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Abstract

Feistel Network, consisting of a repeated application efFeistel Transform, gives a very convenient and
popular method of designing “cryptographically strong'trpatations from corresponding “cryptographically
strong” functions. Up to now, all usages of the Feistel Nekwocluding the celebrated Luby-Rackoff’s result,
critically rely on (a)the (pseudo)randomness of round functioasd (b)the secrecy of (at least some of) the
intermediate round valueappearing during the Feistel computation. Moreover, a lsomaistant number of
Feistel rounds was typically sufficient to guarantee sécwunmder assumptions (a) and (b). In this work we
consider several natural scenarios where at least one @fthnee assumptions does not hold, and show that a
constant, or even logarithmic number of roundprisvably insufficiento handle such applications, implying that
a new method of analysis is needed.

On a positive side, we develop a new combinatorial undedgtgnof Feistel networks, which makes them
applicable to situations when the round functions are mparapredictablerather than (pseudo)random and/or
when the intermediate round values may be leaked to the satyefeither through an attack or because the ap-
plicationrequiresit). In essence, our results show that in any such scenatiperdogarithmic number of Feistel
rounds isnecessary and sufficietd guarantee security. This partially explains why pradtidock ciphers use
significantly more than 3-6 rounds predicted by the previbesretical results, and also gives the first theoretical
justification regarding the usage of Feistel Networks ntsdng assumptions (a) or (b) above.

In particular, we show that super-logarithmic number ofEairounds isiecessary and sufficietd yield
e a strong unpredictable permutation (UP) from any unpretietfunction (UF).

e a strong pseudorandom permutation (PRP) from any pseudtmmafunction (PRF), which remains secure
even if all the round values are made public.

e a strong verifiable unpredictable permutation (VUP) — a netiom we introduce here — from any verifi-
able unpredictable function (VUF).

e a strong verifiable random permutation (VRP) — a new notionntt®duce here — from any verifiable
random function (VRF, also known as unique signature scheme

Of independent interest, our technique yields a novel domgiension method for messages authentication codes
and other related primitives, settling the question st An and Bellare in CRYPTO 1999.
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1 Introduction

Feistel Networks are extremely popular tools in designing “cryptograjih&teong” permutations from correspond-
ing “cryptographically strong” functions. Such networks consist wesa iterative applications of a simple Feistel
permutationV ¢(x, || zr) = xr || 2 ® f(xr), with different (pseudo)independent round functignssed at each
round. Among their applications, they are commonly used in the design ofgrdmock ciphers, such as DES,
as well as other constructs, such as popular padding schemes OA&PASE-R [4]. In particular, the celebrated
result of Luby and Rackoff [27] shows that three (resp. fourhdsuof the Feistel transform are sufficient to turn
a pseudorandom function (PRF) family into a pseudorandom permutafid?) @amily (resp. strong PRP family).
There has been a lot of subsequent work (e.g., [35, 39, 30, 3&)@mving various aspects of the Luby-Rackoff’s
result (referred to as “LR” from now on). However, all these restitsially relied on:

(a) the (pseudo)randomness of round functjcarsd
(b) the secrecy of (at least some of) the intermediate round values apgehrning the Feistel computation

In this work we consider several natural scenarios where at leasifdhe above assumptions does not hold, and
show that a fundamentally new analysis technique is needed for suchaaigplic But first let us motivate our study.

IS UNPREDICTABILITY ENOUGH? We start with the assumption regarding pseudorandomness of rouwstishfign
This assumption is quite strong, since practical block ciphers certainly doseoPRFs as their round functions.
Instead, they heuristically use considerably more than the three-sixspuedicted by the LR and all the subsequent
“theoretical justifications”. Thus, a large disconnect still remains to begbddClearly, though, we need to assume
some security property of the round function, but can a weaker pgsoperenough to guarantee security? In the
context of domain extension of message authentication codes, An anceB#]latudied a natural question whether
unpredictability— a much weaker property than pseudorandomness — can at leasttgeattze unpredictability
of the resulting Feistel permutation. Although not strong as pseudoraredsmthis will at least guarantee some
minimal security of block ciphers (see Section 6), is enough for basic gessahentication, and anyway doubles
the domain of the unpredictable function, which is useful (and non-trvisllitself. [1] gave a negative answer for
the case of three rounds, and suggested that “even more rounds dppear to help”. This result indicates that
previous “LR-type techniques” are insufficient to handle unpredictalityce in the case of PRFs three rounds
are enough), and also leaves open the question whether more Feistdd moill eventually be enough to preserve
unpredictability. Our work will completely resolve this question. Along the vitawijll prove that Feistel Networks
could serve as domain extenders for message authentication codes.

