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Abstract

Feistel Network, consisting of a repeated application of the Feistel Transform, gives a very convenient and
popular method of designing “cryptographically strong” permutations from corresponding “cryptographically
strong” functions. Up to now, all usages of the Feistel Network, including the celebrated Luby-Rackoff’s result,
critically rely on (a)the (pseudo)randomness of round functions; and (b)the secrecy of (at least some of) the
intermediate round valuesappearing during the Feistel computation. Moreover, a small constant number of
Feistel rounds was typically sufficient to guarantee security under assumptions (a) and (b). In this work we
consider several natural scenarios where at least one of theabove assumptions does not hold, and show that a
constant, or even logarithmic number of rounds isprovably insufficientto handle such applications, implying that
a new method of analysis is needed.

On a positive side, we develop a new combinatorial understanding of Feistel networks, which makes them
applicable to situations when the round functions are merely unpredictablerather than (pseudo)random and/or
when the intermediate round values may be leaked to the adversary (either through an attack or because the ap-
plicationrequiresit). In essence, our results show that in any such scenario a super-logarithmic number of Feistel
rounds isnecessary and sufficientto guarantee security. This partially explains why practical block ciphers use
significantly more than 3-6 rounds predicted by the previoustheoretical results, and also gives the first theoretical
justification regarding the usage of Feistel Networks not satisfying assumptions (a) or (b) above.

In particular, we show that super-logarithmic number of Feistel rounds isnecessary and sufficientto yield

• a strong unpredictable permutation (UP) from any unpredictable function (UF).

• a strong pseudorandom permutation (PRP) from any pseudorandom function (PRF), which remains secure
even if all the round values are made public.

• a strong verifiable unpredictable permutation (VUP) — a new notion we introduce here — from any verifi-
able unpredictable function (VUF).

• a strong verifiable random permutation (VRP) — a new notion weintroduce here — from any verifiable
random function (VRF, also known as unique signature scheme).

Of independent interest, our technique yields a novel domain extension method for messages authentication codes
and other related primitives, settling the question studied by An and Bellare in CRYPTO 1999.
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1 Introduction

Feistel Networks are extremely popular tools in designing “cryptographically strong” permutations from correspond-
ing “cryptographically strong” functions. Such networks consist of several iterative applications of a simple Feistel
permutationΨf (xL ‖ xR) = xR ‖ xL ⊕ f(xR), with different (pseudo)independent round functionsf used at each
round. Among their applications, they are commonly used in the design of popular block ciphers, such as DES,
as well as other constructs, such as popular padding schemes OAEP [3]or PSS-R [4]. In particular, the celebrated
result of Luby and Rackoff [27] shows that three (resp. four) rounds of the Feistel transform are sufficient to turn
a pseudorandom function (PRF) family into a pseudorandom permutation (PRP) family (resp. strong PRP family).
There has been a lot of subsequent work (e.g., [35, 39, 30, 38]) onimproving various aspects of the Luby-Rackoff’s
result (referred to as “LR” from now on). However, all these resultscrucially relied on:

(a) the (pseudo)randomness of round functions; and
(b) the secrecy of (at least some of) the intermediate round values appearing during the Feistel computation

In this work we consider several natural scenarios where at least one of the above assumptions does not hold, and
show that a fundamentally new analysis technique is needed for such applications. But first let us motivate our study.

IS UNPREDICTABILITY ENOUGH? We start with the assumption regarding pseudorandomness of round functions.
This assumption is quite strong, since practical block ciphers certainly do not use PRFs as their round functions.
Instead, they heuristically use considerably more than the three-six rounds predicted by the LR and all the subsequent
“theoretical justifications”. Thus, a large disconnect still remains to be bridged. Clearly, though, we need to assume
some security property of the round function, but can a weaker property be enough to guarantee security? In the
context of domain extension of message authentication codes, An and Bellare [1] studied a natural question whether
unpredictability— a much weaker property than pseudorandomness — can at least guarantee the unpredictability
of the resulting Feistel permutation. Although not strong as pseudorandomness, this will at least guarantee some
minimal security of block ciphers (see Section 6), is enough for basic message authentication, and anyway doubles
the domain of the unpredictable function, which is useful (and non-trivial!) by itself. [1] gave a negative answer for
the case of three rounds, and suggested that “even more rounds do not appear to help”. This result indicates that
previous “LR-type techniques” are insufficient to handle unpredictability(since in the case of PRFs three rounds
are enough), and also leaves open the question whether more Feistel rounds will eventually be enough to preserve
unpredictability. Our work will completely resolve this question. Along the way,it will prove that Feistel Networks
could serve as domain extenders for message authentication codes.

IS IT SAFE TO LEAK INTERMEDIATE RESULTS? Another crucial reason for the validity of the LR result is the fact
that all the intermediate round values are never leaked to the attacker. In fact, thekeyto the argument, and most of
the subsequent results, is that the attacker effectively gets no informationabout most of these values in case a PRF
is used for the round function, and simple attacks (which we later generalizeto many more rounds) are possible to
invalidate the LR result in case the intermediate values are leaked. Unfortunately, for many natural applications this
assumption (or conclusion!) can not be enforced, and totally new argument is needed. We give several examples.

Starting with the simplest (but also least interesting) example, intermediate valuesmight be inadvertently leaked
through an attack. For example, one might imagine a smartcard implementing a blockcipher via the Feistel network
using a secure chip implementing a PRF. In this case the attacker might be able to observe the communication
between the smartcard and the chip, although it is unable to break the securityof the chip. More realistically, when
the round functions are not PRFs, the attacker might get a lot of informationabout the intermediate values anyway,
even without extra attack capabilities. For example, is the case of unpredictable functions (UFs) mentioned above, we
will construct provably secure UFs such that the output of the Feistel Network completely leaksall the intermediate
round values. Although artificial, this example illustrates that weaker assumptions on the round functions can no
longer guarantee the secrecy of intermediate values. For yet another example, the round function might simply be
public to begin with. This happens when one considers the question of implementing an ideal cipher from a random
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oracle, considered by the authors in TCC’06 [14]. In this case the round function is a publicly accessible random
oracle, and is certainly freely available to the attacker. To see the difference with the usual block cipher setting
where four round are enough, [14] showed that even five Feistel rounds are not sufficient to built an ideal cipher,
although conjectured that a larger constant number of rounds is sufficient. The authors also showed a weaker positive
implication in the so called “honest-but-curious model”, although only for a super-logarithmic number of rounds (as
they also showed, reducing the number of rounds in this model would imply the security in the usual, “malicious”
model). As a final example (not considered in prior work), the attacker might get hold of the intermediate values
because theapplication requires to reveal such values. This happens when one tries to addverifiability to PRFs and
PRPs (or their unpredictable analogs), which we now describe in more detail.

VERIFIABLE RANDOM FUNCTIONS AND PERMUTATIONS. We consider the problem of constructingverifiable
random permutations(VRPs) fromverifiable random functions(VRFs). VRFs and VRPs are verifiable analogs of
PRFs and PRPs, respectively. Let us concentrate on VRFs first. Intuitively, regular PRFs have a limitation that one
must trust the owner of the secret key that a given PRF value is correctlycomputed. And even when done so, a
party receiving a correct PRF value cannot later convince some other party that the value is indeed correct (i.e., PRF
values are “non-transferable”). In fact, since the function values are supposed to be (pseudo)random, it seems that
such verifiability of outputs of a PRP would contradict its pseudorandomness. The way out of this contradiction was
provided by Micali, Rabin and Vadhan [32], who introduced the notion of aVRF. Unlike PRFs, a VRF owner must
be able to provide a short proof that any given VRF output is computed correctly. This implies that the VRF owner
must publish a public key allowing others to verify the validity of such proofs.However, every “unopened” VRF
value (i.e., one for which no proof was given yet) should still look indistinguishable from random, even if many
other values were “opened” (by giving their proofs). Additionally, the public key should commit the owner of the
VRF to all its function values in a unique way, even if the owner tries to select an “improper” public key. Micali et
al. [32] also gave a secure construction of a VRF based on the RSA assumption. Since then several more efficient
constructions of VRFs have been proposed based on various cryptographic assumption; see [28, 13, 15].

The notion of a VRP, which we introduce in this paper, naturally adds verifiability to PRPs, in exactly the same
natural way as VRFs do to PRFs. We will describe some applications of VRPsin Section 6, but here let us con-
centrate on the relation between VRFs and VRPs. On the one hand, it is easyto see that a VRP (on a “non-trivial
domain”) is also a VRF, just like in the PRF/PRP case. On a first look, we might hope that the converse implication
holds as well, by simply applying the Luby-Rackoff result to VRFs in place ofPRFs. However, a moment of reflec-
tion shows that this is not the case. Indeed, the proof for the iterated Feistel constructionmust include all the VRF
values for the intermediate rounds, together with their proofs. Thus, the attacker can legally obtain all the interme-
diate round values for every input/output that he queries, except for the one on which he is being “challenged”. This
rules out the LR-type proof for this application. More critically, even the recent proof of [14] (implementing the
ideal cipher from a random oracle in the “honest-but-curious” model) appears to be “fundamentally inapplicable”
as well. Indeed, that proof crucially used the fact that truly random functions (in fact, random oracles) are used in
all the intermediate rounds: for example, to derive various birthday bounds used to argue that certain “undesirable”
events are unlikely to happen. One might then hope that a similar argument mightbe carried out by replacing all the
VRFs by truly random function as well. However, such “wishful replacement” is prevented by the fact that we are
required to prove the correctness of each intermediate round value, andwe (provably)cannot provide such proofs
when we use a totally random function in place of a VRF(which is “committed” to by its public key). To put it
differently, with a random function we have no hope of simulating the VRF proofs that are “legally expected” by an
adversary attacking the VRP construction. Thus, again, a new techniqueis needed.

VERIFIABLE UNPREDICTABLE FUNCTIONS AND PERMUTATIONS. We also consider the natural combination
of the scenarios we considered so far, exemplified by the task of constructing verifiable unpredictable permutations
(VUPs) fromverifiable unpredictable functions(VUFs) [32] (also calledunique signature schemes[23, 28]). A VUF
is defined in essentially the same way as VRFs, except that the pseudorandomness requirement for VRFs is replaced
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by a weaker unpredictability requirement. Similarly, VUPs, introduced in this paper, are either the permutation
analogs of VUFs, or, alternatively, unpredictable analogs of VRPs. Ofcourse, as a VRP is also a VUP, we could
attempt to build a VUP by actually building a VRP via the Feistel construction appliedto a VRF, as suggested in
the previous paragraph. However, this seems quite wasteful since VUFsappear to be much easier to construct than
VRFs. Indeed, although in theory VUFs are equivalent to VRFs [32], the “Goldreich-Leven-type” reduction from
VUFs to VRFs in [32] isextremelyinefficient (it loses exponential security and forces the authors to combine it with
another inefficient tree construction). Moreover, several previouspapers [32, 28] constructedefficientVUFs based
on relatively standardcomputationalassumptions, while all theefficientVRF constructions [13, 15] are based on
very ad hocdecisionalassumptions. Thus, it is natural to study the security of the Feistel network when applied to
VUFs. In this case, not only the round functions cannot be assumed pseudorandom, but also all the intermediate
values must be leaked together with their proofs of correctness, making thissetting the most challenging to analyze.

