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Abstract 1 Imperfect Random Sources

Randomization is vital in cryptography: secret key§ Randomization has proved to be extremely useful and
should be randomly generated and most cryptographic fundamental in many areas of computer science, such as

primitives ée.g., e_ncrypponbnust bz [;robabnlsyc. As a fapproximation algorithms, counting problems, distriloute
common abstraction, it is assumed that there is a source o computing, primality testing, as well as cryptographic-pro

truly ranﬁ:)n‘blts avgllablehtlo allthe part|C|pan]Ets of H']ehslys- tocols (which is the topic of this paper). The common ab-
terr;_. W |e(;:onven|ent, L_'S assump?]on IS Obenb '_? by unc;straction used to introduce randomness into computation
realistic, and cryptographic systems have to be built based;g ¢ e underlying algorithm has access to a stream of

onimperfectsources of randomness. Remarkably, this fun- completely unbiased and independent random bits. This ab-

game_ntarl]pr;)blemh has relcel\:jed I|tt|g or n;) a_1tter|1t|qn S0 fabr, straction allows one to use randomness in a clean way, sep-
espite the fact that a related question of simulating prob- arating out the issue of actually generating such “strong”

abilistic (BPP) algorithms with imperfect random sources .4 n pits. Unfortunately, in reality we do not have

has a ang and ”C_h _h_|story. e . sources that emit perfectly uniform and independent ran-
In this work we initiate the quantitative study concerning 4o pits. However, there are many sources whose outputs

feasibility of building secureryptographicprimitives us-  hich need not be bits) are believed to be “somewhat ran-
ing imperfect random sources. Specifically, we concentrate ;" sych sources are generally caliegerfect random

on symmetric-key encryption and message a_luthenticationSources We remark that the “imperfectness” of the source
where the shared secret _key comes from an imperfect ran,eq ot only come from the fact that it does not generate
dom source instead of being assumed truly random. In €ach,itorm random bits, but also because the exact source dis-

case, we compare the class of “cryptographic” sources for iy, i js usuallyunknown instead, only someroperty
the task at hand with the classes of “extractable” and “sim- 4 distribution is known (like no string is excessivelyglii,

ulatable” sources, where: (1) “cryptographic"_ refers tc_) etc.), and our proposed usage of a given source should work
sources for which the corresponding symmetric-key prim- ¢, any distribution satisfying this property. Thus, “imper-

itive can be build; (2) “extr.actable” refersto avery narow ¢t source” literally means “an unknown source from a
class of sources from“vyhlch one Ean extract nearly perfectgiven family of probability distributions”.
randomness; and (3) “simulatable” refers to a very general A large amount of research has been devoted to filling

class ofwgakrar_1dom sources which are known to su_fnce in the gap between such realistic imperfect sources and the
f_or BPP simulation. For both encryption and aut_hennca- ideal sources of randomness that are actually used in de-
t_|on, we Sh.OW that the corresponding Cr)_/ptograpmc sources signing various algorithms and protocols. As we will argue
lie §tru_:tly In betwe“en extractab!e and 5|”mulatable SOBICE  helow, the current body of knowledge nevertheless leaves
whichimplies t.hat cryptographic usage Ofurandqmn(.ess IS a large gap in understanding the usefulness of imperfect
more demanding than the corresponding “algorithmic us- ¢ .cos for variousryptographicpurposes. Indeed, we

age, but still does n(_)t require perfect rand_omness. Inter- can roughly separate the following two major questions that
estingly, cryptographic sources for encryption and authen have been addressed so far in studying imperfect random

tication are also quite different from each other, which-sug ¢\ \rces none of which directlv dealina with crvptoaraphy:
gests that there might not be an elegant way to describe im- ' y g yplography:

perfect sources sufficient for “general cryptographic use” e Simulation:can we efficiently simulate a probabilis-
We believe that our initial investigation in this new aredl wi tic (BPP) algorithm with a given source?
inspire a lot of further research. e Extraction: can we extract almost perfect random-

ness from a given source?



The first question addresses the problem if a given sourcefixing sources, and already mentiongeaksources (the lat-
is acceptable for universal probabilistic computation of ter being significantly more general than the former two).
decision or optimization problems (i.e., problems with a
unigque “correct” output which are potentially solved more
efficiently using randomization). The second question goes

STREAMING SOURCES Like the ideal source, a stream-
ing source produces a stream of bits incrementally over
time, but these bits are not necessarily unbiased or inde-

for a conceptually cleaner approach in trying to provide — . .
b y P yingtop pendent (exact details depend on the streaming source con-

when possible — a “compiler” for a given imperfect source. . ) .
The complier first extracts almost perfect randomness from.S'dered)' Theh_ﬂrﬁt Workst[%4,h_1ﬁ, ] condS|de£e(tj stream-
the source, which can then be useddayapplication orig- ing sources which generated highiydependen(but pos-

inally designed to work with ideal random bits. Clearly, j\;g% bc;i\S/ng fgctlgrgxkilrz(.:tﬁaanés;ﬁ :;neéignargittsei?;r;?ues
extraction from a given source is a very desirable prop- P

erty to have, since it solves a much broader problem thatztjrzr:] h'i?]zlg (;(re\gzlr?ée SrzuLﬁ?(esﬁwentJCJ;;tligﬁiﬁ 0:1(; thi;_
BPP simulation. For example, “extractable” sources can be 9 P q ' y

used in anycryptographicapplication (like secure encryp- possibility results were obtained. The first quite striking
. eryplog p PP " P negative result was obtained by Santha and Vazirani [23],
tion), but not every “simulatable” source can [19] (see be-

low). Unfortunately, as shown below, the set of extractable who demonstrated that not even a single almost random bit

sources is also dramatically smaller than the set of simulat can be extracted iéverybit of the source can .behghtly .
able sources. biased and depend on all the previous bits. Lichtenstein et

al. [18] showed a mix of positive and (mainly) negative re-
SIMULATABLE SOURCES It turns out that the class of  gyits wherfewbits of the source could be arbitrarily biased
simulatable sources is extremely large. In particular,enor yhjle the rest weréruly random. Dodis [10] showed even

and more imperfect (so called “weak”) random sources havemore negative results for the common generalization of the
been shown to be simulatable [32, 30, 8, 9, 35, 2], cul- gpove two sources.