Is IT SAFE TO LEAK INTERMEDIATE RESULTS? Another crucial reason for the validity of the LR result is the fact
that all the intermediate round values are never leaked to the attackect,lthigkeyto the argument, and most of
the subsequent results, is that the attacker effectively gets no infornadtonrt most of these values in case a PRF
is used for the round function, and simple attacks (which we later genetalimany more rounds) are possible to
invalidate the LR result in case the intermediate values are leaked. Unfietyyriar many natural applications this
assumption (or conclusion!) can not be enforced, and totally new argusieeeded. We give several examples.

Starting with the simplest (but also least interesting) example, intermediate vaiglesbe inadvertently leaked
through an attack. For example, one might imagine a smartcard implementing iploekvia the Feistel network
using a secure chip implementing a PRF. In this case the attacker might be albleetveothe communication
between the smartcard and the chip, although it is unable to break the seftngychip. More realistically, when
the round functions are not PRFs, the attacker might get a lot of informaltiont the intermediate values anyway,
even without extra attack capabilities. For example, is the case of unpiadiftiactions (UFs) mentioned above, we
will construct provably secure UFs such that the output of the Feist@ldtk completely leakall the intermediate
round values. Although artificial, this example illustrates that weaker assumpiio the round functions can no
longer guarantee the secrecy of intermediate values. For yet anotmapkex the round function might simply be
public to begin with. This happens when one considers the question of imgiagan ideal cipher from a random



oracle, considered by the authors in TCC’06 [14]. In this case thedréwmction is a publicly accessible random
oracle, and is certainly freely available to the attacker. To see the diffeneith the usual block cipher setting
where four round are enough, [14] showed that even five Feisteldsoare not sufficient to built an ideal cipher,
although conjectured that a larger constant number of rounds is suiffiiee authors also showed a weaker positive
implication in the so called “honest-but-curious model”, although only for @ slggarithmic number of rounds (as
they also showed, reducing the number of rounds in this model would imphetheity in the usual, “malicious”
model). As a final example (not considered in prior work), the attacker tngighhold of the intermediate values
because thapplication requires to reveal such valuéhis happens when one tries to addifiability to PRFs and
PRPs (or their unpredictable analogs), which we now describe in morié deta

VERIFIABLE RANDOM FUNCTIONS AND PERMUTATIONS. We consider the problem of constructingrifiable
random permutation§VRPs) fromverifiable random functionf/RFs). VRFs and VRPs are verifiable analogs of
PRFs and PRPs, respectively. Let us concentrate on VRFs first. Vatyitiegular PRFs have a limitation that one
must trust the owner of the secret key that a given PRF value is coramtiputed. And even when done so, a
party receiving a correct PRF value cannot later convince some dadhtgrtpat the value is indeed correct (i.e., PRF
values are “non-transferable”). In fact, since the function valuesapposed to be (pseudo)random, it seems that
such verifiability of outputs of a PRP would contradict its pseudorandosnfid® way out of this contradiction was
provided by Micali, Rabin and Vadhan [32], who introduced the notion'¥R&. Unlike PRFs, a VRF owner must
be able to provide a short proof that any given VRF output is computedctty. This implies that the VRF owner
must publish a public key allowing others to verify the validity of such protfewever, every “unopened” VRF
value (i.e., one for which no proof was given yet) should still look indistisigable from random, even if many
other values were “opened” (by giving their proofs). Additionally, thiblic key should commit the owner of the
VRF to all its function values in a unique way, even if the owner tries to sefetingroper” public key. Micali et

al. [32] also gave a secure construction of a VRF based on the RSAp8en. Since then several more efficient
constructions of VRFs have been proposed based on various argplig assumption; see [28, 13, 15].

The notion of a VRP, which we introduce in this paper, naturally adds veitifiato PRPs, in exactly the same
natural way as VRFs do to PRFs. We will describe some applications of ¥RBaction 6, but here let us con-
centrate on the relation between VRFs and VRPs. On the one hand, it itbesesy that a VRP (on a “non-trivial
domain”) is also a VRF, just like in the PRF/PRP case. On a first look, we mayie that the converse implication
holds as well, by simply applying the Luby-Rackoff result to VRFs in placeRFs. However, a moment of reflec-
tion shows that this is not the case. Indeed, the proof for the iterated IFegiastructionmust include all the VRF
values for the intermediate round®gether with their proofs. Thus, the attacker can legally obtain all the interme
diate round values for every input/output that he queries, exceptdarrth on which he is being “challenged”. This
rules out the LR-type proof for this application. More critically, even theerg proof of [14] (implementing the
ideal cipher from a random oracle in the “honest-but-curious” modedgars to be “fundamentally inapplicable”
as well. Indeed, that proof crucially used the fact that truly randoratfons (in fact, random oracles) are used in
all the intermediate rounds: for example, to derive various birthday museld to argue that certain “undesirable”
events are unlikely to happen. One might then hope that a similar argumentiraigatried out by replacing all the
VRFs by truly random function as well. However, such “wishful reptaeat” is prevented by the fact that we are
required to prove the correctness of each intermediate round valueyea(jarovably)cannot provide such proofs
when we use a totally random function in place of a MRRich is “committed” to by its public key). To put it
differently, with a random function we have no hope of simulating the VRBfgrthat are “legally expected” by an
adversary attacking the VRP construction. Thus, again, a new techisigaeded.