OTHER RELATED WORK. Several prior works tried to relax the security of some of the round functions. For
example, Naor and Reingold showed that the first and the fourth round could use pairwise independent hash functions
instead of PRFs. In a different vein, Maurer et al. [29] studied the case when the PRFs used are only non-adaptively
secure. Already in this setting, the authors showed that it is unlikely that four Feistel rounds would yield a PRP
(although this is true in the so called “information-theoretic” setting). However, in these results at least some of the
round functions are still assumed random. In terms of leaking intermediate results, Reyzin and Ramzan [39] showed
that in a four-round construction it is safe to give the attackeroracle accessto the second and third (but not first and
fourth) round functions. This is incomparable to our setting: we leak intermediate results actually happening during
the Feistel computation, and forall the rounds. Finally, we already mentioned the paper by the authors [14], which
showed how to deal with public intermediate results whentruly randomround functions are used. As we argued,
however, this technique is insufficient to deal with unpredictability, and cannot even be applied to the case of VRFs
(because one cannot simulate the proofs of correctness for a truly random function).

1.1 Our Results

In this work we develop a new understanding of the Feistel Network which allows us to analyze the situations when
when the intermediate round values may be leaked to the adversary, and alsohandle cases when the round values
are merely unpredictable rather than pseudorandom. In our modeling, ak-round Feistel Network is applied tok
membersf1 . . . fk independently selected from some (not necessarily pseudorandom) function family C, resulting
in a Feistel permutationπ. Whenever an attacker makes a forward (resp. backward) query toπ (resp. π−1), we
assume that it learns all the intermediate values (as we mentioned, this is either required by the application, or may
anyway happen with unpredictable functions).

NEGATIVE RESULT. As our first result, we show a simple attack allowing an adversary to computeany value
π−1(y) by making at most exponential ink number offorward queries toπ. Since such an inversion should be
unlikely (with polynomially many queries) even for an unpredictable permutation,this immediately means that at
least a superlogarithmic number of Feistel rounds (in the security parameterλ) is necessaryto guarantee security for
anyof the applications we consider. Aside from showing thetightness of all our positive resultsdescribed below,
this result partially explainswhy practical block ciphers use significantly more than 3-6 roundspredicted by all the
previous “theoretical justifications” of the Feistel Network. Indeed, since all such ciphers heuristically use round
functions which are not PRFs, and we just showed that even unpredictable round functions might leak a lot (or even
all) of the intermediate results, the simple attack we present might have been quite applicable if a small constant
number of rounds was used!

MATCHING POSITIVE RESULT. On a positive side, we show a general combinatorial property of the Feistel
Network which makes essentially no assumptions (such as pseudorandomness) about the round functions used in
the Feistel construction, and allows us to apply it to a wide variety of situations described above, where the previous
techniques (including that of [14]) failed. In essence, for anys ≤ k/2, we show that if an attacker, making a sub-

3



exponential ins number of (forward or backward) queries to the construction and always learning all the intermediate
round values, can cause a non-trivial collision somewhere between roundss andk − s, then the attacker can also
find a simple (and non-trivial) XOR condition on a constant (up to six) numberof the round values of the queries he
has made. This means that if a function familyC is such that it is provably hard for an efficient attacker to find such
a non-trivial XOR condition, — and we call such families5-XOR resistant(see Section 4), — then it is very unlikely
that the attacker can cause any collisions between roundss andk− s (as long ass, and thusk, are super-logarithmic
in the security parameterλ). And once no such collisions are possible, we show that is possible to directly argue
the security of the Feistel Network for our applications. In particular, as even mere unpredictability is enough to
establish5-XOR resistance, we conclude that super-logarithmic number of Feistel rounds isnecessary and sufficient
to yield

• a (strong) unpredictable permutation (UP) from any unpredictable function (UF).
• a strong PRP from any PRF, which remains secure even if all the round values are made public.
• a strong VUP from any VUF.
• a strong VRP from any VRF.

These results are in sharp contrast with the “LR-type” results where a constant number of rounds was sufficient, but
also give the first theoretical justification regarding the usage of Feistel Networks not satisfying assumptions (a) or
(b) mentioned earlier. For the case of block ciphers, our justification seemsto match more closely the number of
rounds heuristically used in practical constructions.

IMPLICATIONS TO DOMAIN EXTENSION. Since the Feistel Network doubles the length of its input, our results
could also be viewed in relation to the question of domain extension of UFs, VUFs and VRFs. In practice, the
question of domain extension is typically handled by a collision-resistant hashfunction (CRHF): it uses only one
call the the underlyingn-bit primitive f and does not require the secret key to grow. However, the existence of a
CRHF is a theoretically strong assumption, which does not seem to follow fromthe mere existence of UFs, VRFs
or VUFs. This is especially true for UFs, whose existence follows from theexistence of mere one-way functions
and, hence, can even be “black-box separated” from CRHFs [40].Thus, it makes sense to consider the question of
domain extensionwithout introducing new assumptions.

For PRFs, this question is easily solved by using (almost) universal hash functions (instead of CRHFs) to hash the
message ton bits before applying then-bit PRF. However, this technique fails for UFs, VUFs and VRFs: in the case
of unpredictability because the output reveals information about the hash key, and for VRFs because it is unclear how
to provide proofs of correctness without revealing the hash key. Another attempt (which works for digital signatures)
is to use target collision-resistant hash functions [37] in place of CRHFs,but such functions have to be freshly chosen
for each new input, which will break the unique provability of UFs, VUFs and VRFs. (Additionally, the hash key
should also be authenticated, which further decreases the bandwidth). In case the underlyingn-bit primitive f is
shrinking (say, ton − a bits), one can use some variant of the cascade (or Merkle-Damgård) construction. Indeed,
this was formally analyzed for MACs by [1, 31]. However, the cost of thismethod is one evaluation off pera input
bits. In particular, in case the output off is also equal ton, which is natural if one wants to extend the domain of a
UF given by a block cipher, this method is either inapplicable or very inefficient.1

In contrast, our method builds a UP/VUP/VRP from2n to 2n bits from the one fromn to n bits, by using
k = ω(log λ) evaluations off , albeit also at the price of increasing the secret key by the same amount. This answers
the question left open by An and Bellare [1] (who only showed that three rounds are insufficient):Feistel Network
is a good domain extender for MACs if and only if it uses super-logarithmic number of rounds!

Moreover, in the context of UFs (and VUFs), where one wants to minimize theoutput length as well, we notice
that the output length can be easily reduced from2n to n. This is done by simply dropping the “left half” of the

1In principle, such length-preservingf can be “truncated” bya bits, but this loses an exponential factor ina in terms of exact security.
Thus, to double the input length, one would have to evaluatef at leastΩ(n/ log λ) times.
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Feistel permutation output! The justification for this optimization follows by noticing that in this case the attacker
will only make forward queries to the Feistel construction. For such attackers, we can extend our main combinatorial
lemma as follows. For anys ≤ k, if a 5-XOR resistant family is used to implement the round functions and the
attacker made less than exponential ins number of queries, then the attacker has a negligible chance to cause any
collisions between roundss andk (as opposed tok − s we had when backward queries were allowed). From this,
one can derive thatk = ω(log λ) Feistel rounds is enough to turn a UF (or VUF) fromn to n bits into one from
2n to n bits. Moreover, in the case of UFs we expect that one would use a (possibly heuristic) pseudorandom
generator to derive thek round keys (much like in the case of block ciphers), meaning that the only effective cost is
k computations of the basic UF. Once the domain is doubled, however, one canuse the cascade methods [1, 31] to
increase it further without increasing the key or the output length.

OTHER APPLICATIONS. As a simple, but illustrative application, we notice that VRPs immediately yield non-
interactive, setup-free, perfectly-binding commitments schemes. The sender chooses a random key pair(SK, PK)
for a VRPπ. To commit tom (in the domain of the VRP), the sender sendsPK and the valuec = πSK(m) to the
receiver. To openm, the sender sendsm and the proof thatc = πSK(m), which the receiver can check using the
public keyPK. The hiding property of this construction trivially follows for the security ofVRPs. As for binding,
it follows from the fact thatπ is a permutation even for anadversarial choice ofPK. As we can see, it is not clear
how to achieve bindingdirectly using plain VRFs. However, given our (non-trivial) equivalence between VRFs
and VRPs, we get that VRFs are also sufficient for building non-interactive, perfectly binding commitment schemes
without setup. Alternatively, to commit to a single bitb, one can use VUPs augmented with the Goldreich-Levin bit
[22]. Here the sender would pick a randomr andx, and sendPK, r, πSK(x), and(x ·r)⊕ b, wherex ·r denotes the
inner product modulo2. Using our equivalence between VUPs and VUFs, we see that VUFs aresufficient as well.

We remark that the best general constructions of such commitments schemes was previously based on one-way
permutations (using the hardcore bit) [8], since Naor’s construction from one-way functions [34] is either interactive,
or non-setup-free. Since the assumption of one-way permutations is incompatible with VUFs or VRFs, our new
construction is not implied by prior work.

In Section 6 we illustrate many other applications of our results. For example, UPs are enough to argue weaker
“fall-back” security properties for some applications of block ciphers, which is nice in case the PRP assumption on
the block cipher turns out incorrect. VRPs, or sometimes even VUPs, can be useful in several applications where
plain VRFs are insufficient. For example, to implement so called “invariant signatures” needed by Goldwasser and
Ostrovsky [23] in constructing non-interactive zero-knowledge proofs, or to fix a subtle security flaw in the non-
interactive lottery system of Micali and Rivest [33] (which can be extended into a minimally-interactive “reusable
coin-flipping protocol”). Additionally, VRPs could be useful for adding verifiability to some application of PRPs
(where, again, PRFs are not sufficient). For example, to construct verifiable CBC encryption or decryption, or to
“truthfully”, yet efficiently, sample certain verifiable huge (pseudo)random objects [21], such as random constant-
degree expanders. Finally, our construction of VRPs from VRFs couldlead to a “proof-transferable” implementation
of the Ideal Cipher Model using a semi-trusted third party. We refer to Section 6 for more details, and hope that
more applications of our constructs and techniques will be found.

2 Definitions and Preliminaries

Let λ denote the security parameter. We usenegl(λ) to denote a negligible function ofλ. Fibonacci(k) denotes the
kth fibonacci number, and thusFibonacci(k) = O(1.618k).

Now we give informal definitions of the various primitives that we use in this paper. For formal definitions,
see appendix A. We start by defining the notion ofpseudorandom functions(PRFs). We use a slightly non-standard
definition of PRFs that is convenient to prove our results. However, this definition is equivalent to the usual definition.

In the new PRF attack game, the attackerAf runs in three stages: (1) In the experimentation phase, it is allowed
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to query a PRF sampled from the PRF family. (2) In the challenge phase, it sends an unqueried PRF query and in
response the challenger sends either the PRF output or a random outputwith equal probability. (3) In the analysis
phase, the attacker again gets oracle access to the PRF, but cannot query it on the challenge query. At the end of the
attack,Af has to guess if the challenge response was random or pseudorandom. The attackerAf wins if it guesses
correctly. Similar to the notion of PRFs, we can define the notion of(strong) pseudorandom permutations(PRPs).
Here the attacker has oracle access to both the forward as well as inverse PRP, but the attack game is otherwise
similar to that for PRFs.

