
quite positive and by now nearly optimal results are known
for extractingmany bits (one perfect bit is trivially ex-
tracted by the parity function). In particular, close to`
nearly perfect bits can be extracted in this setting [11]. In
the second scenario (b fixed bits are setafter the ` ran-
dom bits), evenone bit is hard to extract: the optimalb
for this task lies somewhere between
(N= log2N) [1] andO(N= logN) [16].

WEAK SOURCES. Originated by Chor and Goldreich [8],
much subsequent research has been dedicated to various
flavors of the so calledweak random sources. Recall, a
fixed distribution has min-entropỳif no element can occur
with probability more that2�`. Generally, a min-entropy
of a probability distribution is considered the right measure
for the amount of “randomness” it contains. An imperfect
source has min-entropỳif all of its distributions have min-
entropy`, even though not all such distributions might be-
long to the source. On the other hand, aweaksource of min-
entropy` is a specific source consisting ofall distributions
of min-entropỳ . In other words, if an application can toler-
ate a weak source, we are not making any extra assumptions



about our distribution except that it contains “enough ran-
domness”. Thus, weak sources are the most general sources
one can consider, since they contain all natural imperfect
sources as special cases. Remarkably, we already men-
tioned that weak sources are still sufficient to simulateBPP
algorithms. On the other hand, weak sources are also too
general for any kind of randomness extraction (unless we
make some relaxations; see below). For example, it is triv-
ial to show (see formal proof in [8]) that every deterministic
bit extraction function from anN -bit source can be fixed to
a constant by a source of (huge) min-entropy(N � 1), im-
plying that one cannot even extract a single slightly random
bit from such a source!

Three kinds of relaxations were recently studied to sur-
pass the strong impossibility result above. First, Trevisan
and Vadhan [29] consider the problem of extraction from
efficiently samplabledistributions with a given min-entropy.
Second, we mention a series of other works [23, 31, 8, 29]
which extract randomness from severalindependentimper-
fect sources (which is a strong assumption). Last, but not
the least, we mention a large body of work on the so called
randomness extractors[21]. Such extractors are allowed to
use a small number oftruly random bitsin addition to the
output of a given imperfect source. Despite having many
applications (see [20, 28, 22] and the references therein),
the assumption about the existence of truly random bits is
not applicable in many situations.

As the summary of the above discussion, useful imper-
fect sources have reasonably high level of min-entropy, and
weak random sources are the most general and realistic
such sources. While being simulatable, weak sources (and
many other less general imperfect sources) are highly non-
extractable.

2 Cryptographic Sources

The main objective of this work is to initiate the study
of the class of imperfect random sources applicable for var-
ious cryptographicuse, like achieving privacy or authen-
ticity. Let us informally call such sources “cryptographic”
(w.r.t. to the application at hand). As we already mentioned,
the large body of work studying simulatable and extractable
sources leaves a significant gap in understanding the useful-
ness of imperfect sources for cryptographic purposes. We
believe that the understanding above will not only tell us
to what extent cryptographic applications — where ran-
domness is crucial — can tolerate imperfect randomness,
but will also shed further light on the differences between
cryptography and algorithms/complexity theory. In partic-
ular, the main outcome of this work will show that cryp-
tographic sources seem to lie strictly in between simulat-
able (i.e., weak) and extractable sources. Moreover, cryp-
tographic sources for different tasks are different from each
other. This suggests that different cryptographic applica-

tions use randomness differently, and there might not be an
elegant way to describe sources sufficient for “general cryp-
tographic use”.

OUR CRYPTOGRAPHICAPPLICATIONS. In this work we
concentrate on studyingprivate-keycryptography; namely,
the applications of private-key encryption and message au-
thentication. In both applications, Alice wants to send a
messagem to Bob over an insecure channel, controlled
by an adversary Eve. Alice and Bob originally agree on
a shared secret keyK, and on the publicly known encoding
and decoding functionsE andD. To send the messagem,
Alice usesK to compute the ciphertext
 = EK(m) and
sends
 over the channel. Bob gets the ciphertext (call it
0) and outputsm0 = DK(
0), which could be either some
message, or a special symbol? (the latter indicates that
0 was an invalid ciphertext). Clearly, if
 = 
0, then we
require thatm = m0. For encryption, we also want Eve
to obtain “no information” about the messagem upon ob-
serving the ciphertext
. Namely, Alice and Bob want to
achieve privacy. For authentication, we do not want Eve to
be able to change
 to some
0 such that Bob outputs, with
“non-trivial” probability, a valid messagem0 62 fm;?g.
Namely, Alice wants to make sure that Eve cannot mean-
ingfully change the message transmitted (of course, Eve can
always block the message, but this is inevitable).