VERIFIABLE UNPREDICTABLE FUNCTIONS AND PERMUTATIONS. We also consider the natural combination
of the scenarios we considered so far, exemplified by the task of cotistruerifiable unpredictable permutations
(VUPs) fromverifiable unpredictable functiorf¥ UFs) [32] (also calledinique signature schemfz3, 28]). A VUF

is defined in essentially the same way as VRFs, except that the pseuniowrzess requirement for VRFs is replaced



by a weaker unpredictability requirement. Similarly, VUPs, introduced in thpepare either the permutation
analogs of VUFs, or, alternatively, unpredictable analogs of VRPscoOfse, as a VRP is also a VUP, we could
attempt to build a VUP by actually building a VRP via the Feistel construction apfdiedvVRF, as suggested in
the previous paragraph. However, this seems quite wasteful since afyffear to be much easier to construct than
VRFs. Indeed, although in theory VUFs are equivalent to VRFs [32],'@oldreich-Leven-type” reduction from
VUFs to VRFs in [32] isextremelyinefficient (it loses exponential security and forces the authors to canithivith
another inefficient tree construction). Moreover, several previapers [32, 28] constructexdficientVUFs based
on relatively standardomputationalassumptions, while all thefficientVRF constructions [13, 15] are based on
very ad hodecisionalassumptions. Thus, it is natural to study the security of the Feistel netwwehk applied to
VUFs. In this case, not only the round functions cannot be assumedasadom, but also all the intermediate
values must be leaked together with their proofs of correctness, makirggttirey the most challenging to analyze.

OTHER RELATED WORK. Several prior works tried to relax the security of some of the roundtioms. For
example, Naor and Reingold showed that the first and the fourth rowhd gse pairwise independent hash functions
instead of PRFs. In a different vein, Maurer et al. [29] studied the wden the PRFs used are only non-adaptively
secure. Already in this setting, the authors showed that it is unlikely thatHeistel rounds would yield a PRP
(although this is true in the so called “information-theoretic” setting). Howerdhese results at least some of the
round functions are still assumed random. In terms of leaking intermediatéstd®eyzin and Ramzan [39] showed
that in a four-round construction it is safe to give the attackacle acces$o the second and third (but not first and
fourth) round functions. This is incomparable to our setting: we leak inteiateetesults actually happening during
the Feistel computation, and fall the rounds. Finally, we already mentioned the paper by the authors [thighw
showed how to deal with public intermediate results witrely randomround functions are used. As we argued,
however, this technique is insufficient to deal with unpredictability, anthabeven be applied to the case of VRFs
(because one cannot simulate the proofs of correctness for a tralymaefunction).

1.1 Our Results

In this work we develop a new understanding of the Feistel Network whicWwsus to analyze the situations when
when the intermediate round values may be leaked to the adversary, arithatie cases when the round values
are merely unpredictable rather than pseudorandom. In our modelfgound Feistel Network is applied to
membersf; ... fr independently selected from some (not necessarily pseudorandoctipfufamily C, resulting

in a Feistel permutation. Whenever an attacker makes a forward (resp. backward) queryresp. 7—1), we
assume that it learns all the intermediate values (as we mentioned, this is ajiliezady the application, or may
anyway happen with unpredictable functions).

NEGATIVE RESULT. As our first result, we show a simple attack allowing an adversary to congmytevalue
7~ 1(y) by making at most exponential in number offorward queries tor. Since such an inversion should be
unlikely (with polynomially many queries) even for an unpredictable permutatios immediately means that at
least a superlogarithmic number of Feistel rounds (in the security parak)étarecessaryo guarantee security for
any of the applications we consider. Aside from showing tightness of all our positive resultescribed below,
this result partially explaing/hy practical block ciphers use significantly more than 3-6 roym@slicted by all the
previous “theoretical justifications” of the Feistel Network. Indeed, esialt such ciphers heuristically use round
functions which are not PRFs, and we just showed that even unptadictaind functions might leak a lot (or even
all) of the intermediate results, the simple attack we present might have beenpplitalle if a small constant
number of rounds was used!