A slightly weaker notion than PRFs is that ofUnpredictable Functions(UFs). Unpredictable functions are also
popularly known as (deterministic)Message Authentication Codes(MACs). In this case, the UF attacker is allowed
to query an unpredictable function from the UF family, and it needs to predict the output of the UF on an unqueried
input at the end of the interaction. The advantage of the UF adversary is the maximum probability with which it
predicts correctly. In an analogous fashion, we can also define the notion of Unpredictable Permutations(UPs),
where the attacker has oracle access to both the forward and inverse permutation and has to predict an unqueried
input/output pair.

We can define verifiable analogs of each of the above primitives. Thus, we getverifiable random functions,
verifiable random permutations, verifiable unpredictable functionsandverifiable unpredictable permutations. In
each case, the primitive takes a public/private key pair, and consists of three algorithms(Gen, Prove, Verify). The
Gen algorithm outputs a public/private key pair. TheProve algorithm allows the private key owner to compute the
function/permutation output as well as give a proof of correctness. Finally, the Verify algorithm allows anyone who
knows the public key to verify the correctness of an input/output pair by observing the corresponding proof.

Each of these primitives satisfies two properties: (1)Correctness, i.e. one can verify correct input/output pairs,
and (2)Soundness, i.e. there are no two output/proof pairs that verify correctly for the same input, even for an
adversarially chosen public key. Additionally, these primitives satisfy the natural analogs of the pseudorandom-
ness/unpredictability definition of the corresponding non-verifiable primitive (except the attacker also gets the proofs
for all the values except for the challenge).

The Feistel transformationusingf : {0, 1}n → {0, 1}n is a permutationΨf on 2n bits defined as,Ψf (x)
def
=

xR ‖ xL ⊕ f(xR). The symbolsxL andxR denote the left and right halves of2n bit stringx. We will also call the
construction based onk iterated applications of the Feistel transformation, ak-round LR construction, and denote it
by Ψf1...fk

(or Ψk whenf1 . . . fk are clear from context) wheref1 . . . fk are the round functions used. On a2n bit
input, the constructionΨk generates(k + 2) n-bit round values, the last two of which form the output.

3 Insecurity of O(log λ)-round Feistel

We will demonstrate here that upto a logarithmic number of Feistel rounds do not suffice for any of our results.
In order to make our proof precise, we show a simple adversary that is able to find the input corresponding to any
permutation outputy ∈ {0, 1}2n by making polynomially manyforward queries and observing the intermediate
round values.

Theorem 3.1 For thek round Feistel constructionΨk that usesk = O(log λ) round functions, there exists a proba-
bilistic polynomial time adversaryAπ that takes oracle access toΨk. The adversaryAπ makesO(Fibonacci(k)) =
poly(λ) forward queries toΨk and with high probability finds the input corresponding to an outputy without actually
making that query.

Proof: The adversaryAπ starts by choosing a permutation outputy, that it will try to invertΨk on. For concreteness,
we assume thaty = 02n (anything else works just as well). We will describe the recursive subroutine that the attacker
Aπ is based on. Say the round functions ofΨk aref1 . . . fk. The recursive function that we describe isE(j, Y ),
wherej is the number of rounds in the Feistel construction andY is a2n bit value, and the task ofE(j, Y ) is to find
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the input such that thejth and(j + 1)th round values areYL andYR (the left and right halves ofY ), respectively.

• E(1,Y) : Choose a randomR′
0 ← {0, 1}n. Make the forward queryR′

0 ‖ YL to Ψ1, where the2nd round
value isR′

2. Now the1st and2nd round values for the inputR′
2 ⊕R′

0 ⊕ YR ‖ YL areYL andYR.

• E(j,Y) , j > 1 : Perform the following steps,

– Make a random queryR0 ‖ R1 ← {0, 1}2n, and say the2n bit value at thejth round is isRj ‖ Rj+1.
Then,fj(Rj) = (Rj−1 ⊕Rj+1).

– RunE(j − 2, (fj−1(Rj−1) ⊕ YL) ‖ Rj−1) and the2n bit value at the(j − 1)th round isRj−1 ‖ YL.
Hencefj(YL) = Rj−1 ⊕Rj+1.

– RunE((j−1), (fj(YL)⊕YR) ‖ YL), and thejth and(j+1)th round values areYL andYR, respectively.

The adversaryAπ essentially runs the algorithmE(k, 02n). Now we need to make sure that the adversaryAπ does
not query on the input corresponding to the output02n. But since all the queries made in the recursive algorithm are
essentially chosen at random, we know that the probability of this happeningis q

22n . Hence, the probability thatAπ

succeeds is at least
(

1− q
22n

)

.

We note that the above attacker works in a scenario where it can only make forward queries to the Feistel con-
structionΨk. In case, it can make inverse queries as well, it is possible to design a similar attacker that succeeds in
O(Fibonacci(k/2)) queries. If the number of roundsk = O(log λ), then the number of queries needed by either of
these attackers is polynomial in the security parameterλ.

It is easy to see how such an attacker can be utilized in three of the four scenarios, if we use the Feistel construction
for each of these cases.

• PRP construction with public round values: By definition, for a PRP we should not be able to invert an output
without actually querying the construction on it.

• VRP construction using VRFs: In order to provide the proofs for the VRP, the VRP construction will need to
reveal all intermediate VRF inputs/outputs and the corresponding proofs.

• VUP construction using VUFs: In this case, again the VUP construction will need to reveal all the intermediate
VUF inputs/outputs and corresponding proofs.

On the first look, it seems that when we use a Feistel construction withunpredictable functionsin each round to
construct anunpredictable permutation(UP), the UP adversary cannot make use of the above attacker since it does
not have access to all the intermediate round values. However, we will show that if certain pathological (but secure)
unpredictable functions are used as round functions, then the UP adversary can inferall the round values simply by
observing the output of the Feistel construction!

Lemma 3.2 For any k ≤ n
ω(log λ) (in particular, if k = O(log λ)), there existk secure unpredictable functions

f1 . . . fk, such that by querying thek-round Feistel constructionΨf1...fk
on any input an efficient attacker can

always learn all intermediate round values.

Proof: Let {gi : {0, 1}n → {0, 1}n/k}i∈{1...k} bek secure unpredictable functions. Fori ∈ {1, k}, we will define
the functionsfi : {0, 1}n → {0, 1}n asfi(x) = 0(i−2)·(n/k) ‖ xi−1 ‖ gi(x) ‖ 0(k−i)·(n/k), wherexi−1 denotes
the (i − 1)th (n/k) bit block in the inputx. Each of the functionsfi is a secure unpredictable function if the
corresponding functiongi is a secure UF.

Consider a query(R0 ‖ R1) ∈ {0, 1}2n made to the Feistel constructionΨf1...fk
. We will considerk blocks of

(n/k) bits each in bothR0 andR1, which we will denote byR0 = R1
0 ‖ . . . ‖ Rk

0 andR1 = R1
1 ‖ . . . ‖ Rk

1 .
Denote the round values generated in computing the output of this construction as(R0, R1) . . . (Rk, Rk+1), where
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Rk ‖ Rk+1 is the output of this construction. If the number of rounds in the Feistel construction is even, then we
note that the output of the construction is:

Rk = (g1(R1)⊕R1
0 ⊕R1

1) ‖ . . . ‖ (gk−2(Rk−2)⊕Rk−2
0 ⊕Rk−2

1 ) ‖ (gk−1(Rk−1)⊕Rk−1
0 ) ‖ Rk

0

Rk+1 = (g1(R1)⊕R1
0 ⊕R1

1) ‖ . . . ‖ (gk−1(Rk−1)⊕Rk−1
0 ⊕Rk−1

1 ) ‖ (gk(Rk)⊕Rk
1)

If number of roundsk is odd, then the output of the Feistel construction is,

Rk = (g1(R1)⊕R1
0 ⊕R1

1) ‖ . . . ‖ (gk−2(Rk−2)⊕Rk−2
0 ⊕Rk−2

1 ) ‖ (gk−1(Rk−1)⊕Rk−1
1 ) ‖ Rk

1

Rk+1 = (g1(R1)⊕R1
0 ⊕R1

1) ‖ . . . ‖ (gk−1(Rk−1)⊕Rk−1
0 ⊕Rk−1

1 ) ‖ (gk(Rk)⊕Rk
0)

Now it is easy to find each of the round function outputs (and hence the intermediate round values) by simply
observing the right half of the output of the Feistel construction.

Thus, we see that if the number of rounds in the Feistel construction (usingUFs) used to constructunpredictable
permutationsis k = O(log λ), then the resulting construction is insecure. Even if we attempt to shrink the output
length of this MAC construction by chopping the left half of the output, it wouldbe possible to retrieve all interme-
diate round values by simply observing the MAC output. In fact, even fork = ω(log λ) (but less thann/ω(log λ))
rounds it might be possible to retrieve all intermediate round values, and hence a new proof technique is needed.

4 A Combinatorial Property of the Feistel Construction

In this section, we will prove a general combinatorial lemma about thek round LR-constructionΨk, that uses
arbitrary round functionsf1 . . . fk. We will see in the following section that this lemma is crucial in deriving each
of our results using the Feistel construction.

Consider an arbitrary ordered sequence ofq forward/inverse permutation queries made to the constructionΨk,
each of which is a2n bit string. Denote the(k+2) n-bit round values associated with theith query asRi

0, R
i
1 . . . Ri

k,
Ri

k+1, whereRi
0 ‖ Ri

1 (Ri
k ‖ Ri

k+1) is the input if this is a forward (inverse) query. We say that such a sequence of
queries produces ansth round value collision, if thesth round value collides for two different permutation queries
from this query sequence. That is, we have thatRi

s = Rj
s for i, j ∈ {1 . . . q} andRi

0 ‖ Ri
1 6= Rj

0 ‖ Rj
1.

We essentially show that if any such sequence ofq queries produces arth round value collision for anyr ∈
{s . . . (k − s)} (wheres ≤ (k/2)), then one of the following must hold:

1. The number of queriesq is exponential ins.

2. For this sequence of queries, there is at least one new round function evaluation such that the new round value
generated can be represented as a bit-by-bit XOR of upto5 previously existing round values.

We refer to the second condition above as the5-XOR condition. We assume the natural order in which the queries
are made, i.e. queryi is made before queryi+1 for i = 1 . . . q−1. By a “new round function evaluation”, we mean
when a round function is evaluated on an input (i.e. the corresponding round value) to which it was not applied in
an earlier query. If theith query is a forward (inverse) query and the round function evaluationfj(R

i
j) is a new one,

then the new round value generated as a result isRi
j+1 (Ri

j−1 resp.). The5-XOR condition essentially states that for
at least one such new round function evaluation, the new round value generated can be represented as the bit-by-bit
XOR of upto5 previously existing round values. This is formalized in the main lemma below (where, for future
convenience, we denoteRi

j by R[i, j]).

Lemma 4.1 Let Ψk be a k round LR construction that uses fixed and arbitrary round functionsf1 . . . fk. For
any s ≤ k

2 , and any ordered sequence ofq = o(1.3803
s
2 ) forward/inverse queries, with associated round values

R[i, 0], . . . , R[i, k + 1] for i = 1 . . . q, if the5-XOR condition does not hold for this sequence of query then there is
no rth round value collision for these queries, for allr ∈ {s . . . (k − s)}.
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We will describe here the basic intuition underlying lemma 4.1, leaving the formal proof for appendix B.
Proof Intuition: We will show that if for the given sequence of queries, the5-XOR condition does not hold but it

produces arth round value collision, then the number of queriesq = Ω(1.3803
min(r,(k−r))

2 ), which will settle the
lemma sincer ∈ {s . . . (k − s)} will imply that q = Ω(1.3803

s
2 ).

