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Abstract—Recently, there has been renewed interest in basing
cryptographic primitives on weak secrets, where the only infor-
mation about the secret is some non-trivial amount of (min-)
entropy. From a formal point of view, such results require to
upper bound the expectation of some functionf (X), where X
is a weak source in question. We show an elementary inequality
which essentially upper bounds such ‘weak expectation’ by two
terms, the first of which is independent off , while the second only
depends on the ‘variance’ off under uniform distribution. Quite
remarkably, as relatively simple corollaries of this elementary
inequality, we obtain some ‘unexpected’ results, in several cases
noticeably simplifying/improving prior techniques for the same
problem. Examples include non-malleable extractors, leakage-
resilient symmetric encryption, seed-dependent condensers and
improved entropy loss for the leftover hash lemma.

The full version of this (unrefereed) survey is available here [1].

I. I NTRODUCTION

Formal cryptographic models take for granted the availabil-
ity of perfect randomness. However, in reality we may only ob-
tain ‘weak’ random sources that are far from uniform but only
guaranteed with high unpredictability (formalized with min-
entropy), such as biometric data [2], [3], physical sources [4],
[5], secrets with partial leakage, and group elements from
Diffie-Hellman key exchange [6], [7]. We refer to the former
as ideal model and the latter as real model.

From a formal point of view, the standard (T, ε)-security (in
the ideal model) of a cryptographic applicationP essentially
requires that for any adversaryA with resource1 T , the
expectation off(Um) is upper bounded byε, where function
f(r) denotesA’s advantage conditioned on secret key beingr,
andUm denotes uniform distribution over{0, 1}m. In the real
model, keys are sampled from some non-uniform distribution
R and thus the resulting security is the expected value off(R),
which we call ‘weak expectation’. We would hope that ifP
is (T, ε)-secure in the ideal setting, thenP is also (T ′, ε′) in
the real setting by replacingUm with R of sufficiently high
min-entropy, whereT ′ andε′ are not much worse thanT and
ε respectively.

In this paper, we present an elementary inequality that
upper bounds the weak expectation off(R) by two terms:
the first term only depends on theentropy deficiency(i.e. the
difference between the length of sourceR and the amount of

1We use the word “resource” to include all the efficiency measures we might
care about, such as running time, circuit size, number of oracle queries, etc.

entropy it has), and the second is essentially the ‘variance’
of f under uniform distributionUm. Quite surprisingly, some
‘unexpected’ results follow as simple corollaries of this in-
equality, such as non-malleable extractors [8], [9], [10], [11],
leakage-resilient symmetric encryptions [12], seed-dependent
condensers [13] and improved entropy loss for the leftover
hash lemma [14]. We provide a unified proof for these
diversified problems and in many cases significantly simply
and/or improve known techniques for the same problems.

II. PRELIMINARIES

NOTATIONS AND DEFINITIONS. We uses ← S to denote
sampling an elements according to distributionS. The min-
entropy of a random variableX is defined asH∞(X)

def
=

− log(maxx Pr[X = x]). We use Col(X) to denote the
collision probability of X, i.e., Col(X)

def
=

∑

x Pr[X =

x]2 ≤ 2−H∞(X), and collision entropyH2(X)
def
=−log Col(X)

≥ H∞(X). We also define average (aka conditional) collision
entropy and average min-entropy of a random variableX
conditioned on another random variableZ by

H2(X|Z)
def
= − log

(

Ez←Z

[
∑

x Pr[X = x|Z = z]2
] )

H∞(X|Z)
def
= − log ( Ez←Z [ maxx Pr[X = x|Z = z] ] )

respectively, whereEz←Z denotes the expected value over
z ← Z.

We denote with∆D(X,Y ) the advantage of a circuitD
in distinguishing the random variablesX,Y : ∆D(X,Y )

def
=

| Pr[D(X) = 1] − Pr[D(Y ) = 1] |. The statistical distance
between two random variablesX,Y , denoted bySD(X,Y ),
is defined by

1

2

∑

x

|Pr[X = x]− Pr[Y = x]| = max
D

∆D(X,Y )

we write SD(X,Y |Z) as shorthand forSD((X,Z), (Y,Z)).

ABSTRACT SECURITY GAMES. We first define the general
type of applications where our technique applies. The secu-
rity of an applicationP can be defined via an interactive
game between a probabilistic attackerA and a probabilistic
challengerC(r), whereA and C jointly compute functionf
on valuer (derived fromUm in the ideal setting and from
distribution R in the real setting). The game can have an
arbitrary structure, but at the endC(r) should output a bit, with
output 1 indicating thatA ‘won’ the game and 0 otherwise.