MATCHING POSITIVE RESULT. On a positive side, we show a general combinatorial property of théeFeis
Network which makes essentially no assumptions (such as pseudorareidrabeut the round functions used in
the Feistel construction, and allows us to apply it to a wide variety of situatieswithed above, where the previous
techniques (including that of [14]) failed. In essence, for any k/2, we show that if an attacker, making a sub-



exponential ins number of (forward or backward) queries to the construction andyallearning all the intermediate
round values, can cause a non-trivial collision somewhere betweexdsewandk — s, then the attacker can also
find a simple (and non-trivial) XOR condition on a constant (up to six) nurobdre round values of the queries he
has made. This means that if a function fandilys such that it is provably hard for an efficient attacker to find such
a non-trivial XOR condition, — and we call such famili#sXOR resistanf{see Section 4), — then it is very unlikely
that the attacker can cause any collisions between rouaddk — s (as long as, and thust, are super-logarithmic

in the security parameteX). And once no such collisions are possible, we show that is possible wildisggue
the security of the Feistel Network for our applications. In particular,vas enere unpredictability is enough to
establishb-XOR resistance, we conclude that super-logarithmic number of Feisteflsisnecessary and sufficient
to yield

a (strong) unpredictable permutation (UP) from any unpredictable fun@tlé).

a strong PRP from any PRF, which remains secure even if all the rolumeksvare made public.
a strong VUP from any VUF.

a strong VRP from any VRF.

These results are in sharp contrast with the “LR-type” results wherastanet number of rounds was sulfficient, but
also give the first theoretical justification regarding the usage of Feistydtks not satisfying assumptions (a) or
(b) mentioned earlier. For the case of block ciphers, our justification seematch more closely the number of
rounds heuristically used in practical constructions.

IMPLICATIONS TO DOMAIN EXTENSION. Since the Feistel Network doubles the length of its input, our results
could also be viewed in relation to the question of domain extension of UFss\AdE VRFs. In practice, the
guestion of domain extension is typically handled by a collision-resistantfoastion (CRHF): it uses only one
call the the underlyingu-bit primitive f and does not require the secret key to grow. However, the existérzce o
CRHEF is a theoretically strong assumption, which does not seem to followtfrermere existence of UFs, VRFs
or VUFs. This is especially true for UFs, whose existence follows fronetistence of mere one-way functions
and, hence, can even be “black-box separated” from CRHFs J41js, it makes sense to consider the question of
domain extensiomwithout introducing new assumptians

For PRFs, this question is easily solved by using (almost) universal tiastidns (instead of CRHFs) to hash the
message ta bits before applying the-bit PRF. However, this technique fails for UFs, VUFs and VRFs: in tise ca
of unpredictability because the output reveals information about the legshard for VRFs because it is unclear how
to provide proofs of correctness without revealing the hash key. Anatitempt (which works for digital signatures)
is to use target collision-resistant hash functions [37] in place of CRbiEsuch functions have to be freshly chosen
for each new input, which will break the unique provability of UFs, VUFd &RFs. (Additionally, the hash key
should also be authenticated, which further decreases the bandwidtbdse the underlying-bit primitive f is
shrinking (say, to» — a bits), one can use some variant of the cascade (or Merkle-Bathgonstruction. Indeed,
this was formally analyzed for MACs by [1, 31]. However, the cost of thethod is one evaluation gfpera input
bits. In particular, in case the output 6fis also equal tax, which is natural if one wants to extend the domain of a
UF given by a block cipher, this method is either inapplicable or very ineffidie

In contrast, our method builds a UP/VUP/VRP fram to 2n bits from the one frorm to n bits, by using
k = w(log A) evaluations off, albeit also at the price of increasing the secret key by the same amoimarnBwers
the question left open by An and Bellare [1] (who only showed that thveeds are insufficient)Feistel Network
is a good domain extender for MACs if and only if it uses super-logarithomcher of rounds

Moreover, in the context of UFs (and VUFs), where one wants to minimizeutmut length as well, we notice
that the output length can be easily reduced ftrto n. This is done by simply dropping the “left half” of the

In principle, such length-preservingcan be “truncated” by: bits, but this loses an exponential factordrin terms of exact security.
Thus, to double the input length, one would have to evalfiatleast2(n/ log \) times.



Feistel permutation output! The justification for this optimization follows by noticirag ih this case the attacker

will only make forward queries to the Feistel construction. For such attsacke can extend our main combinatorial
lemma as follows. For any < k, if a 5-XOR resistant family is used to implement the round functions and the
attacker made less than exponentiakinumber of queries, then the attacker has a negligible chance to cause any
collisions between roundsandk (as opposed té — s we had when backward queries were allowed). From this,
one can derive that = w(log \) Feistel rounds is enough to turn a UF (or VUF) frento » bits into one from

2n to n bits. Moreover, in the case of UFs we expect that one would use ailjfyobeuristic) pseudorandom
generator to derive thieround keys (much like in the case of block ciphers), meaning that the delstie€ cost is

k computations of the basic UF. Once the domain is doubled, however, ongsedhe cascade methods [1, 31] to
increase it further without increasing the key or the output length.