Without loss of generality, let one of the queries that are involved in therth round value collision be the last
(or qth) query. If not, then we can consider a smaller sequence of queries forwhich this holds. For simplicity of
exposition, we assume here that all the queries in this sequence are forward queries. (In the formal proof given in
appendix B, the query sequence may be comprised of both forward or inverse queries.) If this is the case, then we
will show that the number of queriesq = Ω(1.3803r/2). We denote byp(i, j) the query number where the round
valueR[i, j] occurs for the first time as thejth round value of a query.

Our main argument consists of four main steps which all rely on the fact that the5-XOR condition does not hold
for the given sequence of queries. We start by showing that if the round valueR[q, r] collides with therth round
value in an earlier query, then all of the round valuesR[q, 1] . . . R [q, r − 1] also collide with corresponding round
values in earlier queries. That is,

p(q, r) < q ⇒ (p(q, 1) < q) ∧ . . . ∧ (p(q, (r − 1)) < q)

Next, we show that not only were the queriesp(q, 1) . . . p(q, r) made before theqth query, but these queries could
have been made in only certain specific orders. In particular, we show that there is aj ∈ {1 . . . r} such that

p(q, 1) > . . . > p(q, j) < . . . < p(q, k/2)

In the third step, we choose one of the strictly descending/ascending query sequence,p(q, 1) . . . p(q, j) or p(q, j) . . .
p(q, r), whichever consists of a greater number of queries. Without loss of generality, say the longer sequence is
p(q, 1) > . . . > p(q, j). We show that for each of the queriesp(q, ℓ) for ℓ ∈ {1 . . . (j − 2)}, all the round values
R[p(q, ℓ), 1] . . .
R[p(q, ℓ), ℓ − 1] collide with the corresponding round value in an earlier query. This step is essentially the same as
the first one, where we considered theqth query. Thus, we show that

(p(p(q, ℓ), 1) < p(q, ℓ)) ∧ (p(p(q, ℓ), ℓ− 1) < p(q, ℓ))

In the fourth step, we show that the queriesp(p(q, ℓ), 1) . . . p(p(q, ℓ), ℓ − 1) occur in a strictly descending order.
Additionally, we also show that the firstℓ− 2 of these queries occur after query numberp(q, ℓ + 1). Combining this
all together, we show that for eachℓ = 1 . . . j − 2,

p(q, ℓ + 1) < p(p(q, ℓ), ℓ− 2) < . . . < p(p(q, ℓ), 1) < p(q, ℓ)

Finally, we notice that the last two steps can be applied recursively to the sequence of queriesp(p(q, ℓ), ℓ − 2) <
. . . < p(p(q, ℓ), 1). And in each such recursive analysis, we also show that the queries whose existence is proved in
one step lie strictly in between two consecutive queries from the previous step, e.g.p(p(q, ℓ), ℓ− 2) . . . p(p(q, ℓ), 1)
occur betweenp(q, ℓ + 1) andp(q, ℓ). Thus every query whose existence we show is distinct from all the queries
that we have already shown to exist. Since all these queries occur before query numberq, we get that

q ≥ Q (r/2) , whereQ (i) = i +
i−2
∑

ℓ=2

Q (ℓ− 2) = 2 · Q(i− 1)−Q(i− 2) +Q(i− 4)−Q(i− 5)

Upon solving this recurrence, we get thatq = Ω(1.3803r/2). When both forward/inverse queries are permitted then

as shown in appendix B, the number of queriesq = Ω(1.3803
min(r,(k−r))

2 ).
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Next we state here an alternative combinatorial lemma, when the adversary only makes forward queries to the
Feistel construction. This lemma (whose proof is similar to the above and is omitted)will prove useful when we
attemptdomain extension of MACsin the next section.

Lemma 4.2 Let Ψk be ak round LR construction that uses fixed and arbitrary round functionsf1 . . . fk. For any
round numbers, and any ordered sequence ofq = o(1.3803

s
2 ) forward queries, with associated round values

R[i, 0], . . . , R[i, k + 1] for i = 1 . . . q, if the 5-XOR condition does not hold for this sequence of forward queries
then there is north round value collision for these queries, for allr ≥ s.

In our applications, we will be interested in using the LR construction with round functions that resist the5-XOR
condition, when any adaptive adversary makes a polynomial number of queries to the construction while having
access to all intermediate round values. We will specify this as a property offamilies of functions from which the
round functions are independently derived. Hence, let us begin by describing afunction family. A function family
C is a set of functions along with a distribution defined on this set. For such a family, f ← C denotes sampling a
function according to the distribution specified byC. A function family is called a5-XOR resistant function family
if the LR construction using independently sampled functions from this family resists the5-XOR condition when
queried a polynomial number of times by any adaptive adversary.

Definition 1 (5-XOR resistant function family) A function familyC(k,n), that consists of length preserving func-
tions onn bits, is a 5-XOR resistant function family if for any adversaryA,

Pr
[

A 5-XOR condition holds in(A←→ Ψf1...fk
)

∣

∣ f1 . . . fk ←− C(k,n)

]

≤ ǫxor = negl(λ)

Here the advantageǫxor of the adversaryA depends on the running time ofA and the security parameterλ. The
running time ofA, the input lengthn and number of Feistel roundsk are all polynomial functions ofλ.

By applying lemma 4.1 to a LR construction using round functions independentlysampled from a5-XOR resistant
function family, we can derive the following corollary.

Corollary 4.3 LetΨk be ak-round LR construction that uses round functions that are independentlysampled from
a 5-XOR resistant function family consisting of functions onn bits. For any adversaryA that adaptively makes
permutation queries toΨk, while observing the intermediate round values, it holds that

• if A makes both forward/inverse queries, then for any round numbers ≤ (k/2) with s = ω(log λ),

Pr
[

∃ rth round value collision duringA↔ Ψk for somer ∈ {s . . . (k − s)}
]

≤ ǫxor

• if A makes only forward queries, then for any round numbers = ω(log λ),

Pr
[

∃ rth round value collision duringA↔ Ψk for somer ∈ {s . . . k}
]

≤ ǫxor

Here the boundǫxor denotes the maximum advantage of the XOR finding adversary that runs intimeO(tA+(qAk)5),
wheretA is the running time of the adversaryA andqA denotes the number of queries made by it. Also,tA, qA and
the input lengthn are all polynomial inλ.

This corollary is easily proved since the5-XOR finding adversary simply runs the collision finding adversary, and
performs a brute-force search for a5-XOR condition when it finds a round value collision. From lemma 4.1, such
a 5-XOR condition is guaranteed to exist. In fact, we will make use of this corollary in each of the results that we
present in the next section, since each of these function families will turn out to be5-XOR resistant (the proof of this
will also be given in the appropriate subsection; here we just state the result).

Theorem 4.4 For each of the primitives: (1)unpredictable functions, (2) pseudorandom functions, (2) verifiable
unpredictable functions, and (4)verifiable random functions; a function family that yields an independent random
sample of the appropriate primitive is a5-XOR resistant function family.
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5 Implications

All the cryptographic applications of the Feistel construction until recently have relied on all or some of the round
functions not being visible to the adversary. In the previous section, we proved a combinatorial property of the
Feistel construction where the internal round function values were visibleto the adversary. Now we will describe
how this property can be applied to a variety of scenarios to yield new or improved cryptographic constructions than
before.

We get the following constructions using this new technique: (1) secure construction ofunpredictable permu-
tationsfrom unpredictable functions, (2) more resilient construction ofpseudorandom permutationsfrom pseudo-
random functions, (3) construction ofverifiable unpredictable permutationsfrom verifiable unpredictable functions,
and (4) construction ofverifiable random permutationsfrom verifiable random functions.

In each case, the proof consists of three parts: (1) showing that the function family under consideration is a5-XOR
function family (see Theorem 4.4); (2) using Corollary 4.3 to show that the corresponding permutation construction
is unlikely to have collisions at “advanced” rounds; and (3) show that thelack of such collisions implies that the
construction is secure.

5.1 Unpredictable Permutations

We saw in the section 3 that observing the output of ak = n/ω(log λ) round Feistel construction with unpredictable
round functions may leak all the intermediate round values. Even for realisticUFs, some partial information about
the intermediate round values may be leaked through the output. As we discussed earlier, in such a case none of the
previous proof techniques are applicable. We will prove a much strongerresult here, by showing that if we use a
super-logarithmic number of rounds in the Feistel construction then the resulting UP construction is secure even if
the adversary gets all the intermediate round values along with the permutation output.

The UP constructionΨU,k that we propose consists ofk = ω(log λ) rounds of the Feistel construction using
independentunpredictable functionsf1 . . . fk ← F . The following theorem essentially states that this construction
is a secure UP construction. The proof of this theorem can be found in appendix C.

Theorem 5.1 If there exists an efficient UP adversaryAπ that has non-negligible advantageǫπ in the unpredictabil-
ity game againstΨU,k and which makes a polynomial number of queries toΨU,k, then there also exists a UF adver-
saryAf that has non-negligible advantage in the unpredictability game against a UF sampled from the UF family
F . From this, we get that the maximum advantage of the UP adversaryAπ is ǫπ = O

(

ǫf · (qk)6
)

. Hereǫf denotes
the maximum advantage of a UF adversary running in timeO(t + (qk)5) against a UF sampled fromF , wheret is
the running time of the PRP adversaryAπ andq is the number of queries made by it.

DOMAIN EXTENSION OF MACS. The above result can also be viewed as a construction of MACs from2n to 2n
bits using MACs fromn to n bits. We observe that it is possible to reduce the output length in the above construction
to n by simply dropping the left half of the output. Using this technique, we get a MAC construction from2n to n
bits. To briefly justify it, in the usual MAC attack game the attacker can only make forward queries. From corollary
4.3, we get that for anys = ω(log λ) no efficient attacker can cause a collision on any round valuer ∈ {s . . . k}
with non-negligible probability. Thus, a proof of security for this MAC will proceed by plugging in the targetn- to
n-bit MAC in the last round function of the Feistel construction, and arguingthat the attacker predicting the2n- to
n-bit constructed MAC must also forge this last-roundn- to n-bit MAC. This is done using a similar proof technique
to that for theorem 5.1 (albeit using second part of corollary 4.3 to arguethat no collision occurs at the last round).

5.2 More Resilient PRPs from PRFs

In this section, we give a construction ofpseudorandom permutationsfrom pseudorandom functions, that remains
secure even if the PRF input/output pairs used in the intermediate rounds arevisible to an attacker. Our proposed
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PRP construction,ΨR,k, is ak = ω(log λ)-round Feistel construction, with independent PRFsf1 . . . fk ← F as
round functions. The following theorem states that this constructionΨR,k is a secure PRP. The proof of this theorem
can be found in appendix D.

Theorem 5.2 If there exists an efficient PRP adversaryAπ that has a non-negligible advantageǫπ in the PRP
attack game against the constructionΨR,k (using round function from PRF familyF ), then there also exists a PRF
adversaryAf that has non-negligible advantageǫf in the PRF attack game against a PRF sampled from the PRF

family F . From this, we get a boundǫπ = O
(

qkǫf + (qk)6

2n

)

, whereǫf denotes the maximum advantage of a PRF

adversary running in timeO(t + (qk)5) against a PRF sampled fromF , andt, q are the running time and number
of queries made byAπ.