For unpredictability games,f(r) is the expected value ofC(r)
taken over the internal coins ofA andC so thatf(r) ∈ [0; 1];
and for indistinguishability games,f(r) is the expectation of
C(r) − 1/2, and hencef(r) ∈ [−1/2; 1/2]. We will refer to
|E(f(Um))| as the security in the “ideal model” (againstA),
and to |E(f(R))|, with Hc(R) ≥ m− d and c ∈ {2,∞}, as
the security in the “(m−d)-realc model”. Note that a security
result in the real2 model is more desirable than (and implies)
that in the real∞ model.

III. OVERCOMING WEAK EXPECTATIONS

UNPREDICTABILITY APPLICATIONS. For unpredictability
applications (with non-negativef ), the following inequal-
ity implies that the security degrades at most by a factor
of 2d compared with the ideal model (which is stated as
Corollary 3.1), whered is the entropy deficiency.

Lemma 3.1:For any (deterministic) real-valued function
f : {0, 1}m → R

+ ∪ {0} and any random variableR with
H∞(R) ≥ m− d, we have

E[f(R)] ≤ 2d · E[f(Um)] (1)

Proof:

E[f(R)] =
∑

r

Pr[R = r] · f(r) ≤ 2d ·
∑

r

1

2m
· f(r)

Corollary 3.1: If an unpredictability applicationP is
(T, ε)-square secure in the ideal model, thenP is (T, 2d · ε)-
secure in the(m− d)-real∞ model.

The above only applies to all “unpredictability” applications
such as one-way functions, MACs and digital signatures.

INDISTINGUISHABILITY APPLICATIONS. Unfortunately,
Corollary 3.1 critically depends on the non-negativity off ,
and is generally false whenf can be negative, which happens
for indistinguishability applications. In fact, for certain in-
distinguishability applications, such as one-time pad, pseudo-
random- generators and functions (PRGs and PRFs), there
existsR with d = 1 such thatE[f(Um)] is negligible (or even
zero!) but E[f(R)] = 1/2 (see [14] for more discussions).
Fortunately, below we give another inequality for generalf ,
which will be useful for other indistinguishability applications.

Lemma 3.2:For any (deterministic) real-valued functionf :
{0, 1}m → R and any random variableR with H2(R) ≥
m− d, we have

| E[f(R)] | ≤
√

2d ·
√

E[f(Um)2] (2)

Proof: Denotep(r) = Pr[R = r], and also recall the
Cauchy-Schwartz inequality|∑ aibi| ≤

√

(
∑

a2
i ) · (

∑

b2
i ).

We have

| E[f(R)] | =
∣

∣

∣

∣

∣

∑

r

p(r) · f(r)

∣

∣

∣

∣

∣

≤
√

2m ·
∑

r

p(r)2 ·
√

1

2m

∑

r

f(r)2 =
√

2d · E[f(Um)2]

Lemma 3.2upper bounds the (squared) weak expectation by
the product of2d andE[f(Um)2]. Intuitively, 2d gives the se-
curity loss due to the entropy deficiency, andE[f(Um)] defines
the ideal model security of the application in consideration, but
notice we only getE[f(Um)2], for which we define the notion
of “square security”.Lemma 3.2essentially applies to square
secure applications, which we state asCorollary 3.2.

Definition 3.1 (Square Security):An application P is
(T, σ)-square secure if for anyT -bounded adversaryA we
have E[f(Um)2] ≤ σ, where f(r) denotesA’s advantage
conditioned on key beingr.

Corollary 3.2 (Square security implies real model security):
If P is (T, σ)-square secure, thenP is (T,

√
2d · σ)-secure in

the (m− d)-real2 model.

WHAT APPLICATIONS HAVE SQUARE SECURITY? First, all
(T, ε)-secure unpredictability applicationsP are (T, ε)-square
secure, since for non-negativef we have E[f(Um)2] ≤
E[f(Um)]. Hence, we immediately get

√
2d · ε-security in

(m− d)-real2 model for such application.2

Moving to indistinguishability applications, it is known that
PRGs, PRFs, one-time pads cannot have good square security
(see [14]). To see why, consider a1-bit one time pad encryp-
tion c = m ⊕ r, wherem, r, c ∈ {0, 1} are the message, the
key and the ciphertext, respectively, and⊕ is “exclusive OR”.
Consider also the attackerA who guesses thatm = c. When
the keyr = 0, A is right andf(0) = 1 − 1

2 = 1
2 . Similarly,

when the keyr = 1, A is wrong andf(1) = 0 − 1
2 = − 1

2 .
This gives perfectε = E[f(U1)] = 0, butσ = E[f(U1)

2] = 1
4 .