OTHER APPLICATIONS. As a simple, but illustrative application, we notice that VRPs immediately yield non-
interactive, setup-free, perfectly-binding commitments schemes. Thersemobses a random key pai K, PK)

for a VRP7. To commit tom (in the domain of the VRP), the sender sedtis” and the value: = 7gx (m) to the
receiver. To opem, the sender sends and the proof that = wsx(m), which the receiver can check using the
public key PK. The hiding property of this construction trivially follows for the securityMi®Ps. As for binding,

it follows from the fact thatr is a permutation even for aadversarial choice oP K. As we can see, it is not clear
how to achieve bindinglirectly using plain VRFs. However, given our (non-trivial) equivalence leetwVRFs
and VRPs, we get that VRFs are also sufficient for building non-intiegggerfectly binding commitment schemes
without setup. Alternatively, to commit to a single bjtone can use VUPs augmented with the Goldreich-Levin bit
[22]. Here the sender would pick a randerandz, and sendP K, r, msx (), and(z - r) © b, wherex - r denotes the
inner product modul@. Using our equivalence between VUPs and VUFs, we see that VURsifident as well.

We remark that the best general constructions of such commitments schasesewiously based on one-way
permutations (using the hardcore bit) [8], since Naor’s construction fnoe-way functions [34] is either interactive,
or non-setup-free. Since the assumption of one-way permutations is iatiblepvith VUFs or VRFs, our new
construction is not implied by prior work.

In Section 6 we illustrate many other applications of our results. For example atk enough to argue weaker
“fall-back” security properties for some applications of block ciphetsicivis nice in case the PRP assumption on
the block cipher turns out incorrect. VRPSs, or sometimes even VUPs,&asdful in several applications where
plain VRFs are insufficient. For example, to implement so called “invarianasiges” needed by Goldwasser and
Ostrovsky [23] in constructing non-interactive zero-knowledge f&00r to fix a subtle security flaw in the non-
interactive lottery system of Micali and Rivest [33] (which can be ex¢éghitito a minimally-interactive “reusable
coin-flipping protocol”). Additionally, VRPs could be useful for addingrifiability to some application of PRPs
(where, again, PRFs are not sufficient). For example, to construfiatsee CBC encryption or decryption, or to
“truthfully”, yet efficiently, sample certain verifiable huge (pseudodi@n objects [21], such as random constant-
degree expanders. Finally, our construction of VRPs from VRFs dealttito a “proof-transferable” implementation
of the Ideal Cipher Model using a semi-trusted third party. We refer t¢id@e6 for more details, and hope that
more applications of our constructs and techniques will be found.

2 Definitions and Preliminaries

Let A denote the security parameter. We uggl(\) to denote a negligible function of Fibonacci(k) denotes the
k" fibonacci number, and thi$bonacci(k) = O(1.618%).

Now we give informal definitions of the various primitives that we use in thisepa For formal definitions,
see appendix A. We start by defining the notiopséudorandom functiorfPRFs). We use a slightly non-standard
definition of PRFs that is convenient to prove our results. However, #fiisition is equivalent to the usual definition.

In the new PRF attack game, the attackgrruns in three stages: (1) In the experimentation phase, it is allowed



to query a PRF sampled from the PRF family. (2) In the challenge phasadi s& unqueried PRF query and in
response the challenger sends either the PRF output or a random wiitpagual probability. (3) In the analysis
phase, the attacker again gets oracle access to the PRF, but caryot gunéhe challenge query. At the end of the
attack,A; has to guess if the challenge response was random or pseudorandemittackerd ; wins if it guesses
correctly. Similar to the notion of PRFs, we can define the notiofstnbng) pseudorandom permutatiofiRRPS).
Here the attacker has oracle access to both the forward as well aifRRE but the attack game is otherwise
similar to that for PRFs.

A slightly weaker notion than PRFs is that dhpredictable FunctiongUFs). Unpredictable functions are also
popularly known as (deterministitjessage Authentication Cod@4ACS). In this case, the UF attacker is allowed
to query an unpredictable function from the UF family, and it needs to gréwoutput of the UF on an unqueried
input at the end of the interaction. The advantage of the UF adversarg imdRimum probability with which it
predicts correctly. In an analogous fashion, we can also define thenraftidnpredictable Permutation@JPs),
where the attacker has oracle access to both the forward and invensetgigon and has to predict an unqueried
input/output pair.

We can define verifiable analogs of each of the above primitives. Theigetwverifiable random functions
verifiable random permutationserifiable unpredictable functiorsnd verifiable unpredictable permutationsn
each case, the primitive takes a public/private key pair, and consistseefalgorithmg Gen, Prove, Verify). The
Gen algorithm outputs a public/private key pair. TReove algorithm allows the private key owner to compute the
function/permutation output as well as give a proof of correctnessli¥ittee Verify algorithm allows anyone who
knows the public key to verify the correctness of an input/output pair Bgiiing the corresponding proof.

Each of these primitives satisfies two properties: Gbjrectnessi.e. one can verify correct input/output pairs,
and (2)Soundness.e. there are no two output/proof pairs that verify correctly for the sampet,reven for an
adversarially chosen public keyAdditionally, these primitives satisfy the natural analogs of the pseudoran
ness/unpredictability definition of the corresponding non-verifiable prim{@xcept the attacker also gets the proofs
for all the values except for the challenge).