minating in using extremely weak sources [2]. The only

thing guaranteed about a weak source is that no particulaB!T-FIXING SOURCES A bit-fixing source produces (at
string has a very high probability of occurring. This is char Once) a string ofV bits, some of which (say,) are adver-
acterized by a parametér(called themin-entropyof the  sarially fixed, but the othef = (V — b) are truly random.
curs with probability more thad—¢ (for any distribution of ~ tion (called aresilientfunction) whose output is “close” to

the source). The optimal result of [2] then says tBRP random no matter which input bits are fixed. It turns out
simulation is possible for anyv-bit weak source of min-  that there is a huge difference depending on whetheb the
entropy at leastV?, for some (arbitrarily small}y > 0. “fixed” bits get set before or after thierandom bits are cho-

Interestingly, we will see that weak sources are typically S€n. In the first scenario (studied by [31, 7, 3, 13, 17, 11]),
far too general for any randomness extraction (e.g., none ofduite positive and by now nearly optimal results are known
the sources [32, 30, 8, 9, 35, 2] is extractable). Instea, th for extractingmany bits (one perfect bit is trivially ex-
works above take advantage of the fact that even though ittracted by the parity function). In particular, close 4o

is impossible to generate almost random bits from the cor-nearly perfect bits can be extracted in this setting [11]. In
responding weak sources, it is possible to generate randonthe second scenarid fixed bits are sefter the £ ran-
strings, a majority of which avoid falling into the negligi- dom bits), everonebit is hard to extract: the optimal

bly small set of “bad” strings. Running the given algorithm for this task lies somewhere betwe@fW/ log” N) [1] and
many times on various such pseudorandom strings and com@ (V/ log ') [16].

puting some statistics, a correct answer is given with high\weak Sources Originated by Chor and Goldreich [8],
probability. much subsequent research has been dedicated to various
“Unfortunately, most of the above methods are not ap-fyors of the so calleaveakrandom sources. Recall, a
plicable for cryptographic use, where the randomness isfixeq distribution has min-entrophif no element can occur
needed by t_he_z applicatiatself, and not mainly forthe pur-  \ith probability more thag—¢. Generally, a min-entropy
poses of efficiency. Indeed, McInnes and Pinkas [19] have ¢ 5 probability distribution is considered the right measu
shown thatoneof the simulatable sources above can be ¢4 the amount of “randomness” it contains. An imperfect
used to securely encrypt even a single bit! (See Section 2). 5o rce has min-entrogif all of its distributions have min-
EXTRACTION FROM IMPERFECTSOURCES As we will entropy/, even though not all such distributions might be-
see, extraction is much harder to achieve than simulation,long to the source. On the other haneyeaksource of min-
even for relatively “structured” imperfect random sources entropy/ is a specific source consisting alf distributions
In rough terms, we can separate three types of imperfectof min-entropy?. In other words, if an application can toler-
random sources considered so fatreamingsourcesbit- ate a weak source, we are not making any extra assumptions



about our distribution except that it contains “enough ran- tions use randomness differently, and there might not be an
domness”. Thus, weak sources are the most general sourcesegant way to describe sources sufficient for “general-cryp
one can consider, since they contain all natural imperfecttographic use”.

sources as special cases. Remarkably, we already men-

tioned that weak sources are still sufficient to simuBR®P OUR CRYPTOGRAPHICAPPLICATIONS.  In this work we
algorithms. On the other hand, weak sources are also tocconcentrate on studyingrivate-keycryptography; namely,
general for any kind of randomness extraction (unless wethe applications of private-key encryption and message au-
make some relaxations; see below). For example, it is triv- thentication. In both applications, Alice wants to send a
ial to show (see formal proofin [8]) that every determirdsti messagen to Bob over an insecure channel, controlled
bit extraction function from aV-bit source can be fixed to by an adversary Eve. Alice and Bob originally agree on

a constant by a source of (huge) min-entr¢py— 1), im- a shared sgcret kefj, and on the publicly known encoding
plying that one cannot even extract a single slightly random and decoding functiong andD. To send the message,
bit from such a source! Alice usesK to compute the ciphertext = Eg (m) and

Three kinds of relaxations were recently studied to sur- sendsc over the channel. Bob gets the ciphertext (call it
pass the strong impossibility result above. First, Travisa ¢') and outputsn’ = D (c'), which could be either some
and Vadhan [29] consider the problem of extraction from message, or a special symhol(the latter indicates that
efficiently samplabldistributions with a given min-entropy. ¢’ was an invalid ciphertext). Clearly, if = ¢’, then we
Second, we mention a series of other works [23, 31, 8, 29]require thatn = m'. For encryption, we also want Eve
which extract randomness from severalependenimper-  to obtain “no information” about the messageupon ob-
fect sources (which is a strong assumption). Last, but notserving the ciphertext. Namely, Alice and Bob want to
the least, we mention a large body of work on the so called achieve privacy. For authentication, we do not want Eve to
randomness extractof@1]. Such extractors are allowed to be able to changeto somec’ such that Bob outputs, with
use a small number dfuly random bitsin addition to the ~ “non-trivial” probability, a valid message:’ ¢ {m, L}.
output of a given imperfect source. Despite having many Namely, Alice wants to make sure that Eve cannot mean-
applications (see [20, 28, 22] and the references therein)ingfully change the message transmitted (of course, Eve can
the assumption about the existence of truly random bits isalways block the message, but this is inevitable).
not applicable in many situations. Aside from being interesting and important in their own

