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Abstract—Recently, there has been renewed interest in basing entropy it has), and the second is essentially the ‘variance
cryptographic primitives on weak secrets, where the only infor- - of f under uniform distributiorl/,,,. Quite surprisingly, some
mation about the secret is some non-trivial amount of (min-) ‘unexpected’ results follow as simple corollaries of this i

entropy. From a formal point of view, such results require to )
upper bound the expectation of some functionf(X), where X equality, such as non-malleable extractdf [9)], [10], [11],

is a weak source in question. We show an elementary inequality leakage-resilient symmetric encryptiors?], seed-dependent
which essentially upper bounds such ‘weak expectation’ by two condensers13] and improved entropy loss for the leftover

terms, the first of which is independent off, while the second only hash lemma 14]. We provide a unified proof for these
depends on the ‘variance’ of f under uniform distribution. Quite diversified problems and in many cases significantly simply

remarkably, as relatively simple corollaries of this elementary nd/or improve known technigues for th me problem
inequality, we obtain some ‘unexpected’ results, in several casesand/o prove kno echniques for the same probiems.

noticeably simplifying/improving prior techniques for the same I
problem. Examples include non-malleable extractors, leakage-

resilient symmetric encryption, seed-dependent condensers and NOTATIONS AND DEEINITIONS. We uses « S to denote

improved entropy loss for the leftover hash lemma. . . R .
The full version of this (unrefereed) survey is available heref]. sampling an element accqrdlng t-o d|st.r|but|orS. The m'ﬂ[
entropy of a random variabl& is defined asH..(X) =
—log(max, Pr[X = =z]). We useCol(X) to denote the

. INTRODUCTION collision probability of X, i.e., Col(X) & S Pr[X =
Formal cryptographic models take for granted the avaiabit]? < 2~H=(X) and collision entropfH,(X) =—log Col(X)

ity of perfect randomness. However, in reality we may only o> H.. (X). We also define average (aka conditional) collision
tain ‘weak’ random sources that are far from uniform but onigntropy and average min-entropy of a random variakile
guaranteed with high unpredictability (formalized withrmi conditioned on another random varialifeby
thr(;p;}é)r,ef:cvf\wli;s blor_netnc dat?][[3], physical sources], Hy(X|2) gor log( E, , [ S PrX = a]Z = ]2 ] )

, partial leakage, and group elements from et
Diffie-Hellman key exchangeg], [7]. We refer to the former Hoo(X|2) = —log ( Ezez [ max, PriX =2|Z =2]] )
as ideal model and the latter as real model. respectively, wherek,._, denotes the expected value over

From a formal point of view, the standard,()-security (in 2 «— Z.
the ideal model) of a cryptographic applicatiéhessentially ~ We denote withAp(X,Y) the advantage of a circuib
requires that for any adversamk with resourcé T, the in distinguishing the random variable¥,Y: Ap(X,Y) =
expectation off(Uy,) is upper bounded by, where function | Pr[D(X) = 1] — Pr[D(Y) = 1] |. The statistical distance
f(r) denotesA’s advantage conditioned on secret key being between two random variables, Y, denoted bySD(X,Y),
andU,, denotes uniform distribution ovel0, 1}™. In the real s defined by
model, keys are sampled from some non-uniform distribution 1
R and thus the resulting security is the expected valug &), 3 Z |[Pr[X = 2] —Pr[Y =2]| = max Ap(X,Y)
which we call ‘weak expectation’. We would hope thatHf @
is (T, e)-secure in the ideal setting, thénis also (,&') in e write SD(X,Y|Z) as shorthand foBD((X, Z), (Y, Z)).
the real setting by replacing’,,, with R of sufficiently high
min-entropy, wherd” ande’ are not much worse thdf and
€ respectively.