Aside from being interesting and important in their own
right, there is one more advantage to start our general
investigation from these applications. Specifically, it is
well-known that both of them can be solvedinformation-
theoretically,1 at least if the participants share a long
enoughtruly randomsecret keyK. In our scenario, we in-
vestigate what happens if this key instead comes from some
imperfect source. Considering that most work on imper-
fect random sources is information-theoretic as well, study-
ing the above applications seems to be the cleanest starting
point for understanding “cryptographic” sources.

PRIVATE-KEY ENCRYPTION. Recall that information-
theoretic security of (one-time) private-key encryption
states that the encryptions of any two messages looks sta-
tistically indistinguishable to Eve, who does not knowK.2
And the encryption isperfectif these encryptions are identi-
cally distributed. Assuming that the keyK is a truly randomN -bit string, one can easily obtain a perfect encryption of
anN -bit messagem using the one-time pad scheme [33]:
 = EK(m) = m � K, m = DK(
) = 
 � K, where� is the “exclusive OR” operator. Notice,
 is uniformly
distributed irrespective ofm, so this encryption is indeed
perfect. (Unfortunately, it can be used to encrypt only one1This means no unproven computational assumptions, like theexis-
tence of one-way functions, are needed.2Where the statistical difference is negligible in the security parameter.



message of lengthN securely, and Shannon [24] showed
thatanysecure encryption scheme must havejKj � jmj.)

We now study what happens whenK is not truly ran-
dom, but comes from some imperfect source of random-
ness. The only work so far that has studied this question
is that of McInnes and Pinkas [19]. This work shows that
one cannot securely encrypt even a single bit with the weak
random source (in, fact, even with a more restricted source
of [23])! More precisely, there is no statistically secure en-
cryption scheme for one-bit messages tolerating a weakN -
bit source of min-entropy strictly less thanN (say,N � 1).
In fact, for any “encryption”(E;D) of one-bit messages,
some source of huge min-entropy(N�2) makes the cipher-
text 
 completely revealthe encrypted bit (see Appendix A
for an alternative proof). Thus, the weak sources are not
only non-extractable, but also highly non-cryptographic for
private-key encryption.

On the other hand, the strong negative result of [19]
leaves open — and in factsuggests— the possibility that
every cryptographic source for encryption is extractable. If
true, this would imply thatone-time pad is a universal one-
time private-key encryption.3 Interestingly, the conjecture
above is true fora single(possibly non-uniform) distribu-
tion on the shared keyK. Indeed, Shannon’s negative result
generalizes to this case saying that theShannon’s entropy
of the key,H(K), under our fixed distribution has to be at
least as large as the message lengthN : H(K) � N . On
the other hand, it is well known that the (expected) number
of almost truly random bits one can extract from asingle
distribution onK is again essentially equal toH(K) (up to
an additive1). This shows that the one-time pad encryption
is indeed universal for a single distribution onK: whenever
it is possible to securely encrypt anN -bit messagem (i.e.,H(K) � N ), one might as well extract fromK an almost
uniformH(K)-bit random stringK 0, and then useK 0 as
the one-time pad form!

The main technical contribution of this work is a precise
(negative) resolution of this conjecture for general imper-
fect sources. To state our optimal result quantitatively, re-
call that thefairnessof one random bitr is defined to bemin[Pr(r = 0);Pr(r = 1)℄. Thus, a truly random bit is12 -fair, while a constant bit is0-fair. We show that

Theorem 1 For any fairness" > 2�N=2+1, there is anN -
bit imperfect sourceS of min-entropỳ � N � log(1=")�O(1) and a one-bit encryption scheme(E;D) such that:

1. (E;D) is perfectlysecure for any distribution inS;

2. One cannot extract an"-fair random bit fromS.

The lower bound oǹ is optimal up to an additive constant,
but" can be made2�N=2 when no restriction oǹ is made.3At least for the purposes of encrypting a single bit. Of course, there is
a possibility that one can encrypt more bits “directly” rather than by first
extracting uniform randomness and applying the one-time pad to it.

As a corollary, for anỳ � N � 
(1), there exists a sourceS of min-entropy` which is non-extractable but crypto-
graphic (for one-bit encryption). Moreover, the impossibil-
ity of extraction increases exponentially with “min-entropy
loss” (N � `), while the encryption scheme remains per-
fectly secure. The proof of this result and further discussion
of encryption is given in Section 3.

To summarize, nearly perfect randomness is not inher-
ently needed to generateindistinguishabledistributions,
while weak (i.e., simulatable) sources are too general for
this task (see also Appendix A).

PRIVATE-KEY AUTHENTICATION. We also consider the
question of information-theoretic private-key message au-
thentication [14] (see also [25]). Recall, the security of such
authentication codesis given by the parameter", which
is the maximal probability of Eve’s success (i.e., chang-
ing the ciphertext
 for m into a valid ciphertext
0 of somem0 6= m). For concreteness, we will restrict our attention to
the simplest case of one-bit messages (just like we did for
encryption). This will simplify our analysis, without qual-
itatively changing our conclusions. Indeed, to authenticate
long messages one typically uses various types ofuniver-
sal hash functions[6] (see [6, 27, 4, 15] for examples). For
one-bit messages, many much more trivial techniques suf-
fice (we will see examples in Section 4).