As the summary of the above discussion, useful imper- right, there is one more advantage to start our general
fect sources have reasonably high level of min-entropy, andinvestigation from these applications. Specifically, it is
weak random sources are the most general and realisti?vell-known that both of them can be solvedormation-
such sources. While being simulatable, weak sources (andheoretically at least if the participants share a long
many other less general imperfect sources) are highly non-noughtruly randomsecret keyi'. In our scenario, we in-

extractable. vestigate what happens if this key instead comes from some
) imperfect source. Considering that most work on imper-
2 Cryptographic Sources fect random sources is information-theoretic as well, gtud

. N . . L ing the above applications seems to be the cleanest starting
The main objective of this work is to initiate the study point for understanding “cryptographic” sources

of the class of imperfect random sources applicable for var-

ious cryptographicuse, like achieving privacy or authén-  pgryaTe-KEY ENCRYPTION. Recall that information-
ticity. Let us info_rma_llly call such sources “cryptographic theoretic security of (one-time) private-key encryption
(w.r.t. to the application at hand). As we already mentigned giates that the encryptions of any two messages looks sta-
the large body of work studying simulatable and extractable tistically indistinguishable to Eve, who does not knéi?
sources leaves a significant gap in understanding the usefulpnd the encryption iperfectif these encryptions are identi-
ness of imperfect sources for cryptographic purposes. Wecally distributed. Assuming that the kéy is a truly random
believe that the understanding above will not only tell us nr_pjt string, one can easily obtain a perfect encryption of

to what extent cryptographic applications — where ran- g N -pit messagen using the one-time pad scheme [33]:
domness is crucial — can tolerate imperfect randomness,. _ Ex(m) = m® K, m = Dk(c) = ¢ K, where

but will also shed further light on the differences between g, is the “exclusive OR” operator. Notice,is uniformly
cryptography and algorithms/complexity theory. In partic gjstributed irrespective ofiu, so this encryption is indeed

ular, the main outcome of this work will show that cryp- perfect. (Unfortunately, it can be used to encrypt only one
tographic sources seem to lie strictly in between simulat-

able (i.e., weak) and extractable sources. Moreover, cryp-———- . . .

. . . This means no unproven computational assumptions, likeetie
tographic sources for different tasks are different fromhea  ence of one-way functions, are needed.
other. This suggests that different cryptographic applica  2where the statistical difference is negligible in the sitgyrarameter.




message of lengtiv securely, and Shannon [24] showed As a corollary, forany < N — Q(1), there exists a source
thatanysecure encryption scheme must hék@ > |mj|.) S of min-entropy? which is non-extractable but crypto-
We now study what happens whé is not truly ran- graphic (for one-bit encryption). Moreover, the impossibi
dom, but comes from some imperfect source of random-ity of extraction increases exponentially with “min-ergyo
ness. The only work so far that has studied this questionloss” (N — ¢), while the encryption scheme remains per-
is that of Mclnnes and Pinkas [19]. This work shows that fectly secure. The proof of this result and further discussi
one cannot securely encrypt even a single bit with the weakof encryption is given in Section 3.
random source (in, fact, even with a more restricted source To summarize, nearly perfect randomness is not inher-
of [23])! More precisely, there is no statistically secure e  ently needed to generaiadistinguishabledistributions,
cryption scheme for one-bit messages tolerating awéak  while weak (i.e., simulatable) sources are too general for
bit source of min-entropy strictly less than (say,N — 1). this task (see also Appendix A).
In fact, for any *encryption’(£, D) of one-bit messages,  pg\are-KEey AUTHENTICATION. We also consider the
some source of huge min-entrofly —2) makes the cipher- 4, ,o5tion of information-theoretic private-key message au
textc completely reveahe encrypted bit (see Appendix A 0 ntication [14] (see also [25]). Recall, the securityuts
for an alternative proof). Thusf the weak sources are Not, ithentication codess given by the parameter, which
only non-extractable, but also highly non-cryptograpbic f s the maximal probability of Eve's success (i.e., chang-

private-key encryption. _ ing the ciphertext for m into a valid ciphertext’ of some
On the other hand, the strong negative result of [19] 7 - ..} "For concreteness, we will restrict our attention to

leaves open — and in fasuggests— the possibility that 6 'simplest case of one-bit messages (just like we did for
every cryptographic source for encryption is extractalife encryption). This will simplify our analysis, without qual

true, this would imply thabne-time pad is a universal one- jaiively changing our conclusions. Indeed, to authemgica
time pr_|vate-key en_crypuoﬁ In_terestlngly,_the conjecture long messages one typically uses various typesnifer-
a_lbove is true fom single(possibly non-uniform) d_|str|bu- sal hash functionfs] (see [6, 27, 4, 15] for examples). For
tion on the shared kei('. Indeed, Shannon's negative result ;e pjit messages, many much more trivial techniques suf-
generalizes to this case saying that 8teannon’s entropy . (we will see examples in Section 4).
of the key,H (K), under our fixed distribution has to be at  ag yith the encryption, we first address the possibility
least as large as f[he message len§th/I (k) > N. On of basing message authentication on weak sources. Inter-
the other hand, it is well known that the (expected) number estingly, the result we obtain is quite different
of almost truly random bits one can extract fronsiagle ' . . C
L : : : Theorem 2 The optimal one-bit authentication code

dlstrlbqt!on onk s again essentially qual 6 (K) (up o achieves error probability = min[2"/2-¢ 1] against a
an additivel). This shows that the one-time pad encryption : . ’

weak source of min-entrogy In particular, one can non-

is indeed universal for a single distribution &h whenever . .
it is possible to securely encrypt av-bit messagen (i.e trivially tolerate weak sources of min-entrogy> N/2 +
o w(1), but cannot go beyond this “threshold”.