5.3 Verifiable Unpredictable Permutations

Our VUP constructionΨV U,k is a k-round Feistel construction using independent VUFsf1 . . . fk ← F as round
functions. The public/private keys ofΨV U,k are simply the concatenation of the public/private keys of thek VUFs.
TheProve functionality forΨV U,k simply gives the permutation output, and as proof, it gives all intermediate round
values along with the VUF proofs. TheVerify functionality simply checks if all intermediate VUF proofs verify
correctly.

Recall that a VUP construction needs to satisfy three security properties :Completeness, Soundness(or unique
proofs) andUnpredictability. Completeness of the constructionΨV U,k is a direct consequence of completeness of
each of the VUFs used as round functions. Thesoundnessof the construction is also obvious given the fact that all
the intermediate VUFs are sound. If there are two output/proof pairs ofΨV U,k that verify correctly, then we can
find two VUF output/proof pairs that verify correctly for one of the roundfunctions. Theunpredictabilityproperty
follows very similarly to Theorem 5.1, which we used to prove the UF to UP construction.

Theorem 5.3 Let ΨV U,k = (Gπ, Π, Vπ) be the VUP construction usingk rounds of the Feistel construction using
independent VUFsf1 . . . fk ← F . For any probabilistic polynomial time oracle machineAπ that does not make a
forward query onx or an inverse query ony, the advantage ofAπ in winning the VUP game againstΨV U,k is at
mostO(q6k7 · ǫf ), whereǫf denotes the maximum advantage of a VUF adversary running in timeO(t + (qk)5)
against a VUF sampled fromF , t is the running time ofAπ andq is the number of queries made byAπ.

5.4 Verifiable Random Permutations

The VRP constructionΨV R,k that we use is identical to the VUP constructionΨV U,k described above, except that
we use independent VRFs instead of VUFs. Thecompletenessandsoundnessproperties of the VRP construction
ΨV U,k can be proven similar to that for the VUP constructionΨV R,k.

Thepseudorandomnessproperty of the VRP constructionΨV R,k can be proven in a way similar to the proof for
the PRP constructionΨR,k in theorem 5.2. Thus, we get that

Theorem 5.4 Let ΨV R,k = (Gπ, Π, Vπ) be the VRP construction using ak-round Feistel construction using inde-
pendent VRFsf1 . . . fk ← F . For any probabilistic polynomial time oracle machineAπ = (A1, A2) that does not
query its oracle onx or try to invert the response to the challenge query, the advantage ofAπ in winning the VRP

game againstΨV R,k is at mostO
(

qkǫf + (qk)6

2n

)

, whereǫf denotes the maximum advantage of a VRF adversary

that runs in timeO(t + (qk)5) against a VRF sampled fromF , and t and q are the running time and number of
queries made byAπ.
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6 Other Applications

MORE RESILIENT BLOCK CIPHERS. Although not as strong as pseudorandomness, unpredictability is a mean-
ingful property of block ciphers. First, we already mentioned that it is enough for message authentication, and our
Feistel construction is also useful in the context of domain extension of MACs. We notice that it is also enough to
argue certain weaker properties of popular modes of operation on blockciphers. For example, one can easily argue
that the CBC mode with UPs (rather than PRPs) yield a “computationallyǫ-universal” hash function [2], which can
then be used with an ordinary block cipher to get a secure “encrypted CBC-MAC”. Even in the context of encryp-
tion, one can argue that CBC, OFB and CFB modes with UPs satisfy the following form of one-wayness against
the usual chosen message attack. The attacker can ask encryptions or any messages. For the challenge, it specifies
any message with one missing block. Then this block is chosen at random, andthe encryption of the entire message
(using the corresponding mode) is given to the attacker. Finally, the attacker has to recover this missing block, and
using UPs guarantees that the attacker only has a negligible probability to succeeded in this game.

To summarize, the usage of UPs in place of PRPs still maintains weaker, but stillmeaningful security properties.
Therefore, we see their primary utility as a way for providing a “gracefulfall-back” property for the Feistel con-
struction. If (nearly) pseudorandom round functions are used, thenwith ω(log λ) rounds the resulting permutation
is a PRP. As a bonus, it remains a PRP even if the intermediate round values could be leaked! Additionally, even if
the round functions are only unpredictable, we still have some basic security left, so at the very least the system will
not be “completely broken”.

IDEAL CIPHER MODEL USING SEMI-HONEST TRUSTED PARTY. TheIdeal Cipher Model(ICM) (also known as
the “Shannon Model”) assumes the existence of a publicly accessible Ideal Block Cipher, meaning that for every
possible keys one has a fresh random permutationΠs and its inverseΠ−1

s . Although the ICM is not as popular
as the random oracle model, there are still several notable examples of schemes where this model has been used
[7, 12, 17, 25, 26]. Unfortunately, just like the random oracle model, theICM model cannot be provably realized
without a trusted partyT (see [6]). A naive implementation is easy, but inconvenient. First,T should keep track
of all the queries already asked to ensure consistency, which quickly becomes very impractical. Second, the parties
must trust thatT has evaluated the valueΠs(x) consistently across invocations. Third, once they get such a value,
they cannot convince any other party of its validity: that party must independently go toT to check the correctness.
Finally, they must trust that the answers ofT are actually random.

It turns out that a VRP can considerably improve this naive implementation. First, we start with implementing
a single truly random permutationΠ (corresponding to an ideal cipher with a fixed key). ThenT can publish the
public key for a VRPπ, and only keep the secret key as its state. When some party comes toT and asks a forward
or backward query toΠ, T simply evaluatesπ or π−1 on that query, and returns the result together with a proof
of correctness. This way the parties are assured that: (a) they receive a correct andconsistentvalue ofΠ; (b) they
are really talking toT (or, if not, the value is correct anyway); (c) onceT is committed to the public key,T cannot
dynamically adjust the values ofΠ andΠ−1; (d) even ifT selected a bad public key,T is committed to apermutation;
in particular, the value ofΠ on arandompoint is guaranteed to be random. Finally, once somebody gets a value of
Π or Π−1 from T , it can transfer this value on its own, without the need of other parties to cometo T and verify it.

To extend this to a full blown Ideal Cipher, we face a problem thatT must generate a new VRP for every keys
of the Ideal Cipher. However, for our particular VRF-based construction we can do better. Instead of assuming the
existence of a VRF fromn to n bits, we assume the existence of a VRF fromn+a to n bits, wherea is the length of
the keys (if needed, such VRF can always be constructed from another VRF using the domain extension techniques
we developed earlier). In this case,T will always prepend the keys to all the VRFs inputs when evaluating the
Feistel Network for the value ofΠs. This wayT still stores onlyω(log λ) keys for the VRFs, and can emulate2a

possible random ciphers.

Next, we mention several examples how VRPs could be useful in scenarioswhere plain VRFs are not enough.
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NON-INTERACTIVE ZERO-KNOWLEDGE (NIZK). We show that VRPs (and, thus, indirectly, VRFs), could be
used to construct NIZK proofs (in the common reference string model). Weremark, however, that Dwork and Naor
[16] already gave a completely different construction of NIZK proofs from VRFs (and even a weaker primitive
calledverifiable pseudorandom generator). Thus, our construction only gives an alternative (and different) proof
of an already known result by [16]. Nonetheless, we believe that it naturally illustrates the usefulness of VRPs in
comparison to VRFs, and also solves a question left open by Goldwasser and Ostrovsky [23] (see below).

Feige et al. [18] reduced the question of constructing NIZK proofs (in the common reference string model) to
the question of implementing the so called “hidden bits system” HBS, and showed how to implement HBS using
trapdoor permutations. Later, Goldwasser and Ostrovsky [23] showedhow to implement HBS using so called
invariant signatures. In our modern terminology, invariant signatures are quite similar to VRFs, except for one
additional requirement: they should induce a (pseudo)random distributionon the output when applied to a random
input, even if the public key for the VRF is adversarially chosen. Thus, we can think ofinvariant signaturesas
“balanced” VRFs. Unfortunately, it is easy to see that regular VRFs arenot enough to plug into the construction of
[23]. Namely,

(a) Plain VRFs do not have to satisfy this property (and, as far as we cansee, there is no trivial way to enforce it
in VRFs; although, our results imply a non-trivial way to do so).

(b) More severely, there exist secure (and, of course, unbalanced) VRFs for which the transformation of [23] is
completely insecure.

To briefly see point (a), imagine adding a new special public keyPK∗ to any secure VRF, for which the VRF
is defined to be identically zero. It is clear that this still defines a VRF, since the prover is still committed to a
unique function, even for the keyPK∗. And pseudorandomness holds, since the chancesPK∗ will be selected are
negligible. Yet, the new VRF is obviously unbalanced. In fact, if we use this new VRF in place of the invariant
signature in the construction of [23], we will get a completely insecure HBS system (thus, showing (b)). Briefly, in
the construction of [23] a VRFselected by the proveris applied to a bunch or random points to define the “hidden
random string” (for which the prover can selectively open some part later). If the prover choosesPK∗ as his public
key, then the hidden random string is all zero as well, and it is easy to see that NIZK construction of [18] will
completely fails with such non-random HRS.

On a positive side, VRPs trivially satisfy balancedness, since they are guaranteed to be permutations for any value
of the public key. This means one can build NIZK proofs from VRPs. By our construction of VRPs from VRFs, we
see that VRFs are also sufficient for NIZK proofs for NP. Also, evenVUPs coupled with the Goldreich-Levin bit
turn out to be sufficient for this application.

NON-INTERACTIVE LOTTERY FORM ICROPAYMENTS. Micali and Rivest [33] suggested the following elegant way
to perform non-interactive lottery (with the main application in micropayments). The merchant published a public
keyPK for a VRFf , the user chooses a ticketx, and wins if some predicate aboutf(x) is true (for example, iff(x)
is less than some thresholdt). Sincef looks random to the user, the user cannot significantly bias his odds no matter
whatx he chooses. Similarly, since the merchant is committed tof by the public keyPK, they merchant cannot
lie about the valuef(x). Unfortunately, this still leaves exactly the same problem we had for the NIZKapplication
above. Nothing stops the merchant from publishing a “non-balanced” VRF. In the extreme case, a constant function
f(x) = c, wherec is selected so that the predicate does not hold. Once again, we need balancedness to ensure that
the merchant not only cannot change the value off after the commitment, but also guarantees that the valuef(x) is
random at least for arandomx. Once again, VRPs perfectly solve this problem.

Moreover, VRP have an extra advantage that one canpreciselyknow the number of possible winners: it is exactly
equal to the number of stringsy satisfying the given predicate. Thus, one can always allocate a given number of
prizes and never worry that with some small probability there will be more winners than prizes.

REUSABLE COIN-FLIPPING. We can extend the previous lottery example to the following coin flipping prob-
lem. Alice wants to publish some valuePK (keeping the corresponding valueSK secret) allowing other to non-
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interactively select a random numberr as follows. Any party Bob can choose a random valuex and send it to Alice.
The valuex (combined withPK) uniquely defines the final value ofr. If needed, Alice can open the value ofr and
convince Bob that this value is correct. Additionally, we want the following properties.

(a) No matter how Bob selectsx, the valuer looks random to Bob (except if he “replays” some oldr).
(b) For anyx, Alice cannot produce two differentr as the final value, even if she adversarially chooses the public

keyPK.
(c) Bob is sure that that if he selectsx at random, the valuer is random, even if Alice adversarially chooses the

public keyPK.
(d) Alice can reuse the samePK for many executions (and only has to worry about the replay attack from Bob).