In this paper, we present an elementary inequality th
upper bounds the weak expectation (fR) by two terms:
the first term only depends on tleatropy deficiencyi.e. the
difference between the length of sourBeand the amount of

. PRELIMINARIES

ABSTRACT SECURITY GAMES We first define the general
type of applications where our technique applies. The secu-
%i&y of an application P can be defined via an interactive
game between a probabilistic attackerand a probabilistic
challengerC(r), whereA and C jointly compute functionf

on valuer (derived fromU,, in the ideal setting and from
distribution R in the real setting). The game can have an

1we use the word “resource” to include all the efficiency meeswre might  &roitrary structure, but at the exidr) should output a bit, with
care about, such as running time, circuit size, number of erqakries, etc. output 1 indicating thaA ‘won’ the game and 0 otherwise.



For unpredictability gameg(r) is the expected value @f(r) ]
taken over the internal coins &f andC so thatf(r) € [0; 1]; Lemma 3.2upper bounds the (squared) weak expectation by
and for indistinguishability gameg(r) is the expectation of the product o2? andE[f(U,,)?]. Intuitively, 2¢ gives the se-
C(r) — 1/2, and hencef(r) € [—1/2;1/2]. We will refer to curity loss due to the entropy deficiency, dbg (U,,,)] defines
[E(f(U,.))| as the security in the “ideal model” (agains}, the ideal model security of the application in consideratimut
and to|E(f(R))|, with H.(R) > m —d andc € {2,00}, as notice we only gef[f(U,,)?], for which we define the notion
the security in the m — d)-real. model”. Note that a security of “square security’Lemma 3.2essentially applies to square

result in the real model is more desirable than (and impliesyecure applications, which we state Ggrollary 3.2

that in the real, model.
IIl. OVERCOMING WEAK EXPECTATIONS

UNPREDICTABILITY APPLICATIONS. For unpredictability
applications (with non-negative’), the following inequal-

ity implies that the security degrades at most by a fact

Definition 3.1 (Square Security)An application P is
(T, o)-square secure if for an{-bounded adversanA we
have E[f(U,,)?] < o, where f(r) denotesA’s advantage
conditioned on key being.

Corollary 3.2 (Square security implies real model secyrity

4¢P is (T, 0)-square secure, theR is (T', V24 - 0)-secure in

of 2¢ compared with the ideal model (which is stated d&€ (m — d)-reah model.

Corollary 3.3, whered is the entropy deficiency.

WHAT APPLICATIONS HAVE SQUARE SECURITY? First, all

Lemma 3.1:For any (deterministic) real-valued function(T, ¢)-secure unpredictability applicatior are (I, €)-square

f:40,1}™ — R* U {0} and any random variabl& with
H.. (R) > m —d, we have

E[f(R)] < 27-E[f(Un)] @)

Proof:

E[f(R)] = Y PrR=r]-f(r)

1

d

< 2 Z o £(7)
|

Corollary 3.1: If an unpredictability applicationP is
(T, ¢)-square secure in the ideal model, theris (7', 2% - ¢)-
secure in thg§m — d)-reak, model.

The above only applies to all “unpredictability” applicais
such as one-way functions, MACs and digital signatures.

INDISTINGUISHABILITY APPLICATIONS. Unfortunately,
Corollary 3.1critically depends on the non-negativity ¢f

and is generally false whefican be negative, which happensd

for indistinguishability applications. In fact, for ceitain-
distinguishability applications, such as one-time pag&up®-

random- generators and functions (PRGs and PRFs), ther

existsR with d = 1 such thatE[f(U,,)] is negligible (or even
zero!) butE[f(R)] = 1/2 (see [L4] for more discussions).
Fortunately, below we give another inequality for genefal
which will be useful for other indistinguishability appéitons.

Lemma 3.2:For any (deterministic) real-valued functign
{0,1}'» — R and any random variabl® with Hy(R) >
m — d, we have

|E[f(R)] | < V24 E[f(Un)?] )

Proof: Denotep(r) = Pr[R = r|, and also recall the
Cauchy-Schwartz inequalityd" a;b;| < /(> a?) - (> b?).

We have
|EFR)] | =| S p0) - £(r)
< e [ S R = 2 Bl (U]

secure, since for non-negativé we have E[f(U,,)?] <
E[f(U,,)]. Hence, we immediately get/2¢ - e-security in
(m — d)-reab model for such applicatiof.