H(K) > N), one might as well extract froft’ an almost
uniform H (K)-bit random stringk”’, and then usés’ as  Therefore, whenV” < ¢ < N/2 (for anyy > 0), we
the one-time pad for! see that the weak source can simuBRP algorithms, but

The main technical contribution of this work is a precise cannot be used even for the most basimessage authenti-
(negative) resolution of this conjecture for general imper cation. On the other hand, whé¥y2 < £ < N, one can at
fect sources. To state our optimal result quantitativaly, r ~ least build secur@-message authentication codes, but can-
call that thefairnessof one random bit- is defined to be ~ not extract even a single non-constant (let alone random)
min[Pr(r = 0),Pr(r = 1)]. Thus, a truly random bit is bit. Also, the thresholdV/2 is quite different from the cor-
1-fair, while a constant bit i§-fair. We show that responding threshol®y for encryption.

Finally, we show that a strong separation between the
possibility of authentication and extraction continues to
hold even whert < N /2. More specifically, we show

Theorem 3 There exists an imperfecY -bit source, each
of whose distributions has min-entropymost (i.e., all of

Theorem 1 For any fairess > 2~ V/2*1 there is anV-
bit imperfect sources of min-entropy > N —log(1/e) —
O(1) and a one-bit encryption scher®, D) such that:

1. (E, D) is perfectlysecure for any distribution ir%;

2. One cannot extract astfair random bit fromsS. them have “low entropy™), and such that:
The lower bound o# is optimal up to an additive constant, 1. There exists a one-bit authentication code achiev-
bute can be mad@ /2 when no restriction oi is made. ing nearly optimal error probability: = 2-¢/2+0(1)

against any distribution irg’;
At least for the purposes of encrypting a single bit. Of cevitsere is 2. Any bit extraction function can be fixed to a constant
a possibility that one can encrypt more bits “directly” mtthan by first

extracting uniform randomness and applying the one-tintktpit. by some source ifi.



In other words, one can potentially build a secure authenti- against distributiorp on K if and only if the weight assign-

cation code even for some “low-entropy” sources, but still ment above induces a circulation.

completely fail in extracting even a single bit from this Proof: The valuesi, (c)
. m

. andw,(c) are respectively pro-
source. The proofs of th? al?ove results_ and fu_rther OIISCUS'portional to the conditional probabilities that that the en
sion of message authentication appear in Section 4.

crypted bit wasl or 0 given that the ciphertext was The

3 Private-Key Encryption encryption is perfect iff these are always equal. Cl

We remark that the simplest possible circulation corre-
In this section we discuss our approach for encryption in sponds to any simple (uniformly weighted) directed cycle
more detail (in particular, prove our main Theorem 1). We in G. Additionally, it is well know that any circulation can
will find it convenient to slightly change our notation. Let be decomposed into a weighted sum of such uniform cy-
K denote the universe of shared keys, andigt= u (i.e., cles (the converse is true as well). Finally, flat circulato
u = 2, but we will not insist on it). Similarly, le€ be the decompose into disjoint union of such cycles.

set of ciphertexts anf’| = n. Also, it will be easiertore- g, extracTioN. Any deterministic bit extraction func-
place the notion of min-entropdpy an equivalent notion of 4, f: K — {0,1} can be viewed as awo-coloring
un|form|ty. We will say that a distribution over the universe X; of the edgest of G. Let us call the colors “red”
K of sizeu is a-uniform wherea & [0, 1], if no element 54 “plye”, Given a particular distributiop on K,
occurs with probability larger thaty au (for simplicity, we we define its weight on red edges to Bed(x,p) =
will assume throughout thatwu is an integer). Similarly, > p(K) = Prre,(f(K) = 0), and similarly
an imperfect source ia-uniform if all its distributions are forKI:SfIiJI;E;; p). The fairnepssof X; on p is simply the

_ ot i i in- ’ .
such. Clearly = 2°/u v_vhereé is the Cor_respond_mg min corresponding fairness of the extracted randomfbi):
entropy, so our change is purely syntactic. We will also call det

a distributionflat if it is uniform over some subsét of K ][:Of[f’p) :er;iriLRed(XJ].’tp)’ I?Iuet(xfi[_p)]. Q|venban |m|pe_r-
(i.e., every element df comes with probability /|T°|). ect sources, the quality ot extraction given by coloring

Xy is Fs(xy) = minyes F(xy,p). Namely, we select the
GRAPH REPRESENTATION Given any candidate one-bit sourcep € S that biasesf(/) as much as possible. Fi-
encryption schem¢E, D), we now give a purely graph- nally, the best extraction functiofi againstS defines the
theoretic representation of this scheme. Consider the fol-quantityFs = max; Fs(xs). To summarize, the quality of
lowing directed graplé; = G(E, D). Then vertices ofG randomness extraction frofis given as the optimal value
are then possible ciphertexts € C. G will also have ex- Fs of the following zero-sum game: (1) the first player tries
actly v directed edges (call this s€) — one for each pos-  to maximize the game value and chooses a two-coloying
sible shared key¢. The directed edgex € &, labeled by (2) the second player tries to minimize the game value and
key K, will connect verticesE (0) (the head) and (1) chooses a distributiop € S; (3) the value of this specific
(the tail). In this view, to encrypi Alice will send to Bob outcome is the fairnedsy, p).