The Feistel transformatiorusing f : {0,1}" — {0,1}" is a permutationl ; on 2n bits defined as¥ s (x) =

xR || zr @ f(zgr). The symbolse; andx i denote the left and right halves ®# bit stringz. We will also call the
construction based dniterated applications of the Feistel transformatioh;r@und LR construction, and denote it
by Wy, .. (or ¥, whenf; ... f; are clear from context) wherf ... f; are the round functions used. Ora bit
input, the constructiod;, generategk + 2) n-bit round values, the last two of which form the output.

3 Insecurity of O(log \)-round Feistel

We will demonstrate here that upto a logarithmic number of Feistel rounds tdsuffae for any of our results.
In order to make our proof precise, we show a simple adversary thakeigafind the input corresponding to any
permutation outpuy € {0,1}?" by making polynomially manyorward queries and observing the intermediate
round values.

Theorem 3.1 For thek round Feistel constructiol, that uses: = O(log A) round functions, there exists a proba-
bilistic polynomial time adversaryl, that takes oracle access fg,. The adversaryl, makesO(Fibonacci(k)) =
poly(\) forward queries tol';, and with high probability finds the input corresponding to an outpwithout actually
making that query.

Proof: The adversaryl,. starts by choosing a permutation outputhat it will try to invert ¥, on. For concreteness,
we assume that = 02" (anything else works just as well). We will describe the recursive suim®that the attacker
A, is based on. Say the round functionsdof are f; ... fr. The recursive function that we describer$j,Y),
wherej is the number of rounds in the Feistel construction &nd a2n bit value, and the task df'(j,Y") is to find



the input such that th¢" and(; + 1)** round values ar&7, andY% (the left and right halves df), respectively.

e E(1,Y) : Choose a random®) «— {0,1}". Make the forward queng} || Y, to ¥, where the2"? round
value isR). Now the1** and2"¢ round values for the input, © R) @ Y || Y7, areY, andYx.

e E(j,Y), j> 1: Perform the following steps,

— Make a random quer, || Ry < {0,1}?", and say then bit value at thej*® round is iSR; || Rj+1.
Then,fj(Rj) = (ijl ©® Rj+1).

—~ RUNE(j — 2,(fj—1(Rj—1) © Y1) || R;—1) and the2n bit value at the(j — 1)** round isR;_1 || Y7
Hencefj(YL) = Rj_l S5 Rj—i—l-

— RunE((5-1),(f;(YL)®Yr) || Y1), and thej*" and(j + 1) round values ar&7, andY%, respectively.

The adversaryl,. essentially runs the algorithi(k, 0>). Now we need to make sure that the adversayydoes

not query on the input corresponding to the outpit But since all the queries made in the recursive algorithm are
essentially chosen at random, we know that the probability of this happeniig. Hence, the probability that
succeeds is at leagt — 54-). g

We note that the above attacker works in a scenario where it can only roakearél queries to the Feistel con-
struction¥,.. In case, it can make inverse queries as well, it is possible to design a sittaleltea that succeeds in
O(Fibonacci(k/2)) queries. If the number of rounds= O(log \), then the number of queries needed by either of
these attackers is polynomial in the security parameter

Itis easy to see how such an attacker can be utilized in three of the fowarges if we use the Feistel construction
for each of these cases.

e PRP construction with public round valueBy definition, for a PRP we should not be able to invert an output
without actually querying the construction on it.

e VRP construction using VRF# order to provide the proofs for the VRP, the VRP construction willdtee
reveal all intermediate VRF inputs/outputs and the corresponding proofs.

¢ VUP construction using VUE4n this case, again the VUP construction will need to reveal all the intertgedia
VUF inputs/outputs and corresponding proofs.

On the first look, it seems that when we use a Feistel constructionuwjitedictable functions each round to
construct arunpredictable permutatioJP), the UP adversary cannot make use of the above attacker simesit d
not have access to all the intermediate round values. However, we willthlad if certain pathological (but secure)
unpredictable functions are used as round functions, then the UPsadyean infeall the round values simply by
observing the output of the Feistel construction!

Lemma 3.2 For any k < m (in particular, if £ = O(log \)), there existt secure unpredictable functions
fi... fr, such that by querying thg-round Feistel construction;, r on any input an efficient attacker can
always learn all intermediate round values.

Proof: Let{g; : {0,1}" — {0, 1}”/’“}%{1”.,{} be k secure unpredictable functions. Fog {1, k}, we will define
the functionsf; : {0,1}"* — {0,1}" as fi(z) = 0020/ || 2,y || gi(z) || 0%=D(/k) wherex; ; denotes
the (i — 1) (n/k) bit block in the inputz. Each of the functiong; is a secure unpredictable function if the
corresponding functiop; is a secure UF.