Fortunately, there are still many interesting indistinguisha-
bility objects whose square security is of roughly the same or-
der as their regular security, such as stateless CPA- and CCA-
secure (symmetric-key and public-key) encryption schemes,
weak pseudo-random functions (weak PRFs), andq-wise in-
dependent hash functions. We now discuss some examples.

A. Application to Encryption Schemes and Weak PRFs

We will only show that CPA-secure symmetric-key encryp-
tion schemes are square secure, and we prove that using the
“double-run” technique from [14]. Other schemes (mentioned
above) can be proven similarly by adapting the double-run
trick to the actual security game (see [14] for the subtleties).

Lemma 3.3 ([14]): AssumeP is a symmetric-key encryp-
tion scheme which is2ε-secure, in the ideal model, against all
chosen-plaintext attackers with running time2t + O(1) and
making2q + 1 queries. ThenP is ε-square secure against all
chosen-plaintext attackers with running timet, and makingq
queries. Hence,(T = (2t+O(1), 2q+1), 2ε)-security implies
((t, q), ε)-security.

DOUBLE-RUN TRICK. We sketch the proof of the above
lemma for completeness. It suffices to show that for anyr

2This bound is weaker than the2dε bound in Corollary 3.1, although it
applies wheneverH2(R) ≥ m−d (instead of only whenH∞(R) ≥ m−d).
Still, we will find Lemma 3.2useful even for unpredictability applications
when we talk about key derivation functions inSection IV.



and any attackerA with running timet and q queries, there
exists another attackerB with running time roughly2t and
2q + 1 queries such thatB’s advantage is twice the squared
advantage ofA. The strategy ofB is that it first simulates the
challengerC (using one query), runsA against the simulated
C, and then runsA against the realC. If A wins the game
in its first run (against the simulatedC), then B returnsA’s
answer in the second run, or otherwiseB reverses the answer
of A. Thus,

Pr[B wins] = Pr[A wins twice] + Pr[A loses twice]

= (
1

2
± ε)2 + (

1

2
∓ ε)2 =

1

2
+ 2ε2

The following theorem immediately follows from
Corollary 3.2andLemma 3.3.

Theorem 3.1:AssumeP is a ((2t + O(1), 2q), 2ε)-CPA
secure symmetric-key encryption scheme in the ideal model.
Then P is also ((t, q),

√
2d · ε)-secure in the(m − d)-real2

model.
Same argument (asTheorem 3.1) works for all aforemen-

tioned square secure applications, such as stateless (public-
key and symmetric-key) CPA- and CCA- secure encryption
schemes, and weak PRFs, simplifying [12].

MULTI -RUN EXTENSION. In the double-run game we use
a test-run to estimate the sign of the advantage (whether it’s
positive or not), which advises attackerB whether or not to
reverseA’s answer in the real run. We can generalize this
to a multi-run setting: the attackerB test-runsA for some
odd (2i+1) times, and takes a majority vote before the actual
run, which givesB more accurate estimate on the sign of the
advantage (using the technique of Brakerski and Goldreich
[15]). This applies to all double-run-friendly applications (like
the CPA encryption), but we only state it for the case of weak
PRF for concreteness, and also because it simplifies [12] a lot.

Corollary 3.3 (Weak PRFs on Weak Keys):For any ε, d
and c ≤ O(1/

√
2d · ε), if P is a (((1 + c4)t, (1 + c4)q), ε)-

secure weak PRF in the ideal model, thenP is also
((t, q), O( 1

c ·
√

2d · ε))-secure in the(m− d)-real2 model.

B. Application to Alternative LHL and NM-Extractors

We now show that 2-wise and 4-wise independent hash
functions give rise to strong and non-malleable extractors
respectively. For our convenience, we use the following def-
inition for (q, δ)-wise independence (slightly weaker than
the traditionalq-wise independence), where one points is
randomlychosen and the restq − 1 points can be arbitrarily
dependent ons (as long as they are distinct froms).