It is clear that VRPs precisely solve this problem. In contrast, VRFs do notsatisfy property (c), while other
existing coin-flipping protocols are either inefficient or do not appear to have the reusability property (d).

Finally, we mention examples how VRPs could be useful to add verifiability to someapplication of PRPs (where,
again, PRFs are not sufficient).

VERIFIABLE CBC ENCRYPTION. As the simplest example, using VRPs one can add verifiability to CBC encryp-
tion and decryption.

VERIFIABLE HUGE RANDOM OBJECTS. A bit less straightforwardly, we consider the question of “truthfully”,
yet efficiently, sampling huge (pseudo)random objects, initiated by Goldreich et al. [21]. In this work, the authors
showed several applications where PRPs can be used to efficiently samplevarious exponential-sized objects (like
random connected graphs). Using VRPs one can naturally add verifiability to these constructs, so that the sampler
can compactly commit and selectively reveal small parts of the huge object (like an edge). However, there is a
subtlety. Since the PRP is often used as only part of the sampling procedure, revealing the proofs might leak a lot
of extra information which might be undesirable. For example, in the random connected graph example one first
samples a (pseudo)random graph, and then uses the PRP to add a random Hamiltonian cycle to it (in order to make
it connected). With VRPs in place of PRPs, revealing the VRP proof will reveal this a given edge is part of the
“special” Hamiltonian cycle, which is probably undesirable.

Nevertheless, we can avoid this “privacy problem” in scenarios where only PRPs are used to sample the given
object. We give one such example (not present in [21]). Specifically, we can use PRPs to sample a pseudorandom
constant-degree graph or exponential size (which is very likely to be a great expander). In the case the graph should
be bipartite, such sampling simply consists of choosingd independent PRPs, whered is the required degree. This
allows one to easily find all the neighbors of a given node on either side of the graph. In case of regular graphs,
we need to sampled random matchings, which can also be done using PRPs by using an elegantresult of Naor and
Reingold [36] allowing one to sample pseudorandom permutations with a prescribed cycle structure. In either case,
by using VRPs in place of PRPs we getverifiable random, constant-degree graphs, which do not suffer from the
problem we had for random connected graphs.

Notice also that PRFs/VRFs are not sufficient for this application, since withhigh probability they will not result
in a truthful implementation. Additionally, such sampling is not “reversible” (i.e., iff(x) = y, then givenx one can
see thaty is connected to it, but not vice versa).

We hope that more “verifiable” huge random objects could be “privately”sampled using our technique.
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A Formal Definitions

Let λ denote the security parameter. We usenegl(λ) to denote a negligible function ofλ.

Let a : N → N and b, c : N → Nbe polynomial time computable functions. We first define the notion of
pseudorandom functions (PRFs). The definition given below is a seemingly different from the usual definition of
PRFs, but is essentially equivalent.

Definition 2 (Pseudorandom Functions)A pseudorandom function familyF{0,1}c(λ) : {0, 1}a(λ) → {0, 1}b(λ) is
an efficiently samplable distribution over the set of all functions froma(λ) to b(λ) bits such that, for any probabilistic
polynomial time (PPT) adversary pairA = (A1, A2), none of which query their oracles on the challenge query,it
holds that,

Pr

[

b = b′
∣

∣

∣

∣

s← {0, 1}c(λ); (x, α)← AFs

1 (1λ); y0 ← Fs(x);

y1 ← {0, 1}b(λ); b← {0, 1}; b′ ← AFs

2 (yb, α)

]

= negl(λ)

Similar to the notion of PRFs, we can define the notion of a(strong) pseudorandom permutations(PRPs).

Definition 3 (Pseudorandom Permutations)Apseudorandom permutation familyΠ{0,1}c(λ) : {0, 1}a(λ) → {0, 1}a(λ)

is an efficiently samplable distribution of permutations ona(λ) bits such that, for any probabilistic polynomial time
(PPT) adversary pairA = (A1, A2), none of which query their oracles on the challenge query or its inverse,it holds
that,

Pr

[

b = b′

∣

∣

∣

∣

∣

s← {0, 1}c(λ); (d∈{−1,+1}, x, α)← AΠs,Π−1
s

1 (1λ); y0 ← Πd
s(x);

y1 ← {0, 1}b(λ); b← {0, 1}; b′ ← AΠs,Π−1
s

2 (yb, α)

]

= negl(λ)

A slightly weaker notion than PRFs is that ofUnpredictable Functions(UFs). Unpredictable functions are also
popularly known asMessage Authentication Codes(MACs).

Definition 4 (Unpredictable Functions) An unpredictable function familyF{0,1}c(λ) : {0, 1}a(λ) → {0, 1}b(λ) is
an efficiently samplable distribution over the set of all functions froma(λ) to b(λ) bits such that, for any probabilistic
polynomial time (PPT) adversaryA, that does not query its oracle on the prediction query, it holds that,

Pr
[

y = Fs(x)
∣

∣ s← {0, 1}c(λ); (x, y)← AFs(1λ)
]

= negl(λ)

Similarly, we can also define the notion ofUnpredictable Permutations(UPs).
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Definition 5 (Unpredictable Permutations) An unpredictable function familyF{0,1}c(λ) : {0, 1}a(λ) → {0, 1}a(λ)

is an efficiently samplable distribution over the set of all permutations ona(λ) bits such that, for any probabilistic
polynomial time (PPT) adversaryA, that does not query its oracle on the prediction query or its inverse, it holds
that,

Pr
[

y = Πs(x)
∣

∣

∣ s← {0, 1}c(λ); (x, y)← AΠs,Π−1
s (1λ)

]

= negl(λ)

We can define verifiable analogs of each of the definitions above. Let usstart by defining the notion ofVerifiable
Pseudorandom Functions(VRFs).

Definition 6 (Verifiable Random Functions) AVerifiable random function familyF{0,1}c(λ) : {0, 1}a(λ) → {0, 1}b(λ)

consists of three algorithms(Gen, Prove, Verify) such thatGen(1λ) outputs a pair of keys(PK, SK); ProveSK(x)
outputs a pair(FSK(x), proofSK(x)), whereFSK(x) is the function output andproofSK(x)) is the corresponding
proof of correctness; andVerifyPK(x, y, prf) verifies thaty = FSK(x) using the proofprf (by outputting1 if so).
This VRF family should satisfy three requirements:

• Correctness: if (y, prf)← ProveSK(x), thenVerifyPK(x, y, prf) = 1.

• Soundness: no values(PK, x, y1, prf1, y2, prf2), with (y1, prf1) 6= (y2, prf2), can satisfy

VerifyPK(x, y1, prf1) = VerifyPK(x, y2, prf2) = 1

• Pseudorandomness: For any PPT adversary pairA = (A1, A2), neither of which query their oracle on the
challenge inputx, it holds that

Pr

[

b = b′

∣

∣

∣

∣

∣

(PK, SK)← Gen(1λ); (x, α)← AProveSK

1 (1λ); y0 ← FSK(x);

y1 ← {0, 1}b(λ); b← {0, 1}; b′ ← AProveSK

2 (yb, α)

]

= negl(λ)

Along similar lines, we can define the notions ofVerifiable Pseudorandom Permutations(VRPs),Verifiable Un-
predictable FunctionsandVerifiable Unpredictable Permutationsas verifiable analogs of PRPs, UFs and UPs re-
spectively, each of which has three algorithms(Gen, Prove, Verify), and satisfies the Completeness and Soundness
properties as well.

Letf : {0, 1}n −→ {0, 1}n be a function fromn bits ton bits. TheFeistel transformationusingf is a permutation

Ψf on2n bits defined as,Ψf (x)
def
= xR ‖ xL ⊕ f(xR). The symbolsxL andxR denote the left and right halves of

2n bit stringx. We will also call the construction based onk iterated applications of the Feistel transformation, ak
round LR construction, and denote it byΨf1...fk

(which we also callΨk for brevity) wheref1 . . . fk are the round
functions used. On a2n bit input, the constructionΨk generates(k + 2) n-bit round values, the last two of which
together form the output of the construction.

The seminal result of Luby and Rackoff [27] shows that a4 round LR construction with independent and secure
PRFs in each round is a secure (strong) pseudorandom permutation (PRP) construction.

B Proof of Lemma 4.1

Assume that the5-XOR condition does not hold for the given sequence of queries. Without loss of generality, say
one of the queries involved in therth round value collision is the last (qth) query. If this is not the case, then we can
consider a smaller sequence of queries for which this happens. We represent thejth round value associated with the
ith query asR[i, j]. Thus we know that∃i < q : R [q, r] = R [i, r].
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We maintain aq vectorb that denotes the direction of each query. Thus ifb[i] = 1 then theith query was a
forward one, else ifb[i] = 0 then theith query was an inverse query. We define a “first occurrence” function for
each round value, i.e.p : {1 . . . q}× {0 . . . k + 1} → {1 . . . q}. For any round valueR[i, j], p(i, j) is theleast input
numbersuch thatR[p(i, j), j] = R[i, j].

Assume that the colliding round numberr ≤ k/2. In this case, if theqth query is a forward query then we
get a worse lower bound on the number of queries. Ifr > k/2 then we get a worse bound if theqth query is an
inverse query. Thus, for now assume that theqth query is a forward query, since this gives us the worst case bound
if r < k/2.

As a first step, we prove that all the round valuesR[q, 1] . . . R [q, r − 1] collide with the corresponding round
value in an earlier query.

Claim B.1 If ∃i < q : R [q, r] = R [i, r], then each of the round valuesR[q, 1] . . . R [q, r − 1] were defined before
theqth query was made. That is,

∀j ∈ {1 . . . r} : p(q, j) < q

proof of claim B.1: We will use induction on the round numberj to show thatp(q, j) < q. However, we will start
the induction withj = r and go down toj = 1.

For j = r, we already know thatp(q, r) = i from the statement of the claim. Now say the same holds for all
j = r . . . c (for c ≤ r), then we will show that the(c− 1)th round value also collides with the corresponding round
value in an earlier query. Say, for the sake of contradiction, thatR[q, c− 1] is a new round value in input numberq
(i.e. p(q, c−1) = q). Then the round function evaluationf(c−1) (R[q, c− 1]) is a new round function evaluation, and
henceR[q, c] is a new round function value. ButR[q, c] = R[p(q, c), c], andp(q, c) < q by induction hypothesis.
But this is not possible since the5-XOR condition does not hold for this sequence of queries.

Thus, we know that all the round valuesR[q, 1] . . . R [q, r] were defined strictly before input numberq. As our next
step, we will show that the order in which the queriesp(q, 1) . . . p (q, r) occur is one of very few possible orders.

Claim B.2 There is a round numberj ∈ {1 . . . r}, such that,

p(q, 1) > . . . > p(q, (j − 1)) > p(q, j)
p(q, j) < . . . < p (q, r − 1) < p (q, r)

That is, the round valueR[q, j] was defined before any of the other round valuesR[q, 1] . . . R [q, r]. Moreover,
the latter queries were made in the orderp(q, j) . . . p (q, r), while the first j queries were made in the order
p(q, j) . . . p(q, 1).

proof of claim B.2: We will first prove that for any three consecutive round valuesR[q, (i − 1)], R[q, i] and
R[q, (i + 1)] (wherei ∈ {2 . . . r − 1}), it holds that,

[p(q, (i− 1)) > p(q, i)] ∨ [p(q, i) < p(q, (i + 1))]

The claim will then follow as a straightforward consequence.