the head ok, and to encrypt she will send the tail of  BiT ExTRACTION vs. BIT ENCRYPTION. Having de-
ex. We letIN(c) denote the (multi)set of edges incoming to  veloped the terminology above, let us return to the original
c (i.e., those whose tail ig), and byOUT(c) the (multi)set  conjecture posed in Section 2. The question was to separate
of outgoing edges. Notice, since Bob should be able to de-extractable sources from cryptographic sources for encryp
crypt, G cannot have self-loops (i.ex (0) # Ex (1)), SO tion. The approach suggested in Theorem 1 was the follow-
the setsdN(c) andOUT (c) are disjoint. Thus, an encryp- ing. We want to see if there exists an encryption scheme
tion scheme(E, D) is equivalent to specifying a directed (E, D) such that for a given min-entropy levélone can
(multi)graph with| K| edges|C| vertices, and no self-loops.  find an imperfect sourcé with this min-entropy such that:
Assume we are given some distributipon K. Thisdis- (1) (E, D) is secure (in fact, perfect) one-bit encryption for
tribution can be viewed as assigning a non-negative weightany distributionp € S, but (2) one cannot extract even a
p(K) to the edgec. Conversely, any non-zero weight single “slightly” random bit fromS. First, we can simplify
assignment t& corresponds to some probability distribu-  this question as follows. Given a candidate sch¢mgeD),
tion p (by rescaling the weights so that they sumljo we can without loss of generalijefineS to be the family
Therefore, we will identify these two concepts. We say of all (min-entropy) distributions against which®, D) is

that a weight assignment formscérculation, if for ev- perfectly secure. Recalling now our graph representation
ery nodec € C, “incoming” weight toc is equal to the  and Lemma 1, we arrive at the following question. Given
“outgoing” weight frome: w;, (c) = Dexein(e) PIK) = a candidate directed (multi)grajgh with r. vertices ande
2ex cout(e) PK) = wour (0. edges, we lef be the family of all circulations o which

area-uniform (recall, we will work with uniformity in place
Lemmal The encryption(E,D) is perfectly secure of min-entropy). Our goal is to determirg;, which is the



quality of bit extraction from thisS. Let us denote this
value — now dependent only @f anda — by Val(G, ).
Notice, if Val(G,a) < 1/2, encryption scheméE, D) is
exactly the encryption we are looking for to disprove the
conjecture. On the other handMél(G, o) = 1/2, the fea-
sibility of perfectly encrypting a bit usingE, D) indeed
implies the possibility of bit extraction.

WHEN ENCRYPTION <= EXTRACTION. Before find-
ing graphg disproving our conjecture, we address the fol-
lowing curious question. Which graplis(i.e., encryption
schemes) actually support the original conjecture? Specifi
cally, when isVal(G, 0) = 1/2? (@ = 0 means not placing
any min-entropy restrictions).

Lemma2 Val(G,0) = 3 if and only ifG is bipartite

Proof: Assume( is not bipartite. Then it has some odd-
length cycleC', which defines a flat circulation. Any two-
coloring x will have a different number of red and blue
edges inC, which meansval(G,0) < F(x,C) < 5 —
ﬁ < % On the other hand, iff is bipartite, then its ver-
tex set can be partitioned into left setand right setR, so
that all the edges go betweérandR. Now definey by col-
oring all the edges fronk to R red and those froni to L

— blue. For any circulatiop, the amount of outgoing flow
from L to R should be equal to the amount of incoming flow
from R to L, which means that the weight of red edges is the
same as the weight of blue edg&&d(x, p) = Blue(x,p),
but this means that our coloring extracts a perfect coln.

3.1 Proof of Theorem 1

We now come back to our main result. First, using the no-

tation developed so far, we can restate Theorem 1 in the

following (even stronger) form:

Theorem 4 For any universe sizes and uniformity level
a € (0, £],* defined = max[a, 1/1/u]. Then, there exists
a single graphG* such that
e Val(G*,a) = O(f). In particular, for anya = o(1)
we haveVal(G*, o) = o(1).
e For any G, Val(G,a) = Q(B), so the graphG*
above is nearly optimal.
We remark that the result above can be viewed peaise
calculation to the value of the following game, given by pa-
rameters, anda. It it played by “minimization” playerd
and “maximization” playei3:
A. Selects number of verticesand a directed grap@
with n vertices and.: edges.
Selects a two-coloring of G.
Selects amv-uniform circulationp in G. The value of
the game i$(x, p).

Theorem 4 states that this valued$max|c, 1/1/u]).

4The choice of this constant, as well of some other constanthi$
section, is arbitrary and is not necessarily optimal.

B.
A.

UPPERBOUND. From Lemma 2, the grapfi* should be
highly non-bipartite. So we let* be the complete directed
graph o vertices, i.eu = n(n — 1) ~ n?. We show that
this graph is nearly optimal in separating extractable and
cryptographic sources for encryption. We start with com-
puting Val(G*,0), i.e. the optimal discrepancy when no
constraints are put on the min-entropy of our circulation.
Lemma3 Val(G*,0) = 1 ~ \/La
Proof: For the lower bound, consider tHexicographic
coloring x of G. Namely, color(i, j) red if i < j and
blue otherwise. Any cyclé€' (say, of lengths < n) must
have at least one edge of each color, which means that
F(x,C) > 1/s > 1/n. On the other hand, any circulation
p can be written as a convex combination of simple cycles.
By linearity of Red(, -) andBlue(x, -), this implies that the
weight of red (resp. blue) edgesinis lower bounded by
the corresponding weight in at least one of the cycles in the
convex combination, and the latter we know is at |da(st.