Definition 3.2 ((q,δ)-wise independence):A family H of
functions {hr : {0, 1}n → {0, 1}l | r ∈ {0, 1}m}
is (q, δ)-wise independent, if forr←Um, s ← Un, and for
s1, · · · , sq−1 ∈ {0, 1}n that are distinct from and arbitrarily
correlated tos, we have

SD( hr(s), Ul | s, hr(s1), · · · , hr(sq−1) ) ≤ δ

Notice, we can naturally view the above definition as a game
between a challengerC and the attackerA, where (q − 1)
measures the “resources” ofA (distinct from s points where
he learns the true value ofhr), and δ is the advantage of
distinguishinghr(s) from random. Thus, we can naturally
define the(q, σq)-square security ofH (with random key
r ← Um) and then useCorollary 3.2to bound the security of
H in the (m−d)-real2 model, when using a weak keyR with
H2(R) ≥ m−d. In fact, we can successfully apply the double-
run trick above to show that ifH is (2q, δ)-wise independent,
then itssquaresecurityσq as aq-wise (rather than2q-wise)
independent hash function is at mostσq ≤ δ + q

2n
, where

q
2n

accounts for the probability that the real challenge point
(chosen uniformly at random) collides with theq points of the
test-run. Applying nowCorollary 3.2, we get

Theorem 3.2:If function familyH is (2q, δ)-wise indepen-
dent, thenH is also(q, ε)-wise independent in the (m − d)-

real2 model, whereε =
√

(δ + q
2n

) · 2d.

ALTERNATIVE LHL. We will first consider the consequences
for q = 1, where the notion of(1, ε)-wise independence in the
k = (m− d)-real2 model becomes arandomness extractor.

Definition 3.3 (Extractors):We say that an efficient func-
tion Ext : {0, 1}m × {0, 1}n → {0, 1}l is a strong(k, ε)-
extractor, if for all R (over{0, 1}m) with H2(R) ≥ k and for
randomS (uniform over{0, 1}n), we get

SD( Ext(R;S) , Ul | S) ≤ ε

where coinsS ← Un is the random seed ofExt. The value
L = k − l is called theentropy lossof Ext.

Applying Theorem 3.2to pairwise independent hash func-
tions (i.e.,2q = 2, δ = 0, k = m− d), we get:

Corollary 3.4 (Alternative LHL):If H def
= {hr : {0, 1}n →

{0, 1}l | r ∈ {0, 1}m} is pairwise independent, then

Ext(r; s)
def
= hr(s) is a strong(k,

√
2m−k−n) extractor.

To compare this result with the standard LHL [16], the
optimal key lengthm for a family of pairwise independent
hash functions fromn to l bits is known to bem = n + l
(e.g., using Toeplitz matrices or “augmented” inner product
discussed below). Plugging this to our bound inε above, we
get the same boundε =

√
2l−k = 2−L/2 as the leftover hash

lemma, where in both casesl is output size andk is the entropy
of the source. Interestingly, standard leftover hashing [16] uses
universalH (seeDefinition 4.3below), which is weaker, but
setsExt(r; s) = hs(r), swapping the roles of source and seed.3

NON-MALLEABLE EXTRACTORS. Next, we consider the case
of q = 2, where the notion of(2, ε)-wise independence in the
k = (m− d)-real2 model becomes anon-malleable extractor.

Definition 3.4 (Non-Malleable Extractors):We say that an
efficient functionnmExt : {0, 1}m × {0, 1}n → {0, 1}l is a
(k, ε)-non-malleable extractor, if for all R (over{0, 1}m) with

3Curiously, whenl divides n, the following “augmented” inner product
function hr(s) is simultaneouslyan optimal pairwise independent hash
function when keyed byr, and an optimal universal function when keyed by
s: hr(s) = r1 ·s1+. . .+rp ·sp+rp+1, wherep = n/l, r = (r1, . . . , rp+1),
s = (s1, . . . , sp), andri andsj are interpreted as elements ofGF [2l].