Assume to the contrary thatp(q, (i − 1)) ≤ p(q, i) andp(q, i) ≥ p(q, (i + 1)) for somei ∈ {2, r − 1}. If
p(q, (i − 1)) = p(q, i) (or p(q, i) = p(q, (i + 1))) then it is easy to verify that queriesp(q, i) andq are the same,
which is not the case sinceq is the first query colliding with an earlier query in therth round value.

Thus, we have the case thatp(q, (i − 1)) < p(q, i) andp(q, i) > p(q, (i + 1)). But we know from the design of
Ψk that,

fi(R[p(q, i), i]) = R[p(q, i), (i− 1)]⊕R[p(q, i), (i + 1)]
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It is also the case that,

fi(R[q, i]) = R[q, (i− 1)]⊕R[q, (i + 1)]
⇒ fi(R[p(q, i), i]) = R[p(q, (i− 1)), (i− 1)]⊕R[p(q, (i + 1)), (i + 1)]
⇒ R[p(q, i), (i− 1)]⊕R[p(q, i), (i + 1)] = R[p(q, (i− 1)), (i− 1)]⊕R[p(q, (i + 1)), (i + 1)]

Thus, if b[p(q, i)] = 0 thenR[p(q, i), (i − 1)] can be represented as an XOR of three previously existing round
values otherwiseR[p(q, i), (i + 1)] has such an XOR representation. In any case, this will give a5-XOR condition
which we know does not hold. Thus we can say that

∀i ∈ {2, r − 1} : [p(q, (i− 1)) > p(q, i)] ∨ [p(q, i) < p(q, (i + 1))]

Now it is a straightforward task to verify that the query orders consistentwith this constraint are exactly the ones in
the statement of claim B.2.

From claim B.2, we can deduce that there exist at leastr
2 consecutive round values in theqth query, whose “first

occurrence” queries are in strictly ascending/descending temporal order. Without loss of generality, we can assume
thatq > p(q, 1) > . . . > p

(

q, r
2

)

.

As our next step, we will prove a general property of such a strictly ordered sequence of “first occurrence” queries
of consecutive round values. For this purpose, consider any three consecutive “first occurrence” queries out of such
a sequence, sayij = p(q, j), ij+1 = p(q, j + 1) and ij+2 = p(q, j + 2) (so thatij > ij+1 > ij+2). We will
concentrate on proving properties of the “first occurrence” queriesof the round values of theithj query. Sincej ≤ k

4 ,
we will assume thatb(ij) = 1 or that theithj query is a forward query. The reason for this choice is again the fact
that it gives us the worse bound on the number of queries.

We will now show that all the round valuesR[ij , 1] . . . R[ij , j − 1] collide with the corresponding round values
in queries before theithj query. Moreover, we also show that the queriesp(ij , 1) . . . p(ij , j − 2) were made after the
ithj+1 query, but before theithj query. This is formally stated in the following claim.

Claim B.3 Let the queries numberedij , ij+1 andij+2 be the “first occurrence” queries of the round valuesR[ℓ, j],R[ℓ, j+
1] and R[ℓ, j + 2], respectively. Moreover, say thatij > ij+1 > ij+2. If the ithj query is a forward query (i.e.
b[ij ] = 1) then,

ij > p(ij , 1) > . . . > p(ij , j − 2) > ij+1

On the other hand, ifb[ij ] = 0 then,

ij > p(ij , k) > . . . > p(ij , j + 2) > ij+1

proof of claim B.3: Let us start by considering the case thatb[ij ] = 1, and the inverse query will turn out to be
symmetric. We will analyze the round valuesR[ij , 1] . . . R[ij , j − 1]. Consider the round valueR[ij , j − 1]. If it is
a new round value at theithj query, thenfj−1(R[ij , j− 1]) is a new round function evaluation andR[ij , j] is the new
round value generated. But we know that

fj+1(R[ℓ, j + 1]) = R[ℓ, j]⊕R[ℓ, j + 2]
⇒ fj+1(R[ij+1, j + 1]) = R[ij , j]⊕R[ij+2, j + 2]
⇒ R[ij , j] = R[ij+2, j + 2]⊕R[ij+1, j]⊕R[ij+1, j + 2]

And sinceij > ij+1 > ij+2, this would give us a5-XOR condition, which we know does not hold. Thus, we
know thatp(ij , j − 1) < ij .
Conclusion 1:As in claim B.1, we can also deduce that∀j′ ∈ {1 . . . j − 1} : p(ij , j

′) < ij .
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Now we will try to find the order in which the queriesp(ij , j
′) could have been made. In addition, since we know

thatij+2 < ij+1 < ij , we will also be interested when the queriesp(ij , j
′) were made relative toij+1 andij+2. Let

us start by concentrating our attention on the queriesij+1, p(ij , (j − 1)) andp(ij , (j − 2)).

Consider the case thatp(ij , (j − 1)) < ij+1 andp(ij , (j − 2)) < ij+1. Then we know that,

fj+1(R[ij+1, (j + 1)]) = R[ij+1, j]⊕R[ij+1, (j + 2)]
⇒ fj+1(R[ij+1, (j + 1)]) = R[ij+1, (j + 2)]⊕R[ij , (j − 2)]⊕ fj−1(R[ij , (j − 1)])
⇒ R[ij+1, (j + 2)]⊕R[ij+1, j] = R[ij+1, (j + 2)]⊕R[p(ij , (j − 2)), (j − 2)]

⊕R[p(ij , (j − 1)), j]⊕R[p(ij , (j − 1)), j + 1]

Thus depending on whetherij+1 is a forward or inverse query, we get a representation ofR[ij+1, j] orR[ij+1, (j+2)]
as an XOR of five previous round values and sinceR[ij+1, (j +1)] is a new round value this contradicts the fact that
5-XOR condition does not hold for these queries. Thusp(ij , (j−1)) > ij+1 or p(ij , (j−2)) > ij+1. Along similar
lines, we can also show thatp(ij , (j − 2)) > p(ij , (j − 1)) or ij+1 > p(ij , (j − 1)).
Conclusion 2:We can deduce that the only possible orders for these three queries are

p(ij , (j − 2)) > p(ij , (j − 1)) > ij+1 or p(ij , (j − 2)) > ij+1 > p(ij , (j − 1))

We saw in claim B.2 that if we consider the “first occurrence” queries of three consecutive round values, the query
corresponding to the middle round value cannot be the last one to be made. And since we know thatp(ij , (j−2)) >
p(ij , (j−1)) from conclusion 1, we can see thatp(ij , (j−3)) > p(ij , (j−2)). Carrying this argument uptoR[ij , 1],
we thus deduce that,

ij > p(ij , 1) > . . . > p(ij , (j − 2)) > ij+1

If the query numberij is an inverse query, then we can carry out the same argument for the round valueR[ij , (j +
1)] . . . R[ij , k] and deduce that

ij > p(ij , k) > . . . > p(ij , (j + 2)) > ij+1

Now we can apply claim B.3 to the sequence of first occurrence queriesp(q, 1) > . . . > p
(

q, r
2

)

. Considering
queryp(q, i) (for i = 1 . . . r

2 − 2), we have deduced that if this was a forward query, at least anotheri − 2 queries
we made before this one but after the queryp(q, (i + 1)). And since thesei− 2 queries are in a strictly descending
temporal order as well from claim B.3, we can recursively apply our argument to each of these queries as well.

In order to bound from below the number of queries that produce a collision on therth round value, we will
need to count the number of queries that are bound to exist by the argument above. Thus consider a strictly ascend-
ing/descending sequence of “first occurrence” queries ofj consecutive round values, i.e.p(i, 1) > . . . > p(i, j)
for some queryi. We will denote byQ(j) the number of queries that were made before query numberi in order to
get such a sequence of queries. If we apply claim B.3 to the queriesp(i, 1) . . . p(i, (j − 2)), we get a new sequence
of (ℓ − 2) strictly ascending/descending “first occurrence” queries between each of the pairs of queriesp(i, ℓ) and
p(i, (ℓ + 1)) for ℓ = 1 . . . (j − 2). Hence we get the following expression forQ(j),

Q(j) = j +
∑j−2

ℓ=3 Q(ℓ− 2)
⇒ Q(j) = Q(j − 1) +Q(j − 4) + 1
⇒ Q(j) = 2 · Q(j − 1)−Q(j − 2) +Q(j − 4)−Q(j − 5)

The solution to the above homogeneous equation can be expressed in terms of the powers of the roots of the following
algebraic equation:

x5 − 2x4 + x3 − x4 + 1 = 0
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This equation has only one root greater than1, which is1.3803. Thus we can represent the solution of the above
recurrence as:

Q(j) = Θ(1.3803j)

And from claim B.2, we get that if any query collides with an earlier query in the rth round value, we can find a
strictly increasing/decreasing sequence ofr

2 “first occurrence” queries. Thus, we get that

q ≥ Q
(

r
2

)

⇒ q = Ω
(

1.3803r/2
)

⇒ q ≥ Ω
(

1.3803s/2
)

, sincer ∈ {s . . . (k − s)}

The above proof only took into account the case thatr < k/2. If r > k/2 then a similar argument can be carried out
by assuming the intermediate queries to be inverse queries and we can derive thatq = Ω

(

1.3803(k−r)/2
)

. In either
case, we get the bound thatq = Ω

(

1.3803s/2
)

, sincer ∈ {s, (k − s)} ands ≤ (k/2).

C Proof of theorem 5.1

The proof of this theorem consists of two main parts:

1. A UF family that yields secure and independent UFs on each sample is a5-XOR resistant function family.

2. The constructionΨU,k that uses secure and independent UFs in each round is a secureunpredictable permu-
tation.

XOR-RESISTANCE OFUFS. Consider thek-round Feistel constructionΨU,k using independent UFsf1 . . . fk ← F
in each round. If there is an adversaryAxor that queriesΨU,k and forces a5-XOR condition through its queries with
a non-negligible advantageǫxor, then we can construction a UF adversaryAf that has non-negligible advantage in
the unpredictability game against a UF sampled from the familyF .

Claim C.1 If there is an adversaryAxor that can force a5-XOR condition in an interaction withΨU,k (that uses
independent UFs sampled from a UF familyF(·) : {0, 1}n → {0, 1}n) with non-negligible probabilityǫxor then
there exists a VUF adversaryAf that has non-negligible success probabilityǫf in the unpredictability against a UF
sampled from the familyF . In particular, we show thatǫf ≥

ǫxor

(qk)6
.

proof of claim C.1: On getting the challenge unpredictable functionFs, the UF adversary chooses a random
round numberi where it plugs in the challenge UF. Next, the UF adversaryAf generates(k − 1) independent UFs
f1 . . . fi−1, fi+1 . . . fk from the same family and uses these as the remaining round functions to simulate the Feistel
constructionΨU,k for the XOR adversaryAxor to attack.

Then it lets the UF adversary run its attack onΨU,k. Assuming a fixed and large enough polynomial upper bound
q on the number of queries made byAxor, the UF adversaryAf chooses a random query numberj ∈ {1, q}. It
guesses that the5-XOR condition occurs after theith round function evaluation in thejth query, i.e.Rj

i . Instead
of querying this input to the UF oracle, it selects this as the challenge input and uses an XOR of upto5 randomly
chosen previously existing round values as its prediction of the output.