Moving to indistinguishability applications, it is knowhat
PRGs, PRFs, one-time pads cannot have good square security
(see [L4]). To see why, consider &bit one time pad encryp-
tion ¢ = m @& r, wherem, r,c € {0,1} are the message, the
key and the ciphertext, respectively, amds “exclusive OR”.
Consider also the attackér who guesses thath = ¢. When
the keyr = 0, A is right and f(0) = 1 — = 1. Similarly,
when the keyr = 1, A is wrong andf(1) =0 — 1 = —%.
This gives perfect = E[f(U1)] = 0, buto = E[f(U1)*] = 7.

Fortunately, there are still many interesting indistirsina-
bility objects whose square security is of roughly the same o
der as their regular security, such as stateless CPA- and CCA
secure (symmetric-key and public-key) encryption schemes
weak pseudo-random functions (weak PRFs), givdse in-
ependent hash functions. We now discuss some examples.

A. Application to Encryption Schemes and Weak PRFs

?Ne will only show that CPA-secure symmetric-key encryp-
tion schemes are square secure, and we prove that using the
“double-run” technique from14]. Other schemes (mentioned
above) can be proven similarly by adapting the double-run
trick to the actual security game (seiq] for the subtleties).

Lemma 3.3 ([4]): AssumeP is a symmetric-key encryp-
tion scheme which i&s-secure, in the ideal model, against all
chosen-plaintext attackers with running tirge + O(1) and
making 2q + 1 queries. ThenP is e-square secure against all
chosen-plaintext attackers with running timjeand makingg
queries. Hence[T' = (2t +O(1),2q+ 1), 2¢)-security implies
((t,q),e)-security.

DoOUBLE-RUN TRICK. We sketch the proof of the above
lemma for completeness. It suffices to show that for any

2This bound is weaker than th&%s bound inCorollary 3.1 although it
applies wheneveHs (R) > m—d (instead of only wheM o (R) > m —d).
Still, we will find Lemma 3.2useful even for unpredictability applications
when we talk about key derivation functions $ection V.



and any attackeA with running timet and ¢ queries, there  Notice, we can naturally view the above definition as a game
exists another attackéB with running time roughly2t and between a challenget and the attackeA, where (¢ — 1)

2q + 1 queries such thaB’s advantage is twice the squaredneasures the “resources” &f (distinct from s points where
advantage ofA. The strategy oB is that it first simulates the he learns the true value df,), and ¢ is the advantage of
challengerC (using one query), runA against the simulated distinguishing &,-(s) from random. Thus, we can naturally
C, and then runsA against the real. If A wins the game define the(q,o,)-square security ofH (with random key

in its first run (against the simulated), thenB returnsA’s r — U,;,) and then us€orollary 3.2to bound the security of
answer in the second run, or otherwBeaeverses the answerX in the (m — d)-real, model, when using a weak kédy with

of A. Thus, H,(R) > m—d. In fact, we can successfully apply the double-
] ] . . run trick above to show that i is (2¢, §)-wise independent,
Pr[Bwing = Pr[A wins twic§ + Pr[A loses twic¢ then itssquaresecurityo, as ag-wise (rather thar2g-wise)
_ (} Lo 4 (} Te)? = LEpa independent hash function is at masf < & + 5%, where
2 2 2 5= accounts for the probability that the real challenge point

m (chosen uniformly at random) collides with thepoints of the

The following theorem immediately follows from test-run. Applying nowCorollary 3.2 we get
Corollary 3.2andLemma 3.3 Theorem 3.2:If function family H is (2¢, §)-wise indepen-
Theorem 3.1:Assume P is a ((2t + O(1),2q), 2¢)-CPA dent, then is also(q,¢)-wise independent in ther( — d)-
secure symmetric-key encryption scheme in the ideal modedah model, wheres = /(6 + 7%) - 24.