Consider a queryRy || R1) € {0,1}*" made to the Feistel constructidry, . We will considerk blocks of
(n/k) bits each in bothR, and R;, which we will denote byRy = R} || ... || R andR; = R} || ... || R}.
Denote the round values generated in computing the output of this congtras(i®o, R,) . . . (Rk, Rik+1), where



Ry || Rg+1 is the output of this construction. If the number of rounds in the Feisteltaari®n is even, then we
note that the output of the construction is:

R, = (u(R)®RSDRY) | ... || (gr—2(Rr—2) ® R > ® RY™?) || (gh—1(Bi—1) ® RE ") || RE
Ris1 = ((R)®RS@RY) | ... || (gr—1(Be—1) ® Ry " @ RY™) || (gn(Ry) @ RY)

If number of roundsg: is odd, then the output of the Feistel construction is,

R, = ((R)®RYORY | ... | (gr2(Re_2) ® RE2@ RF2) || (gr_1(Re_1) ® R¥1) || RY
Riy1 = (u(R)®RESRY) || ... || (gr—1(Ri—1) @ Ry @ RY™) | (9x(Re) & RE)

Now it is easy to find each of the round function outputs (and hence thenetiate round values) by simply
observing the right half of the output of the Feistel construction.

Thus, we see that if the number of rounds in the Feistel construction (Ustegused to construcipredictable
permutationdgs k£ = O(log \), then the resulting construction is insecure. Even if we attempt to shrink thetou
length of this MAC construction by chopping the left half of the output, it wdeddoossible to retrieve all interme-
diate round values by simply observing the MAC output. In fact, everk ferw(log A) (but less tham /w(log \))
rounds it might be possible to retrieve all intermediate round values, are laemew proof technique is needed.

4 A Combinatorial Property of the Feistel Construction

In this section, we will prove a general combinatorial lemma aboutktieund LR-constructionVy, that uses
arbitrary round functiong; . .. f;. We will see in the following section that this lemma is crucial in deriving each
of our results using the Feistel construction.

Consider an arbitrary ordered sequence édrward/inverse permutation queries made to the construdtign
each of which is @n bit string. Denote thék +2) n-bit round values associated with tH& query ask, R: ... Rt

i1 WhereR{ || R (R}, || R}, ) is the input if this is a forward (inverse) query. We say that such aesemiof
queries produces ai” round value collision, if thet” round value collides for two different permutation queries
from this query sequence. That is, we have at= R’ fori,j € {1...q} andR} || R} # R || R].

We essentially show that if any such sequenceg giieries produces @” round value collision for any €
{s...(k—s)} (wheres < (k/2)), then one of the following must hold:

1. The number of queriegis exponential irs.

2. For this sequence of queries, there is at least one new round fusgttuation such that the new round value
generated can be represented as a bit-by-bit XOR of upteviously existing round values.

We refer to the second condition above asii¢OR condition We assume the natural order in which the queries
are made, i.e. queryis made before quenH-1fori =1...¢— 1. By a “new round function evaluation”, we mean
when a round function is evaluated on an input (i.e. the correspondimgi nealue) to which it was not applied in
an earlier query. If the’" query is a forward (inverse) query and the round function evaluzf;ioﬁé-) iS a new one,
then the new round value generated as a resﬂﬂg (R;;l resp.). The&s-XOR condition essentially states that for
at least one such new round function evaluation, the new round vahezaged can be represented as the bit-by-bit
XOR of upto5 previously existing round values. This is formalized in the main lemma below @éyler future
convenience, we denoféé. by R|[i, j]).

Lemma 4.1 Let ¥, be ak round LR construction that uses fixed and arbitrary round functigns. . f;,. For
anys < % and any ordered sequence pf= 0(1.38032) forward/inverse queries, with associated round values
RJ[i,0],...,R[i,k+ 1] fori =1...q¢, if the 5-XOR condition does not hold for this sequence of query then there is
no " round value collision for these queries, for al {s...(k — s)}.
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We will describe here the basic intuition underlying lemma 4.1, leaving the forroaf for appendix B.

Proof Intuition: We will show that if for the given sequence of queries, 1R8OR condition does not hold but it

produces a'" round value collision, then the number of querqe& Q(1. 38035 ), which will settle the

lemma since: € {s...(k — s)} willimply that ¢ = Q(1.38032).

Without loss of generality, let one of the queries that are involved in-theound value collision be the last
(or ¢**) query. If not, then we can consider a smaller sequence of querieghioh this holds. For simplicity of
exposition, we assume here that all the queries in this sequence aredoueies. (In the formal proof given in
appendix B, the query sequence may be comprised of both forwardemsequeries.) If this is the case, then we
will show that the number of querigs= (1.3803"/2). We denote by(i, j) the query number where the round
value R[i, j] occurs for the first time as th@" round value of a query.