As with the encryption, we first address the possibility
of basing message authentication on weak sources. Inter-
estingly, the result we obtain is quite different.

Theorem 2 The optimal one-bit authentication code
achieves error probability" = min[2N=2�`; 1℄ against a
weak source of min-entropỳ. In particular, one can non-
trivially tolerate weak sources of min-entropy` > N=2 +!(1), but cannot go beyond this “threshold”.

Therefore, whenN
 < ` < N=2 (for any 
 > 0), we
see that the weak source can simulateBPP algorithms, but
cannot be used even for the most basic2-message authenti-
cation. On the other hand, whenN=2 < ` < N , one can at
least build secure2-message authentication codes, but can-
not extract even a single non-constant (let alone random)
bit. Also, the thresholdN=2 is quite different from the cor-
responding thresholdN for encryption.

Finally, we show that a strong separation between the
possibility of authentication and extraction continues to
hold even wheǹ < N=2. More specifically, we show

Theorem 3 There exists an imperfectN -bit source, each
of whose distributions has min-entropyat most̀ (i.e., all of
them have “low entropy”!), and such that:

1. There exists a one-bit authentication code achiev-
ing nearly optimal error probability" = 2�`=2+O(1)
against any distribution inS;

2. Any bit extraction function can be fixed to a constant
by some source inS.



In other words, one can potentially build a secure authenti-
cation code even for some “low-entropy” sources, but still
completely fail in extracting even a single bit from this
source. The proofs of the above results and further discus-
sion of message authentication appear in Section 4.

3 Private-Key Encryption

In this section we discuss our approach for encryption in
more detail (in particular, prove our main Theorem 1). We
will find it convenient to slightly change our notation. LetK denote the universe of shared keys, and letjKj = u (i.e.,u = 2N , but we will not insist on it). Similarly, letC be the
set of ciphertexts andjCj = n. Also, it will be easier to re-
place the notion of min-entropỳby an equivalent notion of
uniformity. We will say that a distribution over the universeK of sizeu is �-uniform, where� 2 [0; 1℄, if no element
occurs with probability larger than1=�u (for simplicity, we
will assume throughout that�u is an integer). Similarly,
an imperfect source is�-uniform if all its distributions are
such. Clearly,� = 2`=u where` is the corresponding min-
entropy, so our change is purely syntactic. We will also call
a distributionflat if it is uniform over some subsetT of K
(i.e., every element ofT comes with probability1=jT j).
GRAPH REPRESENTATION. Given any candidate one-bit
encryption scheme(E;D), we now give a purely graph-
theoretic representation of this scheme. Consider the fol-
lowing directed graphG = G(E;D). Then vertices ofG
are then possible ciphertexts
 2 C. G will also have ex-
actlyu directed edges (call this setE) — one for each pos-
sible shared keyK. The directed edgeeK 2 E , labeled by
keyK, will connect verticesEK(0) (the head) andEK(1)
(the tail). In this view, to encrypt0 Alice will send to Bob
the head ofeK , and to encrypt1 she will send the tail ofeK . We letIN(
) denote the (multi)set of edges incoming to
 (i.e., those whose tail is
), and byOUT(
) the (multi)set
of outgoing edges. Notice, since Bob should be able to de-
crypt,G cannot have self-loops (i.e.,EK(0) 6= EK(1)), so
the setsIN(
) andOUT(
) are disjoint. Thus, an encryp-
tion scheme(E;D) is equivalent to specifying a directed
(multi)graph withjKj edges,jCj vertices, and no self-loops.

Assume we are given some distributionp onK. This dis-
tribution can be viewed as assigning a non-negative weightp(K) to the edgeeK . Conversely, any non-zero weight
assignment toK corresponds to some probability distribu-
tion p (by rescaling the weights so that they sum to1).
Therefore, we will identify these two concepts. We say
that a weight assignment forms acirculation, if for ev-
ery node
 2 C, “incoming” weight to 
 is equal to the
“outgoing” weight from
: win(
) def= PeK2IN(
) p(K) =PeK2OUT(
) p(K) def= wout(
).
Lemma 1 The encryption (E;D) is perfectly secure

against distributionp onK if and only if the weight assign-
ment above induces a circulation.

Proof: The valueswin(
) andwout(
) are respectively pro-
portional to the conditional probabilities that that the en-
crypted bit was1 or 0 given that the ciphertext was
. The
encryption is perfect iff these are always equal.

We remark that the simplest possible circulation corre-
sponds to any simple (uniformly weighted) directed cycle
in G. Additionally, it is well know that any circulation can
be decomposed into a weighted sum of such uniform cy-
cles (the converse is true as well). Finally, flat circulations
decompose into adisjointunion of such cycles.