i \/9d . ~)- i _ - A .
Then P is also ((, q), V2¢ - €)-secure in thelm — d)-reak  a | repyative LHL. We will first consider the consequences

model. for ¢ = 1, where the notion of1, ¢)-wise independence in the
Same argument (aBheorem 3.1 works for all aforemen- k = (m — d)-reab model becomes endomness extractor

tioned square secure applications, such as statelesstpubl pefinjtion 3.3 (Extractors):We say that an efficient func-
key and symmetric-key) CPA- ar.wd.CCA— secure encryptiqfy, gyt - 0,1} x {0,1}" — {0,1} is a strong(k, ¢)-
schemes, and weak PRFs, simplifyiri?]; extractor, if for all R (over{0,1}™) with Hy(R) > k and for
MULTI-RUN EXTENSION. In the double-run game we userandomsS (uniform over{0,1}"), we get
a test-run to estimate the sign of the advantage (whettser it’
positive or not), which advises attackBrwhether or not to SDOExt(R;S) , Ui | §) <e
reverseA’s answer in the real run. We can generalize thiwhere coinsS «— U, is the random seed dixt. The value
to a multi-run setting: the attacked test-runsA for some L =k — [ is called theentropy lossof Ext.
odd (2+1) times, and takes a majority vote before the actual Applying Theorem 3.20 pairwise independent hash func-
run, which givesB more accurate estimate on the sign of thiéons (i.e.,2¢g = 2, § = 0, k = m — d), we get:
advantage (using the technique of Brakerski and GoldreichCorollary 3.4 (Alternative LHL):If H def {h,:{0,1}" —
[15]) This applies to all double-run—friendly applicatiodiiké 0, ]_}l | r c {0’ 1}m} is pairwise independent, then
the CPA encryption), but we only state it for the case of Weaé&t(r; 5) def h.(s) is a strong(k, v2m—k—7) extractor.
PRF for concreteness, and also because it simplifiglsq lot. To compare this result with the standard LHLE], the
Corollary 3.3 (Weak PRFs on Weak Key$jor any e, d  qgptimal key lengthm for a family of pairwise independent
ande < O(1/v2?-¢), if Pis a(((1+c")t, (14 c")q).€)-  hash functions fromn to { bits is known to bem — n + I
secure vvleak PRF in the ideal model, théh is also (g g  using Toeplitz matrices or “augmented” inner praduc
((t,q), O(; - V2?-¢))-secure in thgm — d)-real, model. discussed below). Plugging this to our boundcimbove, we
get the same bound = V2!-* = 2-L/2 as the leftover hash
lemma, where in both caséss output size and is the entropy
We now show that 2-wise and 4-wise independent hashthe source. Interestingly, standard leftover hashir@ (ises
functions give rise to strong and non-malleable extractoumiversalH (seeDefinition 4.3below), which is weaker, but
respectively. For our convenience, we use the following defetsExt(r; s) = h(r), swapping the roles of source and séed.
inition for (g, d)-wise independence (slightly weaker thamon_waLLeaBLE EXTRACTORS. Next, we consider the case
the traditionalg-wise independence), where one points ¢ q = 2, where the notion of2, ¢)-wise independence in the
randomly chosen and the regt— 1 points can be arbitrarily k = (m — d)-reab model becomes aon-malleable extractor

dependent o (as long as they are distinct fros). Definition 3.4 (Non-Malleable Extractors\We say that an
Definition 3.2 (§,0)-wise independence)A family H of  officient functionnmExt : {0,1}™ x {0,1}" — {0,1} is a

B. Application to Alternative LHL and NM-Extractors

functions {n, —: {0,1}" — {0, e {o,13m} (k,e)-non-malleable extractoif for all R (over{0,1}™) with

is (¢,9)-wise independent, if for—U,,, s — U,, and for

s1,-+,84-1 € {0,1}" that are distinct from and arbitrarily 3Curiously, wheni divides n, the following “augmented” inner product

correlated tas. we have function h.(s) is simultaneouslyan optimal pairwise independent hash
’ function when keyed by, and an optimal universal function when keyed by

sihr(s) =ri-si+...4rp-sp+rpr1, Wherep=n/l,r = (ri,...,rp41),
SD( hr(s), Ur| s he(s1), -, hr(sq-1) ) <6 s=(s1,...,sp), andr; ands; are interpreted as elements G [2!].