For the upper bound, takeny coloring y of the edges
of G*. If any2-cyclei — j — 4 in G is monochromatic,
we would getF(x,i - j — i) = 0 < 1/n. Thus, we
can assume that among each pair of edggps and(j, i),
exactly one is red and one is blue. But this means that the
subgraph of, say, blue edges formearnamentHowever,
it is well known (e.g., see [26, p. 175]) that any tournament
has a Hamiltonian path (the proof follows by a simple in-
duction on the number of vertices). This means that there
exists a lengtlin — 1) path consisting only of blue edges.
Completing this path into a Hamiltonian cycle (by either a
red or a blue edge), we get a cydewith F(y,C) < 1/n,
as needed. U

Next, we show that the boundal(G*,a) = O(1/n)
extends to alle < 1/2n = Q(1/4/u) as well. Indeed,
consider any two-coloring, as before. Let us look at all
monochromati@-cycles iny. If this number is at least
n/2, this means that there are at leagt monochromatic
2-cycles of the same color. Taking the union of th@se
cycles gives aflat circulationwith 3 > n(n—l)-% > au
edges having(x, p) = 0. If the number of monochromatic
cycles is less tham/2, let us remove fronG* one arbi-
trary vertex in each of the monochromaicycles. We get
a two-coloring of a complete gragh' on at least:/2 ver-
tices, where n@-cycle is monochromatic. By the previous
argument, we can find a Hamiltonian cy¢lein G, which
has at least/2 > an edges and achievé$y, C) < 2/n.

Hence, to prove Theorem 4, i.e.Val(G*,«)
O(max(a,1/y/u)) = O(max(w, 1/n)), it suffices to con-
sider the case whea > 1/2n and showVal(G*, a)
O(«a). As before, take any coloring, and assume wlog
that it contains at least(n — 1)/2 blue edges. Recall,
our goal is to find am-uniform circulationp such that
F(x,p) = O(«). We will in fact produce dlat circula-
tion satisfying this condition. Namely, our circulationlhi



consist ofau = an(n — 1) edges with uniform weight on  we renamethe vertices of7;, so that they are numbered
them. Recall, a flat circulation can be decomposed into afrom 1tony,; = ng — 1. Finally, we incremenk.

disjoint union of cycles. And this is in fact the way we will We notice that in each step we removed a vertex which
build ourp. We will keep adding some carefully chosen cy- did not have at least/2 forward neighbors, which means
clesC to p, each time removing' from our graphG* (this that we removed at leady2 new edges in the complement
will ensure that the cycles are disjoint), until we add altota graphG". SinceG" only hadan(n — 1) edges to begin

of an(n —1) edges, as required by the min-entropy require- with, the number of time& we could find such a lonely

ment. Each cycl€ will contain at mostO(«) fraction of
red edges, guaranteeing tifdly, p) = O(«), as needed.

PICKING THE CYCLES. We now describe the procedure

of choosing our cycles. First, we keep adding cycles which {1

are entirely blue, until no such cycles are leftii (remem-
ber, we remove the cycle the moment we add ji)tolf we
already gotan(n — 1) edges inp, we stop. Otherwise, at
the end we are left with aacyclic"blue” subgraphG’ con-
taining at leasti(n — 1)(% — ) edges. Let us topologically
order the vertices ofs’ so that all the edges go from left
to right. As a combinatorial result of independent interest
we will show that sucltz’ always contains a directed (blue)
path of length2(1/a) (here we usex > 2(1/n)). It seems
that we are done: complete the path above to a cgtle
(which hasF(y, C) = O(«a)) and add it tap. However, we

vertex is at mosk < an?/(d/2) = an®/4an = n/4.
Hence, the final grapty;, has at leas8n /4 vertices, none

of which is lonely. Now, take an arbitrary starting poirg
..n/4} in Gy, and greedily construct a forward path by
iteratively picking any point in the immediate neighborkoo
of the current point (also stopping when we crags— d).
Since no points beloin;, —d) > n/2 are lonely, the length

of the path is at leastn/4)/d = Q(1/«). Moreover, we
have at least/4 choices for the starting and/2 = 4an
choices for the ending points. Therefore, the total number
of distinct source/destination paths we can construct is at
leastan?, as claimed. O

LowER BOUND. Take any grapltz with . edges andh
vertices. To show thaVal(G,a) = Q(8), whereg =
max|«, 1/+/ul, we need to show the existence of a color-

have to ensure that we will never reuse the “back” edge weing x such that for anyx-uniform circulationp we have
use to complete the cycle. Thus, we prove an even strongeF (y, p) = Q(3). We will show that suchy exists byprob-

combinatorial result.

Lemma4 Let G’ be an acyclic directed graph having
vertices and/’ > n(n—1)(3 —a) edges. The’ contains
at leastan? directed paths of lengtf}(1/«), each having
a distinct pair of starting and ending vertices.

abilistic method We randomly label the vertices 6&f by
numbers fronl to n, and color edgéi, j) of G red ifi < j
and blue otherwise. We show that such coloring satisfies
the needed property with non-zero probability, and there-
fore exists

First, we prove the boun@(1/,/u). For that, we show

Postponing the proof of Lemma 4 for a second, we arguethat with high probability(¥ does not contain a blue (resp.

that it allows us to complete the argument. Namely, sjnce
always has at mosin? edges (which consequently are not
present inG’), we can find a lengtf2(1/«) “blue” path in

def

red) path of lengtlf = 3./u. Indeed, taking any path &f
of length/, the probability that it gets all red or all blue is
exactly2/¢! < (e/£)¢. Since the overall number of paths of

G' such that the “back” edge it needs to become a cycle is|ength¢ is certainly less tharf) < (eu/€)", the expected

still present inG’. Therefore, we can keep finding almost
blue cycles until the size gfbecomesn(n—1), as needed.
The proof of Lemma 4 below then completes the first part
of Theorem 4.