BIT EXTRACTION. Any deterministic bit extraction func-
tion f : K ! f0; 1g can be viewed as atwo-coloring�f of the edgesE of G. Let us call the colors “red”
and “blue”. Given a particular distributionp on K,
we define its weight on red edges to beRed(�f ; p) =PK:f(K)=0 p(K) = PrK p(f(K) = 0), and similarly
for Blue(�f ; p). The fairnessof �f on p is simply the
corresponding fairness of the extracted random bitf(K):F(�f ; p) def= min[Red(�f ; p);Blue(�f ; p)℄. Given an imper-
fect sourceS, the quality of extraction given by coloring�f is FS(�f ) = minp2S F(�f ; p). Namely, we select the
sourcep 2 S that biasesf(K) as much as possible. Fi-
nally, the best extraction functionf againstS defines the
quantityFS = maxf FS(�f ). To summarize, the quality of
randomness extraction fromS is given as the optimal valueFS of the following zero-sum game: (1) the first player tries
to maximize the game value and chooses a two-coloring�;
(2) the second player tries to minimize the game value and
chooses a distributionp 2 S; (3) the value of this specific
outcome is the fairnessF(�; p).
BIT EXTRACTION VS. BIT ENCRYPTION. Having de-
veloped the terminology above, let us return to the original
conjecture posed in Section 2. The question was to separate
extractable sources from cryptographic sources for encryp-
tion. The approach suggested in Theorem 1 was the follow-
ing. We want to see if there exists an encryption scheme(E;D) such that for a given min-entropy level` one can
find an imperfect sourceS with this min-entropy such that:
(1) (E;D) is secure (in fact, perfect) one-bit encryption for
any distributionp 2 S, but (2) one cannot extract even a
single “slightly” random bit fromS. First, we can simplify
this question as follows. Given a candidate scheme(E;D),
we can without loss of generalitydefineS to be the family
of all (min-entropỳ ) distributions against which(E;D) is
perfectly secure. Recalling now our graph representation
and Lemma 1, we arrive at the following question. Given
a candidate directed (multi)graphG with n vertices andu
edges, we letS be the family of all circulations onG which
are�-uniform (recall, we will work with uniformity in place
of min-entropy). Our goal is to determineFS , which is the



quality of bit extraction from thisS. Let us denote this
value — now dependent only onG and� — by Val(G;�).
Notice, if Val(G;�) � 1=2, encryption scheme(E;D) is
exactly the encryption we are looking for to disprove the
conjecture. On the other hand, ifVal(G;�) � 1=2, the fea-
sibility of perfectly encrypting a bit using(E;D) indeed
implies the possibility of bit extraction.

WHEN ENCRYPTION () EXTRACTION. Before find-
ing graphsG disproving our conjecture, we address the fol-
lowing curious question. Which graphsG (i.e., encryption
schemes) actually support the original conjecture? Specifi-
cally, when isVal(G; 0) = 1=2? (� = 0 means not placing
any min-entropy restrictions).

Lemma 2 Val(G; 0) = 12 if and only ifG is bipartite.

Proof: AssumeG is not bipartite. Then it has some odd-
length cycleC, which defines a flat circulation. Any two-
coloring � will have a different number of red and blue
edges inC, which meansVal(G; 0) � F(�;C) � 12 �12jCj < 12 . On the other hand, ifG is bipartite, then its ver-
tex set can be partitioned into left setL and right setR, so
that all the edges go betweenL andR. Now define� by col-
oring all the edges fromL to R red and those fromR to L
— blue. For any circulationp, the amount of outgoing flow
fromL toR should be equal to the amount of incoming flow
fromR toL, which means that the weight of red edges is the
same as the weight of blue edges:Red(�; p) = Blue(�; p),
but this means that our coloring extracts a perfect coin.

3.1 Proof of Theorem 1

We now come back to our main result. First, using the no-
tation developed so far, we can restate Theorem 1 in the
following (even stronger) form:

Theorem 4 For any universe sizeu and uniformity level� 2 (0; 116 ℄,4 define� = max[�; 1=pu℄. Then, there exists
a single graphG� such that� Val(G�; �) = O(�). In particular, for any� = o(1)

we haveVal(G�; �) = o(1).� For any G, Val(G;�) = 
(�), so the graphG�
above is nearly optimal.

We remark that the result above can be viewed as aprecise
calculation to the value of the following game, given by pa-
rametersu and�. It it played by “minimization” playerA
and “maximization” playerB:

A. Selects number of verticesn and a directed graphG
with n vertices andu edges.

B. Selects a two-coloring� of G.
A. Selects an�-uniform circulationp in G. The value of

the game isF(�; p).
Theorem 4 states that this value is�(max[�; 1=pu℄).4The choice of this constant, as well of some other constants in this
section, is arbitrary and is not necessarily optimal.