H2(R) ≥ k, for randomS (uniform over{0, 1}n), and for all
functionsg : {0, 1}n → {0, 1}n, s.t. g(s) 6= s for all s, we
get

SD( nmExt(R;S) , Ul | S, nmExt(R; g(S)) ) ≤ ε

Applying Theorem 3.2to 4-wise independent hash func-
tions (i.e.,2q = 4, δ = 0, k = m− d), we get:

Corollary 3.5 (Non-Malleable Extractors):If H def
= {hr :

{0, 1}n → {0, 1}l | r ∈ {0, 1}m} is 4-wise independent, then

nmExt(r; s)
def
= hr(s) is a (k,

√
2m−k−n+1)-non-malleable

extractor.
For a simple instantiation, letH be the following (optimal)

4-wise independent hash function with known parameters
n = m/2 andl = m/4 (using BCH codes; see [11]). The key
r ∈ {0, 1}m is viewed as a tuple of4 elements(r1, r2, r3, r4)
in GF [2m/4] = GF [2l], and a seeds ∈ {0, 1}n\0n is viewed
as a non-zero point inGF [2n]. Then, them-bit value of(s‖s3)
is viewed as4 elements(s1, s2, s3, s4) in GF [2l], and thel-bit
output of the function is set tohr(s) = r1 ·s1+. . .+r4 ·s4. Us-
ing Corollary 3.5, this simple function is a(k,

√
2m/2−k+1)-

non-malleable extractor, which improves the constructionof
[9] and matches the recent results of [11] with a much
simplified proof.

IV. K EY DERIVATION FUNCTIONS

So far we use weak sources directly onε-square secure
objects (and we still get extractors), which requires entropy
deficiency d < log (1/ε). For low entropy sources where
d ≫ log (1/ε), we need to apply a key derivation function
(KDF) that preprocess the source to get some better random-
ness (by discarding some ‘bad’ bits), where the setting is
mainly characterized by the entropy of the sourcek and the
output size of the KDFm.

Definition 4.1: (k,m)-realc model (for c ∈ {2,∞}) refers
to the key derivation setting where a given KDFh with range
{0, 1}m is applied to any sourceX with Hc(X) ≥ k to get a
secret keyR = h(X) (for some application in question).

Next we propose randomness condensers as generaliza-
tion of extractors, and justify the use of condensers as key
derivation functions. Intuitively, a condenser is a probabilistic
function that reduces entropy deficiency.

Definition 4.2 (Condensers):Let c ∈ {2,∞}. We say that
an efficient functionCond : {0, 1}n × {0, 1}v → {0, 1}m is
a ( k

n → m−d
m )c-condenser if forHc(X) ≥ k and uniformly

randomS we haveHc( Cond(X;S) | S ) ≥ m− d.
Both H∞- andH2- condensers are useful in cryptography.

The former connects well withLemma 3.1, and the latter is
more in line withLemma 3.2. In the sequel, though, we will
only useH2 (and letc = 2 hereafter) since it seems to give
stronger final bounds (even for unpredictability applications),
and applies to more cases (e.g. indistinguishability applica-
tions). See [13] for more discussion.

A. Improved Leftover Hash Lemma

We know by the standard leftover hash lemma [16] that
universal hash functions are efficient extractors and thus are

good KDFs, but the entropy lossL (entropy of the source
minus the length of extracted randomness) must be positive.
Below we recall the notion of universal hashing [17], and
state their condensing properties. We show if they are used
as KDFs for all “square-friendly” applications,4 we improve
L (reducing it by half) and make it meaningful even forL ≤ 0,
where entropy deficiencyd ≈ −L.

Definition 4.3 (Universal Hashing):A family of functions
G def

= {gs : {0, 1}n → {0, 1}m | s ∈ {0, 1}v} is universal,
if for any distinctx1, x2 ∈ {0, 1}n we have

Pr
s←Uv

[gs(x1) = gs(x2)] = 2−m

Lemma 4.1:Universal hash function family G def
=

{gs : {0, 1}n → {0, 1}m | s ∈ {0, 1}v} defines

a (k
n → m−d

m )2-condenserCond(x; s)
def
= gs(x), where

2d = 1 + 2m−k.
Proof:

Pr[gS(X1) = gS(X2)]

≤ Pr[X1 = X2] + Pr[ gS(X1) = gS(X2) ∧ X1 6=X2]

≤ 2−k + 2−m = 2−m · (2m−k + 1) = 2d−m

We use a slightly differently version ofLemma 3.2(whose
proof is very similar as well) for the improved entropy loss
results.

Lemma 4.2 ([14]): For any (deterministic) real-valued
function f : {0, 1}m → R and any random variableR with
H2(R) ≥ m− d, we have

| E[f(R)]− E[f(Um)] | ≤
√

2d − 1 ·
√

E[f(Um)2] (3)

Corollary 4.1 (Using Universal Hashing as KDF):If P is
(T, ε)-secure and(T, σ)-square secure, then usingR = gs(X)
makesP (T, ε′)-secure in the(k,m)-real2 model, whereR ∈
{0, 1}m, H2(X) ≥ k, andε′ ≤ ε +

√
σ·2m−k.