Proof: Let us denote byt ...n then vertices ofG’ listed
in their topological order. Letr" denote the “complement”
graph containing at mosin(n — 1) forward edges that are
not present inG’. Letd = 8an (notice,4 < d < n/2
sincel/2n < a < 1/16), Gy = G', ng = n, k = 0,
and repeat the following procedure until impossible. Given
avertexi € {1...(ny — d)} of G}, we call call vertices
{i+1,...,i+ d} of G} theimmediate neighborhooof

i. We say that is lonely, if it has at mostd/2 outgoing
edges to its immediate neighborhood (i.e., at mbst of
the edge$i,i+1), (i,i+2), ..., (i,i+d) are presentidy,).

If the graphG), has at least one lonely vertéxwe remove
i (and all its adjacent edges) frof#,, thus forming a new
graphGj1 with ngy; = ng — 1 vertices. In particular,

number of monochromatic lengthpaths is less tha%* -
£)f < (%)f = 1, sincel = 3,/u. Thus, some ordering
with the given property exists. Now, fix any such ordering
and the corresponding coloring and take any circulation
p. Decompose into cycles. The property of our ordering
ensures that in each cyclé, at most¢ consecutive edges
are monochromatic, sb(x, C') > 1/¢. Thus implies that
F(x,p) = Q(1/4/u) as well.

Next, we show the bounfi(«). For that, call an edge
(i, 7) shortin the resulting ordering ifi — j| < d, where
d = a(n — 1)/4. Notice, the probability that a given edge
of G becomes short is at mo n'_d{‘)n = 5, by our choice
of d. Therefore, the expected number of short edges is at
mostau/2. In particular, some ordering will produce at
mostau/2 short edges. Now, fix any such ordering and the
corresponding coloring, and take anyv-uniform circula-
tion p. Since the weight of each edgeyiris at mostl/au,
the total weight of short edges mis at mostl/2, mean-



ing that “long” edges must have weight at ledgg too.
Now decomposg into cycles and take any resulting cycle

Now, letp be ana-uniform flat distribution having sup-
port on the edge s&t’ of u' = au edges. Lefy_1(p)

C. We claim that any consecutive sequence of blue (samedenote the optimal probability of the adversary to produce
argument hold for red as well) edges can contain at mosta valid tag forl after seeing the tag fay, and similarly for

(n —1)/d = O(«) long blue edges (but can contain more

[y o(p). The security of the authentication co@E, D)

short blue edges). Indeed, since blue edges go “forward” byon distributionp is thene(p) = max[To—1(p),'1-0(p)]-

at leastd steps, one cannot have more that— 1)/d blue

Let L' (R") be the set of left (right) vertices belonging to

edges without have at least one “backward” red edge. Thissome edge itf’, and letn, = |L'| andn, = |R'|. We
implies that the total weight of the red edges in this cycle is will also call our flat distributiorp simpleif no two edges

at least arf)(«) fraction of the weight ofong blue edges.
Since this bound holds for every cydg, it holds for the
entire circulationp as well. Thus, the total weight of red
edges (call it*) in p is at least2(«) fraction of the weight
of long blue edges (call #;): » = Q(«) - b;. But since all

red and all long blue edges include all long edges, it means

r + b > 1/2 (remember, short edges weight at mbg2),
which implies that- = Q(«), completing the proof.

4 Private-Key Authentication

in £’ connect the same pair of vertices (i.e., all the keys are
functionally distinct).

Lemma5 For any flat distributionp,
n 1 1
Lo1(p) > max {_e, —] ; —}
au’ My au Ty
For simple flat distributions,
(p) _ max[ne,n,.| )

au

T'10(p) > max {ﬂ,

and, thus,e(p) > —*

E

N
au’ €

Losi(p) = 25, Tiso(p) =

Proof: The fact thatl'o_,1(p) > 1/n, is obvious since
there are onlyn, possible tags fod. Next, letd(c) be

We now address the question of building a one-time mes-the degree of the nodein £’. Then the probability that

sages authentication code for one-bit messages. Our reg, (0) = ¢, is equal tod(c;)/au. On the other hand

sults could be viewed as the first step towards basing morezonditioned onEy (0) = ¢, there are at most(c;) pos-
general (many-time, larger message spaces) authenticatiosipilities for Ex (1), implying that the adversary can pre-

codes on imperfect sources. A lot of our notation will par-
allel what we used for encryption in Section 3. In particu-

lar, we will also use graphs to represent an authenticationroﬁl(p)

code(E, D) with key spaceC of cardinalityu and tagging
space C of cardinalityn. However, it will be more natural
to use arundirected bipartit€multi)graph for this purpose.
Namely, this graplds has a left sidd. and a right side&R —
both being a copies of the tagging space\s before, there
will be v edgesex, corresponding to different secret keys
K € K. The edge k will connect the “left” copy ofE (0)
to the “right” copy of Ex (1) (givenc € C, we letc, andc,
denote the left and right copies oin G). Notice, there is
no restriction about not connectirgto c,, and also edges
could be duplicated.