UPPERBOUND. From Lemma 2, the graphG� should be
highly non-bipartite. So we letG� be the complete directed
graph onn vertices, i.e.u = n(n� 1) � n2. We show that
this graph is nearly optimal in separating extractable and
cryptographic sources for encryption. We start with com-
puting Val(G�; 0), i.e. the optimal discrepancy when no
constraints are put on the min-entropy of our circulation.
Lemma 3 Val(G�; 0) = 1n � 1pu .

Proof: For the lower bound, consider thelexicographic
coloring � of G. Namely, color(i; j) red if i < j and
blue otherwise. Any cycleC (say, of lengths � n) must
have at least one edge of each color, which means thatF(�;C) � 1=s � 1=n. On the other hand, any circulationp can be written as a convex combination of simple cycles.
By linearity ofRed(�; �) andBlue(�; �), this implies that the
weight of red (resp. blue) edges inp is lower bounded by
the corresponding weight in at least one of the cycles in the
convex combination, and the latter we know is at least1=n.

For the upper bound, takeany coloring� of the edges
of G�. If any2-cycle i ! j ! i in G is monochromatic,
we would getF(�; i ! j ! i) = 0 < 1=n. Thus, we
can assume that among each pair of edges(i; j) and(j; i),
exactly one is red and one is blue. But this means that the
subgraph of, say, blue edges forms atournament. However,
it is well known (e.g., see [26, p. 175]) that any tournament
has a Hamiltonian path (the proof follows by a simple in-
duction on the number of vertices). This means that there
exists a length(n � 1) path consisting only of blue edges.
Completing this path into a Hamiltonian cycle (by either a
red or a blue edge), we get a cycleC with F(�;C) � 1=n,
as needed.

Next, we show that the boundVal(G�; �) = O(1=n)
extends to all� � 1=2n = 
(1=pu) as well. Indeed,
consider any two-coloring�, as before. Let us look at all
monochromatic2-cycles in�. If this number is at leastn=2, this means that there are at leastn=4 monochromatic2-cycles of the same color. Taking the union of these2-
cycles gives a flat circulationpwith n2 > n(n�1)� 12n � �u
edges havingF(�; p) = 0. If the number of monochromatic
cycles is less thann=2, let us remove fromG� one arbi-
trary vertex in each of the monochromatic2-cycles. We get
a two-coloring of a complete graphG0 on at leastn=2 ver-
tices, where no2-cycle is monochromatic. By the previous
argument, we can find a Hamiltonian cycleC in G0, which
has at leastn=2 � �n edges and achievesF(�;C) � 2=n.

Hence, to prove Theorem 4, i.e. Val(G�; �) =O(max(�; 1=pu)) = O(max(�; 1=n)), it suffices to con-
sider the case when� � 1=2n and showVal(G�; �) =O(�). As before, take any coloring�, and assume wlog
that it contains at leastn(n � 1)=2 blue edges. Recall,
our goal is to find an�-uniform circulationp such thatF(�; p) = O(�). We will in fact produce aflat circula-
tion satisfying this condition. Namely, our circulation will



consist of�u = �n(n � 1) edges with uniform weight on
them. Recall, a flat circulation can be decomposed into a
disjoint union of cycles. And this is in fact the way we will
build ourp. We will keep adding some carefully chosen cy-
clesC to p, each time removingC from our graphG� (this
will ensure that the cycles are disjoint), until we add a total
of �n(n�1) edges, as required by the min-entropy require-
ment. Each cycleC will contain at mostO(�) fraction of
red edges, guaranteeing thatF(�; p) = O(�), as needed.

PICKING THE CYCLES. We now describe the procedure
of choosing our cycles. First, we keep adding cycles which
are entirely blue, until no such cycles are left inG� (remem-
ber, we remove the cycle the moment we add it top). If we
already got�n(n � 1) edges inp, we stop. Otherwise, at
the end we are left with anacyclic“blue” subgraphG0 con-
taining at leastn(n�1)( 12 ��) edges. Let us topologically
order the vertices ofG0 so that all the edges go from left
to right. As a combinatorial result of independent interest,
we will show that suchG0 always contains a directed (blue)
path of length
(1=�) (here we use� > 
(1=n)). It seems
that we are done: complete the path above to a cycleC
(which hasF(�;C) = O(�)) and add it top. However, we
have to ensure that we will never reuse the “back” edge we
use to complete the cycle. Thus, we prove an even stronger
combinatorial result.

Lemma 4 Let G0 be an acyclic directed graph havingn
vertices andu0 � n(n�1)( 12��) edges. ThenG0 contains
at least�n2 directed paths of length
(1=�), each having
a distinct pair of starting and ending vertices.