REDUCED ENTROPY LOSS FOR LEFTOVER HASH LEMMA.
Recall that we can haveσ ≈ ε for many square-secure appli-
cations. LetL = k−m denote entropy loss. To achieveε′ ≈ ε
we need to setL = log (1/ε), while the standard leftover hash
lemma achieved a weaker boundε′ ≤ ε+

√
2m−k, and required

L = 2 log (1/ε). Moreover, our entropy loss is meaningful
even for negativeL, in which case entropy deficiency of
R = gs(X) is d ≈ −L andε′ ≈

√
ε · 2−L ≈

√
ε · 2d.

B. Seed-Dependent Key Derivation

We now generalize the notion of a condenser to the seed-
dependent setting, where the adversarial samplerA can depend
on the seedS but is computationally bounded. This challeng-
ing setting was considered by [18] in the context of seed-
dependentextractors, where the authors made a pessimistic
conclusion that the complexity of the seed-dependent extractor

4As observed by [14], we can also compose universal hashing with (square-
friendly) weak PRFs to also handle all computational (even “non-square-
friendly”) applications, such as PRFs and PRGs.



must be larger than that of the samplerA, making this notion
not very useful for key derivation in practical applications. In
contrast, we show that (strong enough) collision-resistant hash
functions (CRHFs) must be seed-dependentcondensers, and
thus can be used as KDFs for all square secure applications,
despite having much smaller complexity than the complexity
of the samplerA. This partially explains the use of CRHFs as
KDFs in practical applications.

Definition 4.4 (Seed-Dependent Condensers):An efficient
function Cond : {0, 1}n × {0, 1}v → {0, 1}m is a ( k

n →
m−d

m , t)2-seed-dependent condenser if for all probabilistic
adversariesA of size t who take a random seeds ← Uv

and output (using more coins) a sampleX ← A(s) of entropy
H2(X|S) ≥ k, we haveH2( Cond(X;S) | S ) ≥ m− d.

Definition 4.5 (CRHF):A family of hash functionsG def
=

{gs : {0, 1}n → {0, 1}m | s ∈ {0, 1}v} is (t, δ) -collision-
resistant if for any (non-uniform) attackerB of sizet, we have

Pr[gs(x1) = gs(x2) ∧ x1 6= x2] ≤ δ

wheres← Uv and (x1, x2) ← B(s).
Lemma 4.3 (CRHFs are seed-dependent condensers):

A family of (2t, D(t)
2m

)-collision-resistant hash functions

G def
= {gs : {0, 1}n → {0, 1}m | s ∈ {0, 1}v}

defines a seed-dependent( k
n → m−d

m , t)2-condenser
Cond(x; s) = gs(x), where2d = 2m−k + D(t).

Proof:

Pr[gS(X1) = gS(X2)]

≤ Pr[X1 = X2] + Pr[ gS(X1) = gS(X2) ∧ X1 6=X2]

≤ 2−k + D(t)·2−m = 2−m · (2m−k + D(t)) = 2d−m

In the above, entropy deficiencyd is essentially the loga-
rithm of D(t), which is a function on the sampler’s complexity
t. We note D(t) = Ω(t2) due to birthday attacks, and
this bound can be achieved in the random oracle model. In
general, it is reasonable to assumeD(t) = poly(t) for strong
enough CRHFs. Then, using the definition of condensers and
Corollary 3.2, we get the following surprising result, which
partially explains the prevalent use of CRHFs (which do
not appear to have any extraction properties based on their
definition) for key derivation:

Corollary 4.2 (Using CRHFs as KDFs):If P is (T, σ)-
square secure,{gs} is a family of (2t, poly(t)

2m
)-CRHFs, andX

is a source produced by a samplerA(s) of complexity at most
t and havingH2(X|S) ≥ k ≥ m−O(log t), then usingR =
gs(X) makesP (T, ε′)-secure, whereε′ ≤ O(

√

σ·poly(t)).
From an asymptotic point of view, for square-friendly

applications (e.g. CPA-secure encryptions, weak PRFs, un-
predictability primitives) with negligible idealε (and hence
negligibleσ ≈ ε), and all source samplers running in polyno-
mial time t (all in the “security parameter”), we get negligible
securityε′=O(

√

σ·poly(t)) in the real model.
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