H;(R) > k, for randomS (uniform over{0,1}"), and for all good KDFs, but the entropy losé (entropy of the source
functionsg : {0,1}" — {0,1}", s.t. g(s) # s for all s, we minus the length of extracted randomness) must be positive.
get Below we recall the notion of universal hashingy7], and
SD( nmExt(R:S) , Ui | S, nmExt(R; g(S)) ) < state their condensing properties. We show if they are used
NMEXHA; 2] Y NMEXEL g =° as KDFs for all “square-friendly” applicatiorfsye improve

Applying Theorem 3.2to 4-wise independent hash func-L (reducing it by half) and make it meaningful even for< 0,
tions (i.e.,2¢g =4, § =0, k = m — d), we get: where entropy deficiency ~ — L.

Corollary 3.5 (Non-Malleable Extractors)tf 7 def {h, : Definition 4.3 (Universal Hashing)A family of functions
{0,1}" — {0,1}' | r € {0,1}™} is 4-wise independent, thenG &f {gs : {0,1}™ — {0,1}™ | s € {0,1}"} is universal,
nmExt(r; s) def h,(s) is a (k,v2m—k—nt1)-non-malleable if for any distinctzy, 5 € {0,1}" we have
extractor.

P B — B — 2—7n
For a simple instantiation, |6 be the following (optimal) s<—5v[g (1) = g (22)]

4-wise independent hash function with known parameters ) ] ) def
n =m/2 andl = m/4 (using BCH codes; sed ]). The key ~ Lemma 4.1:lin|versa| h:’j‘fh function fan1|ly g =
r € {0,1}™ is viewed as a tuple of elements(ry, 1o, 73, 74) 9s 101" — {01} | s € {0,137} defines

in GF[2m/1] = GF[2!], and a seed € {0,1)"\0" is viewed a (¢ — ™-9),-condenserCond(z;s) % g,(z), where
as a non-zero point i6'F[2"]. Then, then-bit value of(s||s3) 2% =142,

is viewed ast elementq sy, s, s3, 54) in GF[2!], and thel-bit Proof:

output of the function is set th,.(s) = r1-s1+...+74-54. Us- _

ing Corollary 3.5 this simple function is gk, v/2m/2—k+1)- Prlgs(X1) = 95(X2)]
non-malleable extractor, which improves the constructbn < Pr[X1 = Xo] + Pr[ gs(X1) = g5(X2) A X17Xo]
[9] and matches the recent results dfl] with a much < 27kqpomm — gmm . (gm-k 1) = gd-m

implified f.
simplified proo -

IV. KEY DERIVATION FUNCTIONS We use a slightly differently version dfemma 3.2(whose
So far we use weak sources directly ersquare secure Proof is very similar as well) for the improved entropy loss
objects (and we still get extractors), which requires guytro results.
deficiency d < log(1/¢). For low entropy sources where Lemma 4.2 (14]): For any (deterministic) real-valued
d > log(1/¢), we need to apply a key derivation functioffunction f : {0,1} — R and any random variabl& with
(KDF) that preprocess the source to get some better randofe(f2) = m — d, we have

ness (by discarding some ‘bad’ bits), where the setting is |E[f(R)] - E[f(U)] | < \/ﬁ. B (0.7 ()

mainly characterized by the entropy of the soukcand the

output size of the KDFn. Corollary 4.1 (Using Universal Hashing as KDF)f P is
Definition 4.1: (k, m)-real. model (forc € {2,00}) refers (7, ¢)-secure andT, o)-square secure, then usifig= g, (X)
to the key derivation setting where a given KRFwith range makesP (T',¢’)-secure in thék, m)-real, model, whereR e
{0,1}™ is applied to any sourc& with He(X) > ktogeta {0 1} Hy(X) >k, ande’ < £ + Vo-2m—F,
secret keyR = h(X) (for some application in question).
Next we propose randomness condensers as general §DUCED ENTROPY LOSS FOR LEFTOVER HASH LEMMA
tion of extractors, and justify the use of condensers as ke call that we can have ~ < for many square-secure appli-

derivation functions. Intuitively, a condenser is a prabstic @;'ﬁg;al‘tﬁi; li_lm dlenOt?NEHg?EZ L?Zf{d:r) dalctza?tlgggfh‘;sh
function that reduces entropy deficiency. = log (1/2),