Postponing the proof of Lemma 4 for a second, we argue
that it allows us to complete the argument. Namely, sincep
always has at most�n2 edges (which consequently are not
present inG0), we can find a length
(1=�) “blue” path inG0 such that the “back” edge it needs to become a cycle is
still present inG0. Therefore, we can keep finding almost
blue cycles until the size ofp becomes�n(n�1), as needed.
The proof of Lemma 4 below then completes the first part
of Theorem 4.

Proof: Let us denote by1 : : : n then vertices ofG0 listed
in their topological order. LetG00 denote the “complement”
graph containing at most�n(n � 1) forward edges that are
not present inG0. Let d = 8�n (notice,4 � d � n=2
since1=2n � � � 1=16), G0 = G0, n0 = n, k = 0,
and repeat the following procedure until impossible. Given
a vertexi 2 f1 : : : (nk � d)g of Gk, we call call verticesfi + 1; : : : ; i + dg of Gk the immediate neighborhoodofi. We say thati is lonely, if it has at mostd=2 outgoing
edges to its immediate neighborhood (i.e., at mostd=2 of
the edges(i; i+1); (i; i+2); : : : ; (i; i+d) are present inGk).
If the graphGk has at least one lonely vertexi, we removei (and all its adjacent edges) fromGk , thus forming a new
graphGk+1 with nk+1 = nk � 1 vertices. In particular,

we renamethe vertices ofGk+1 so that they are numbered
from 1 to nk+1 = nk � 1. Finally, we incrementk.

We notice that in each step we removed a vertex which
did not have at leastd=2 forward neighbors, which means
that we removed at leastd=2 new edges in the complement
graphG00. SinceG00 only had�n(n � 1) edges to begin
with, the number of timesk we could find such a lonely
vertex is at mostk � �n2=(d=2) = �n2=4�n = n=4.
Hence, the final graphGk has at least3n=4 vertices, none
of which is lonely. Now, take an arbitrary starting pointi 2f1 : : : n=4g in Gk, and greedily construct a forward path by
iteratively picking any point in the immediate neighborhood
of the current point (also stopping when we crossnk � d).
Since no points below(nk�d) � n=2 are lonely, the length
of the path is at least(n=4)=d = 
(1=�). Moreover, we
have at leastn=4 choices for the starting andd=2 = 4�n
choices for the ending points. Therefore, the total number
of distinct source/destination paths we can construct is at
least�n2, as claimed.

LOWER BOUND. Take any graphG with u edges andn
vertices. To show thatVal(G;�) = 
(�), where� =max[�; 1=pu℄, we need to show the existence of a color-
ing � such that for any�-uniform circulationp we haveF(�; p) = 
(�). We will show that such� exists byprob-
abilistic method. We randomly label the vertices ofG by
numbers from1 to n, and color edge(i; j) of G red if i < j
and blue otherwise. We show that such coloring satisfies
the needed property with non-zero probability, and there-
foreexists.

First, we prove the bound
(1=pu). For that, we show
that with high probability,G does not contain a blue (resp.
red) path of length̀

def= 3pu. Indeed, taking any path ofG
of length`, the probability that it gets all red or all blue is
exactly2=`! < (e=`)`. Since the overall number of paths of
length` is certainly less than

�ù� < (eu=`)`, the expected
number of monochromatic length̀paths is less than( eù �è )` < ( 9u`2 )` = 1, since` = 3pu. Thus, some ordering
with the given property exists. Now, fix any such ordering
and the corresponding coloring�, and take any circulationp. Decomposep into cycles. The property of our ordering
ensures that in each cycleC, at most` consecutive edges
are monochromatic, soF(�;C) � 1=`. Thus implies thatF(�; p) = 
(1=pu) as well.

Next, we show the bound
(�). For that, call an edge(i; j) short in the resulting ordering ifji � jj < d, whered = �(n � 1)=4. Notice, the probability that a given edge
of G becomes short is at most2dn(n�1)n = �2 , by our choice
of d. Therefore, the expected number of short edges is at
most�u=2. In particular, some ordering will produce at
most�u=2 short edges. Now, fix any such ordering and the
corresponding coloring�, and take any�-uniform circula-
tion p. Since the weight of each edge inp is at most1=�u,
the total weight of short edges inp is at most1=2, mean-



ing that “long” edges must have weight at least1=2 too.
Now decomposep into cycles and take any resulting cycleC. We claim that any consecutive sequence of blue (same
argument hold for red as well) edges can contain at most(n � 1)=d = O(�) long blue edges (but can contain more
short blue edges). Indeed, since blue edges go “forward” by
at leastd steps, one cannot have more that(n � 1)=d blue
edges without have at least one “backward” red edge. This
implies that the total weight of the red edges in this cycle is
at least an
(�) fraction of the weight oflong blue edges.
Since this bound holds for every cycleC, it holds for the
entire circulationp as well. Thus, the total weight of red
edges (call itr) in p is at least
(�) fraction of the weight
of long blue edges (call itbl): r = 
(�) � bl. But since all
red and all long blue edges include all long edges, it meansr + bl � 1=2 (remember, short edges weight at most1=2),
which implies thatr = 
(�), completing the proof.