If all its guesses are correct, i.e. it chooses the correct round numberi, the correct query numberj and the correct
XOR representation, then it succeeds in the UF game. The probability that allits guesses are correct is at least1

(qk)6
.

Thus, we get thatǫf ≥
ǫxor

(qk)6
.
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SECURITY OF THE UP CONSTRUCTION. We will now show that the UP constructionΨU,k, that uses round
functions from the UF familyF that gives secure and independent UFs on each sample, is a secure construction of
aunpredictable permutation

Claim C.2 If there exists a PPT UP adversaryAπ that has non-negligible advantageǫπ in the unpredictability
game againstΨU,k and which makes a polynomial number of queries toΨU,k, then there also exists a UF adversary
Af that has non-negligible advantage in the unpredictability game against a UF sampled from the UF familyF .
In particular, we get that the maximum advantage of the UP adversaryAπ is ǫπ = O(ǫf · (qk)6). Hereǫf is the
maximum advantage of a UF adversary running in timeO(t + (qk)5) against a UF sampled fromF , wheret, q are
the running time and number of queries made byAπ.

proof of claim C.2: The UF adversaryAf gets oracle access to a challenge unpredictable functionFs. It samples
(k−1) independent UFsf1 . . . f(k/2)−1, f(k/2)+1 . . . fk from the same UF familyF . It simulates the UP construction
by plugging in the challenge UF as the(k/2)th round function, and using the self-generated UFs as the other round
functions.

When the UP adversary sends its challenge queryR0 ‖ R1 (or Rk ‖ Rk+1), and its predicted outputRk ‖ Rk+1

(resp.R0 ‖ R1), the UF adversary proceeds by using its self generated round functions to evaluate the intermediate
round valuesR0, R1, R2 . . . Rk/2 and fromRk+1, Rk, Rk−1 . . . Rk/2+1. It then sends the challenge input/output pair
(Rk/2, Rk/2−1⊕Rk/2+1) as its prediction. It is easy to see that if the round valueRk/2 is a new round value and the
UP adversary predicted correctly, then the UF adversaryAf succeeds. Thus, we can deduce that,

Pr[Af succeeds] = Pr[(Aπ succeeds) ∧ (no (k/2)th round collision)] (1)

= Pr
[

(Aπ succeeds)
∣

∣

∣
no (k/2)th round collision

]

· Pr [no collision] (2)

≥
(

Pr [Aπ succeeds]− Pr
[

(k/2)th round collision
])

· Pr [no collision] (3)

≥ (ǫπ − ǫxor) · (1− ǫxor) (4)

⇒ ǫπ ≤
ǫf

1− ǫxor
+ ǫxor (5)

⇒ ǫπ = O(ǫf · (qk)6) (6)

In the above argument, we have often bound the advantage of a UF adversary byǫf . This is the maximum advantage
of a UF adversary running in timeO(t+(qk)5), wheret, q are the running time and number of queries made byAπ.
The transition from step (3) to (4) is possible using corollary 4.3, that saysthat the advantage of an efficient collision
finding adversary is same as that of an efficient XOR condition forcing adversary. The last step of the argument is
possible through claim C.1.

D Proof of theorem 5.2

We show that the PRP constructionΨR,k, using PRFs sampled from the PRF familyF(·) : {0, 1}n → {0, 1}n, is a
secure PRP. The proof consists of two parts:

1. Showing that a PRF family that yields secure and independent PRFs upon each sample is a5-XOR resistant
function family.

2. Showing that no PRP adversary can succeed with non-negligible advantage in the PRP attack game against a
ω(log λ)-round Feistel construction with independent and secure PRFs in each round.
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XOR-RESISTANCE OFPRFS. Consider ak-round Feistel constructionΨk that usesk PRFsf1 . . . fk, independently
sampled from a PRF familyF(·) : {0, 1}n → {0, 1}n, as round functions. Consider an XOR finding adversaryAxor

that forces a5-XOR condition through its queries with non-negligible advantage. We will show that usingAxor, we
can design another attackerAf that succeeds in the PRF attack game (see definition 2) against a PRF sampledfrom
the familyF .

Claim D.1 If there is an PPT attackerAxor that queries thek-round Feistel constructionΨk (that uses independent
PRFs from a PRF familyF ), observes intermediate round values and forces the5-XOR condition through its queries
with probabilityǫxor, then there exists a PRF adversaryAf that has advantageǫf in the PRF attack game against a

PRF sampled fromF , whereǫf ≥
1

2qk ·
(

ǫxor −
(qk)6

2n

)

.

proof of claim D.1: The PRF adversaryAf gets oracle access to the challenge PRF adversaryFs. It then needs
to choose a challenge query, to which it either gets the PRF output or a random n-bit string, and its task is to
distinguish between the two cases. The attackerAf chooses a random round numberi ∈ {1 . . . k}, and samples
(k − 1) independent PRFsf1 . . . fi−1, fi+1 . . . fk from the family F . It then simulates the Feistel construction
Ψk, with the challenge PRF as theith round function and the self-generated PRFs making up the remaining round
functions. It then simulates the XOR attack game betweenAxor andΨk.

Assume a fixed, large enough, polynomial upper bound on the number of queries that the adversaryAxor makes
to Ψk. The PRF adversary chooses a random query numberj ∈ {1 . . . q} where it chooses its challenge query. On
getting thejth query, it sends theith round value as the challenge PRF query, and uses the challenge response as the
output of theith round function. It computes the remaining self-generated round functions as usual. If theith round
function is applied to a new input, then it checks to see if the new round value generated has a5-XOR representation
in terms of previously existing round values. If so, then it guesses that thechallenge response is the PRF output (say
by outputting1), otherwise it guesses the challenge response to be random (by outputting 0).

It is clear that if the attackerAf makes all its guesses correctly, i.e. correct round number and correctquery
number, then it succeeds if a random response also does not have an5-XOR representation. Hence, we get that

Adv(Af ) = Pr[(Af outputs1) ∧ (PRF output)] + Pr[(Af outputs0) ∧ (Random output)]−
1

2

If ǫxor denotes the advantage of an XOR adversary then we get that,

Pr[(Af outputs1) ∧ (PRF output)] = Pr[(Af outputs1)|(PRF output)] · Pr[(PRF output)]

≥
ǫxor

qk
·
1

2

Pr[(Af outputs0) ∧ (Random output)] = Pr[(Af outputs0)|(Random output)] · Pr[(Random output)]

≥

[

1−
(qk)5

2n

]

·
1

2

⇒ Adv(Af ) ≥
1

2qk
·

[

ǫxor −
(qk)6

2n

]

SECURITY OF THEPRPCONSTRUCTION. We will now show that the constructionΨR,k, that is based on ak-round
Feistel construction using independently sampled round functions from a PRF familyF(·) : {0, 1}n → {0, 1}n, is a
secure PRP construction.
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Claim D.2 If there exists an efficient PRP adversaryAπ that has a non-negligible advantageǫπ in the PRP at-
tack game against the constructionΨR,k (using round function from PRF familyF ), then there also exists a PRF
adversaryAf that has non-negligible advantageǫf in the PRF attack game against a PRF sampled from the
PRF familyF . In particular, we get that the maximum advantage of such a PRP adversary can be bounded by

ǫπ = O
(

qkǫf + (qk)6

2n

)

. Here ǫf is the maximum advantage of a PRF adversary running in timeO(t + (qk)5)

against a PRF sampled fromF , wheret, q are the running time and number of queries made byAπ.

proof of claim D.2: The PRF adversaryAf gets oracle access to a challenge PRFFs. It samples(k−1) independent
PRFsf1 . . . f(k/2)−1, f(k/2)+1 . . . fk from the PRF familyF . It simulates the PRP constructionΨR,k by plugging in
the challenge PRF as the(k/2)th round function and using the self-generated PRFs as the remaining roundfunctions.
It then simulates the PRP attack game between the attackerAπ andΨR,k.

It computes the response to any query made byAπ by computing all the round values ((k/2)th one by querying
the PRF oracle). When the attackerAπ sends its challenge query, thenAf computes all the self-generated round
functions honestly, but sends the(k/2)th round value as its PRF challenge query and uses the challenge query
response as the(k/2)th round function output. It then continues with the post-challenge phase as itdid before the
challenge query. Finally, it simply gives the same output as the PRP adversary Aπ (i.e. guess PRF ifAπ guesses
PRP, else guess random).

We note that the PRF adversary succeeds if the following conditions all hold: (1) the PRP adversaryAπ succeeds,
(2) the(k/2)th round value in the challenge query is never required in any other query and, (3) the PRP challenge
output looks random if the PRF challenge response is random. Thus, we have that,

Adv(Af ) ≥ Pr[(Aπ succeeds) ∧ (no (k/2)th round collision) ∧ (PRF random⇒ PRP random)]−
1

2

Now we can estimate the probability in the above expression as,

Pr[(Aπ succeeds) ∧ (no (k/2)th round collision) ∧ (PRF random⇒ PRP random)]
≥ Pr[(Aπ succeeds) ∧ (PRF random⇒ PRP random)

∣

∣(no collision in{k
2 − 1, k

2 + 1}) ]

·Pr[no collision in{k
2 − 1, k

2 + 1}]

≥ Pr[(Aπ succeeds)
∣

∣(PRF random⇒ PRP random) ∧ ((no collision in{k
2 − 1, k

2 + 1}) ]

·Pr[(PRF random⇒ PRP random)
∣

∣(no collision in{k
2 − 1, k

2 + 1}) ]

·Pr[no collision in{k
2 − 1, k

2 + 1}]

≥ Pr[(Aπ succeeds)
∣

∣(PRF random⇒ PRP random) ∧ ((no collision in{k
2 − 1, k

2 + 1}) ]

·Pr[(PRF random⇒ PRP random)
∣

∣(no collision in{k
2 − 1, k

2 + 1}) ] · (1− ǫxor)

≥ Pr[(Aπ succeeds)
∣

∣(PRF random⇒ PRP random) ∧ ((no collision in{k
2 − 1, k

2 + 1}) ]
·(1− 2ǫf ) · (1− ǫxor)

≥
(

ǫπ − 2ǫf ·
(

2qkǫf + (qk)6

2n

))

· (1− 2ǫf ) ·
(

1− 2qkǫf −
(qk)6

2n

)

⇒ ǫπ = O
(

qkǫf + (qk)6

2n

)

In the above argument, we have usedǫf to bound the advantage of all of out PRF adversaries (in L.H.S. as well as
R.H.S.). This boundǫf is the maximum advantage of a PRF adversary running in timeO(t + (qk)5), wheret, q are
the running time and number of queries made by the PRP attackerAπ. The initial two steps of the above argument
can be derived as simple conditional probability manipulations. The third step can be derived as a result of corollary
4.3, that says that the advantage of the collision finding attacker is no more than that of a5-XOR finding attacker.

In the fourth step, we use the fact that if a PRF family yields secure and independent PRFs, then the usual PRF
attack definition is equivalent to a modified definition where the attacker has access to two independently sampled
PRFs from the same family. In the challenge phase of this new attack scenario, either random or pseudorandom
responses are given to challenge queries to both these functions. Sincethe attacker is not permitted to query the PRF
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oracles on these challenge queries, we need the property that no roundvalue collision occur among round values in
{(k/2)− 1 . . . (k/2) + 1}.
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