Definition 4.2 (Condensers):et ¢ € {2,00}. We say that Ifm_mglacmeved a weaker boutid< e+v2m ¥, a}nd requ!red
an efficient functionCond : {0, 1}" x {0,1}" — {0,1}™ is L = 2log(1/e). Moreover, our entropy loss is meaningful
a (% . mT;d)c-condenser if forH (X) > k and uniformly even for nggauveL, in Wh/ICh \?ase_intro\;;y difluency of
randomsS we haveH.( Cond(X;S) | S ) >m —d. R=g:(X)isd~—Lande'~ Ve 278 ~ Ve 20
Both H..- and H,- condensers are useful in cryptographyg - seed-Dependent Key Derivation

The former connects well withemma 3.1 and the latter is . .
} We now generalize the notion of a condenser to the seed-

more in line withLemma 3.2 In the sequel, though, we will . .
only useH, (and letc = 2 hereafter) since it seems to givedependent setting, where the adversarial sanfplen depend

stronger final bounds (even for unpredictability applicas), on the seeds but is computationally bounded. This challeng-

and applies to more cases (e.g. indistinguishability appli 'dng :sg;nnqeggsctg?ni?gridtﬁgﬂult%otpse n:ggge)g Ozzsss?r?](ijs:tic
tions). See 13] for more discussion. P s P

conclusion that the complexity of the seed-dependent &xira

A. Improved Leftover Hash Lemma
4As observed by14], we can also compose universal hashing with (square-
We know by the standard leftover hash lemni®|[that fiengly) weak PRFs to also handle all computational (eveontaquare-

universal hash functions are efficient extractors and thras aiendly”) applications, such as PRFs and PRGs.
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m=d 1,-seed-dependent condenser if for all probabilistic

m

adversariesA of sizet who take a random seed — U,

and output (using more coins) a sample— A(s) of entropy  [1]
H,(X|S) > k, we haveHy( Cond(X;S) | S ) >m —d.
Definition 4.5 (CRHF):A family of hash functionsg &  [2I
{gs : {0,1}" — {0,1}™ | s € {0,1}"} is (¢,4) -collision-
resistant if for any (non-uniform) attack8rof sizet, we have [3]
Prlgs(21) = gs(x2) N x1# 22] <6
[4]
wheres « U, and (x1,x2) < B(s).
Lemma 4.3 (CRHFs are seed-dependent condensers): [5]
A family of (2, %)-collision-resistam hash functions
G = {g. : {01} — {01} | s e {0,1)")
defines a seed-depender(t% — M= t)y-condenser [6]
Cond(z; 5) = gs(x), where2¢ = 2=F 4 D(t).
Proof:
[7]
Prlgs(X1) = gs(X2)]
< PrlXy = Xo] + Pr[ gs(X1) = gs(Xo) A Xi#Xs] 0
< 27F 4 D)2 = 27m. (277 F L D(t)) = 2097
(9]
[ |

In the above, entropy deficieney is essentially the loga-
rithm of D(t), which is a function on the sampler’s complexity g;
t. We note D(¢) Q(t?) due to birthday attacks, and
this bound can be achieved in the random oracle model. [Iﬂ]
general, it is reasonable to assuét) = poly(t) for strong
enough CRHFs. Then, using the definition of condensers and
Corollary 3.2 we get the following surprising result, which[12]
partially explains the prevalent use of CRHFs (which do
not appear to have any extraction properties based on tHes
definition) for key derivation:

Corollary 4.2 (Using CRHFs as KDFs)if P is (T,0)-
square securgg; } is a family of (2¢, poé?,’,ft) )-CRHFs, andX
is a source produced by a samphgrs) of complexity at most
t and havingH,(X|S) > k > m — O(logt), then usingR =
gs(X) makesP (T,¢’)-secure, where’ < O(y/c-poly(t)).

From an asymptotic point of view, for square—friendl);m]
applications (e.g. CPA-secure encryptions, weak PRFs, un-
predictability primitives) with negligible ideat (and hence [17]
negligibleo ~ <), and all source samplers running in polynoyg
mial timet (all in the “security parameter”), we get negligible
securitye’=0(/a-poly(t)) in the real model.

(14]

(18]
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