4 Private-Key Authentication

We now address the question of building a one-time mes-
sages authentication code for one-bit messages. Our re-
sults could be viewed as the first step towards basing more
general (many-time, larger message spaces) authentication
codes on imperfect sources. A lot of our notation will par-
allel what we used for encryption in Section 3. In particu-
lar, we will also use graphs to represent an authentication
code(E;D) with key spaceK of cardinalityu and tagging
space5 C of cardinalityn. However, it will be more natural
to use anundirected bipartite(multi)graph for this purpose.
Namely, this graphG has a left sideL and a right sideR —
both being a copies of the tagging spaceC. As before, there
will be u edgeseK , corresponding to different secret keysK 2 K. The edgeeK will connect the “left” copy ofEK(0)
to the “right” copy ofEK(1) (given
 2 C, we let
` and
r
denote the left and right copies of
 in G). Notice, there is
no restriction about not connecting
` to 
r, and also edges
could be duplicated.

FLAT DISTRIBUTIONS. As before, a probability distribu-
tion p onK can be viewed as assigning weights to the edges
of G. Given such distributionp and observing a tag
 of
some bitb (say,b = 0), the optimal strategy for producing
the tag
0 of (1� b) = 1 involves picking the vertex
0r 2 R
having the largest weight going from
` to 
0r. Because of
that, flat distributions will play a particularly importantrole
in our study. Recall, such distributions assign equal weight
to some subset ofK. It is well known that every�-uniform
distribution is a convex combination of�-uniform flat dis-
tributions. This implies that among all�-uniform sources,
the best ones for the adversary are exactly the flat distribu-
tion having�u edges in their support.5We find it more natural to refer to the output ofEK(�) as a “tag” rather
than a “ciphertext” like we did for encryption.

Now, letp be an�-uniform flat distribution having sup-
port on the edge setE 0 of u0 = �u edges. Let�0!1(p)
denote the optimal probability of the adversary to produce
a valid tag for1 after seeing the tag for0, and similarly for�1!0(p). The security of the authentication code(E;D)
on distributionp is then"(p) = max[�0!1(p);�1!0(p)℄.
Let L0 (R0) be the set of left (right) vertices belonging to
some edge inE 0, and letn` = jL0j andnr = jR0j. We
will also call our flat distributionp simpleif no two edges
in E 0 connect the same pair of vertices (i.e., all the keys are
functionally distinct).

Lemma 5 For any flat distributionp,�0!1(p) � max � n`�u; 1nr � ; �1!0(p) � max� nr�u; 1n`�
and, thus,"(p) � 1p�u . For simple flat distributions,�0!1(p) = n`�u ; �1!0(p) = nr�u ; "(p) = max[n`;nr℄�u .

Proof: The fact that�0!1(p) � 1=nr is obvious since
there are onlynr possible tags for1. Next, let d(
) be
the degree of the node
 in E 0. Then the probability thatEK(0) = 
` is equal tod(
`)=�u. On the other hand,
conditioned onEK(0) = 
`, there are at mostd(
`) pos-
sibilities for EK(1), implying that the adversary can pre-
dict the valueEK(1) with probability at least1=d(
`) (the
latter becomes equality for simple flat distributions). Thus,�0!1(p) �P
`2L0 d(
`)�u � 1d(
`) = n`�u . Similar proof holds
for �1!0(p). Finally, "(p) = max[�1!0(p);�0!1(p)℄ �max[ n`�u ; 1n` ; nr�u ; 1nr ℄ � 1p�u .

PROOF OF THEOREM 2. We can now examine the con-
struction of optimal authentication codes secure against
weak sources. In our notation, Theorem 2 states that the
optimal authentication code for all�-uniform distributions
achieves errormin[ 1�pu ; 1℄. For the upper bound, con-
sider the complete bipartite graphG� on n nodes (so thatu = n2). Recall, it suffices to consider only flat�-uniform
distributions. Notice, each such distribution is necessarily
simple. Then, for any such distribution on�u edges touch-
ing n` left andnr right nodes ofG�, applying Lemma 5
yields that" = max[n`;nr ℄�u � n�u = pu�u = 1�pu , as needed.
In retrospective and coming back to our original notation,
the above authentication code is extremely simple. One
splits anN -bit secret key into two equal length random padss0 ands1. Then, to authenticate a bitb, Alice can use the
padsb. Intuitively, if the min-entropy of the source is aboveN=2, learningsb still leaves some randomness ins1�b, so
the latter indeed cannot be predicted well.