FLAT DISTRIBUTIONS. As before, a probability distribu-

dict the valueEx (1) with probability at least /d(c;) (the
latter becomes equality for simple flat distributions). $hu

> Ycer diee) ey = a5 Similar proof holds
for 1"1%0(%)). Fln?lly,e(pz = max[['150(p), Tom1(p)] >
max[%vmag;vn_r]z Vau® H

PROOF OFTHEOREM 2. We can now examine the con-
struction of optimal authentication codes secure against
weak sources. In our notation, Theorem 2 states that the
optimal authentication code for alluniform distributions
achieves erromin[#a, 1]. For the upper bound, con-
sider the complete bipartite grag* on n nodes (so that
u = n?). Recall, it suffices to consider only flatuniform
distributions. Notice, each such distribution is necelsar
simple. Then, for any such distribution e edges touch-

tionp on K can be viewed as assigning weights to the edgesing rn, left andn, right nodes ofG*, applying Lemma 5

of G. Given such distributiop and observing a tag of
some bitb (say,b = 0), the optimal strategy for producing
the tage’ of (1 — b) = 1 involves picking the vertex. € R
having the largest weight going from to ¢/.. Because of
that, flat distributions will play a particularly importardle

in our study. Recall, such distributions assign equal weigh
to some subset d€. It is well known that everyv-uniform
distribution is a convex combination efuniform flat dis-
tributions. This implies that among all-uniform sources,

the best ones for the adversary are exactly the flat distribu-

tion havingau edges in their support.

5We find it more natural to refer to the outputBf (-) as a “tag” rather
than a “ciphertext” like we did for encryption.

yields thate = % < A= % = —1_ asneeded.

. ; avu’ © :
In retrospective and coming back to our original notation,
the above authentication code is extremely simple. One
splits anNV-bit secret key into two equal length random pads
sp ands;. Then, to authenticate a Hif Alice can use the
padsy. Intuitively, if the min-entropy of the source is above
N/2, learnings, still leaves some randomnesssn_;, SO

the latter indeed cannot be predicted well.

We next show that the above gra@hi is indeed optimal
for dealing witha-uniform sources. For any gragh on
u nodes, we consider two possibilities. First, assume the
edges ofG touch at least/u left vertices, i.e.|L| > /u.
Take any subgraph @F with au edges which also touches



V/u left vertices (making:, at least,/u for the correspond-
ing flat distributionp). By Lemma 5,¢(p) > n¢/au >
Vu/au = 1/ay/u. On the other hand, assume the edges
of G do not touchy/u vertices the left side, i.d.L| < /u.
Take anx fraction of left vertices having the largest degree
in G. They form the sel’ of sizea|L| < ay/u. Clearly,
the vertices ofL’ have at leastvu edges ofG adjacent to
them. We make these edges form our flat distribugion
Then, Lemma 5 again implies thap) > 1/n, > 1/a/u.

PrROOF OFTHEOREM 3. Finally, we show that the sepa-
ration between extractable and cryptographic sourceshold
for “low” levels of min-entropy as well. In our notation,
Theorem 3 states that there exists a gréffhon v edges
and a familyS of at mosta-uniform distributions on the
edges ofG, so that: (1k(p) < O(1/y/au), forallp € S;
but (2) for every two-coloring of the edges of/, the sup-
port set of some € .S is monochromatic.

As earlier, we lelG* be the complete bipartite graph on
n vertices (so that = n2). The family.S will consist of the
flat distributions corresponding to the following setswaf
edges. Take any left and right subsétsc L andR' C R
of cardinalityy/2a - n = v2au. Then take any subgraph of
sizeau of the complete bipartite subgragh x R’'. Since
all our flat distributions are simple, we get by Lemma 5
thate(p) < % = O(ﬁ), as desired. Notice, this is
nearly the best possible by Lemma 5 too, since for any flat
a-uniformp we haves(p) > \/i_u

It remains to show that no bit extraction is possible from
S. For that, take any two-coloring of the edges ot7*,
and assume wlog that at least/2 edges are colored blue.
Let us look at the subgraph’ formed by these blue edges.
We need to show thal’ contains at least one distribution
in S, i.e. that there exist&' and R’ of cardinalityv/2au
such that the complete subgraphx R’ contains at least
an? blue edges. We show the existence of sli¢tand R’
by probabilistic method. Namely, pick’ and R’ of size
Vv2au completely at random. Each blue edge will getinside
L' x R with probability2«, so the expected number of blue
edges insidd’ x R’ is at leasRa - ”72 = an?. This shows
that someL’ and R' matching the above expectation exist,
completing the proof.

5 Conclusionsand Further Research

In this work we investigated the extent to which conven-
tional cryptographic primitives such as encryption and au-
thentication can be build based on imperfect sources of

randomness. In particular, we compared the class of such

“cryptographic” sources for the applications above with th
well studied classes of weak (i.e., simulatable) and ex-
tractable random sources. Our results illustrate that the
set of sources sulfficient for various cryptographic applica
tions seems to be quite different from the above well studied

classes, and also strongly depends on the cryptograpkic tas
at hand. Thus, cryptographic primitives do not inherently
rely on ideal randomness, but cannot tolerate very general
weak sources of randomness.

We believe that our initial investigation of the possibil-
ity of basing cryptography on imperfect random sources
will inspire a lot of further research. In particular, many
guestions remain open. For example, it is interesting to
extend our quantitative results for private-key encryptio
and especially authentication to larger than one-bit nggssa
spaces. It is also interesting to consider other infornmatio
theoretic primitives like authenticated encryption and se
cret sharing schemes. Finally, many new questions appear
when we look atcomputationallysecure primitives (like
one-way functions or public-key encryption and signature
schemes). In particular, we still have to rely on (possi-
bly stronger!) computational assumptions in order to build
computational primitives which are secure against various
imperfect sources. Investigating which such sources can
still be tolerated in this setting is a very interesting srsé
direction.
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