We next show that the above graphG� is indeed optimal
for dealing with�-uniform sources. For any graphG onu nodes, we consider two possibilities. First, assume the
edges ofG touch at least

pu left vertices, i.e.jLj � pu.
Take any subgraph ofG with �u edges which also touches



pu left vertices (makingn` at least
pu for the correspond-

ing flat distributionp). By Lemma 5,"(p) � n`=�u �pu=�u = 1=�pu. On the other hand, assume the edges
of G do not touch

pu vertices the left side, i.e.jLj � pu.
Take an� fraction of left vertices having the largest degree
in G. They form the setL0 of size�jLj � �pu. Clearly,
the vertices ofL0 have at least�u edges ofG adjacent to
them. We make these edges form our flat distributionp.
Then, Lemma 5 again implies that"(p) � 1=n` � 1=�pu.

PROOF OFTHEOREM 3. Finally, we show that the sepa-
ration between extractable and cryptographic sources holds
for “low” levels of min-entropy as well. In our notation,
Theorem 3 states that there exists a graphG� on u edges
and a familyS of at most�-uniform distributions on the
edges ofG, so that: (1)"(p) � O(1=p�u), for all p 2 S;
but (2) for every two-coloring� of the edges ofG, the sup-
port set of somep 2 S is monochromatic.

As earlier, we letG� be the complete bipartite graph onn vertices (so thatu = n2). The familyS will consist of the
flat distributions corresponding to the following sets of�n2
edges. Take any left and right subsetsL0 � L andR0 � R
of cardinality

p2� �n = p2�u. Then take any subgraph of
size�u of the complete bipartite subgraphL0 � R0. Since
all our flat distributions are simple, we get by Lemma 5
that "(p) � p2�u�u = O( 1p�u ), as desired. Notice, this is
nearly the best possible by Lemma 5 too, since for any flat�-uniformp we have"(p) � 1p�u .

It remains to show that no bit extraction is possible fromS. For that, take any two-coloring� of the edges ofG�,
and assume wlog that at leastn2=2 edges are colored blue.
Let us look at the subgraphG0 formed by these blue edges.
We need to show thatG0 contains at least one distribution
in S, i.e. that there existsL0 andR0 of cardinality

p2�u
such that the complete subgraphL0 � R0 contains at least�n2 blue edges. We show the existence of suchL0 andR0
by probabilistic method. Namely, pickL0 andR0 of sizep2�u completely at random. Each blue edge will get insideL0�R0 with probability2�, so the expected number of blue
edges insideL0 �R0 is at least2� � n22 = �n2. This shows
that someL0 andR0 matching the above expectation exist,
completing the proof.

5 Conclusions and Further Research

In this work we investigated the extent to which conven-
tional cryptographic primitives such as encryption and au-
thentication can be build based on imperfect sources of
randomness. In particular, we compared the class of such
“cryptographic” sources for the applications above with the
well studied classes of weak (i.e., simulatable) and ex-
tractable random sources. Our results illustrate that the
set of sources sufficient for various cryptographic applica-
tions seems to be quite different from the above well studied

classes, and also strongly depends on the cryptographic task
at hand. Thus, cryptographic primitives do not inherently
rely on ideal randomness, but cannot tolerate very general
weak sources of randomness.

We believe that our initial investigation of the possibil-
ity of basing cryptography on imperfect random sources
will inspire a lot of further research. In particular, many
questions remain open. For example, it is interesting to
extend our quantitative results for private-key encryption
and especially authentication to larger than one-bit message
spaces. It is also interesting to consider other information-
theoretic primitives like authenticated encryption and se-
cret sharing schemes. Finally, many new questions appear
when we look atcomputationallysecure primitives (like
one-way functions or public-key encryption and signature
schemes). In particular, we still have to rely on (possi-
bly stronger!) computational assumptions in order to build
computational primitives which are secure against various
imperfect sources. Investigating which such sources can
still be tolerated in this setting is a very interesting research
direction.
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A Simple Proof for Impossibility of Basing
Encryption on Weak Random Sources

For completeness, we reprove the result of [19] in our graph
notation. This result states that for any encryption scheme(E;D) with anN -bit key (i.e, directed graphG onu = 2N
edges) there exists a min-entropy(N � 2) (i.e., 14 -uniform)
distributionp on the edgesE of G such that the ciphertext
(i.e., the vertex ofG) completely reveals the encrypted bit.
First, we notice that the encryption(E;D) is completely
insecure against some distributionp if and only if the nodes
of G can be decomposed into disjoint partsL andR, such
that all positive weight edges inp go fromL toR. Indeed,
in this case no node has both an incoming and an outgoing
edge of positive weight, so there is no uncertainty to the
adversary. Thus, it suffices to show that there exist setsL
andR such that at leastu=4 edges ofE go fromL to R,
since a uniform distribution on these edges will then define
the source we need. Let’s place each vertex ofG into L
or R with probability 1=2 each. Then, each edgeeK ofE with go fromL to R (as needed) with probability1=4.
Thus means that,on average, u=4 edges will go fromL toR, irrespective of what graphG we started from. But this
means that the neededL andR exist, completing the proof.