Our main argument consists of four main steps which all rely on the fact ta&tX¥OR condition does not hold
for the given sequence of queries. We start by showing that if thedroalue R[q, r] collides with ther!® round
value in an earlier query, then all of the round valdts, 1] ... R [¢,r — 1] also collide with corresponding round
values in earlier queries. That is,

p(q,r) <q= (p(g;1) <) A...A(p(g,(r —1)) <q)

Next, we show that not only were the querigg, 1) ... p(q, ) made before the!" query, but these queries could
have been made in only certain specific orders. In particular, we showhtra is aj € {1...r} such that

p(g,1) > ... >plg,j) < ... <plg; k/2)

In the third step, we choose one of the strictly descending/ascendingsparencep(q, 1) ... p(g,7) orp(q,j) - ..
p(q,r), whichever consists of a greater number of queries. Without loss @frgkty, say the longer sequence is
p(g,1) > ... > p(g,7). We show that for each of the querigg;, ¢) for ¢ € {1...(5 — 2)}, all the round values

Rp(g, %), 1]

Rlp(g,¢),¢ — 1] collide with the corresponding round value in an earlier query. This stegsengially the same as

the first one, where we considered gie query. Thus, we show that

(p(p(g, ), 1) < p(g,£)) A (p(p(g, ), £ — 1) < p(g,!))

In the fourth step, we show that the querig®(q, ¢),1)...p(p(q,¢),¢ — 1) occur in a strictly descending order.
Additionally, we also show that the firét- 2 of these queries occur after query numper, £ + 1). Combining this
all together, we show that foreaéh=1...;5 — 2,

p(¢, £+ 1) <p(p(g,£),£—2) <...<p(p(g,?),1) <p(g;?)

Finally, we notice that the last two steps can be applied recursively to therseg of queries(p(q,¢), ¢ — 2) <

.. < p(p(g,¢),1). And in each such recursive analysis, we also show that the quer@sevelxistence is proved in
one step lie strictly in between two consecutive queries from the previgusestep(p(q,¢),¢ —2) ...p(p(q,¢), 1)
occur betweem(q, ¢ + 1) andp(q, £). Thus every query whose existence we show is distinct from all theeguer
that we have already shown to exist. Since all these queries occuelmgfery numbeg, we get that

i—2
g > Q(r/2),whereQ(i)=i+» Q({—2)=2-Q>i—1)—Q(i—2)+Q(i —4) — Q(i — 5)
(=2

Upon solving this recurrence, we get tlyat (1. 3803”2) When both forward/inverse queries are permitted then
min(r,(k—r1))

as shown in appendix B, the number of queries 2(1.3803~ 2 ). Hl



Next we state here an alternative combinatorial lemma, when the adverdgrinakes forward queries to the
Feistel construction. This lemma (whose proof is similar to the above and is omitié@yove useful when we
attemptdomain extension of MAGs the next section.

Lemma 4.2 Let ¥, be ak round LR construction that uses fixed and arbitrary round functifins . f;,. For any
round numbers, and any ordered sequence @f= 0(1.38032) forward queries, with associated round values
R[i,0],...,R[i,k + 1] fori = 1...q, if the 5-XOR condition does not hold for this sequence of forward queries
then there is ne'” round value collision for these queries, for alb> s.

In our applications, we will be interested in using the LR construction withddunctions that resist th& XOR
condition, when any adaptive adversary makes a polynomial numbereoieguo the construction while having
access to all intermediate round values. We will specify this as a propeféynilies of functions from which the
round functions are independently derived. Hence, let us begin dwyridang afunction family A function family
C is a set of functions along with a distribution defined on this set. For suctidyfaf <— C denotes sampling a
function according to the distribution specified @y A function family is called &-XOR resistant function family
if the LR construction using independently sampled functions from this famsigtieethe5-XOR condition when
gueried a polynomial number of times by any adaptive adversary.

Definition 1 (5-XOR resistant function family) A function familyC; ..y, that consists of length preserving func-
tions onn bits, is a 5-XOR resistant function family if for any adversdry

Pr [A 5-XOR condition holds ifA «— Wy, ) | f1... i < Clin)] < €xor = negl(A)

Here the advantage,,, of the adversaryd depends on the running time dfand the security parametex. The
running time ofA4, the input lengtln and number of Feistel roundsare all polynomial functions of.

By applying lemma 4.1 to a LR construction using round functions independsantiyled from &-XOR resistant
function family, we can derive the following corollary.

Corollary 4.3 Let¥, be ak-round LR construction that uses round functions that are independsantipled from
a 5-XOR resistant function family consisting of functionsrobits. For any adversanA that adaptively makes
permutation queries t@,, while observing the intermediate round values, it holds that

e if A makes both forward/inverse queries, then for any round numbert/2) with s = w(log \),

Pr |3 7" round value collision duringd < Wy, for somer € {s...(k — s)}} < €ror
o if A makes only forward queries, then for any round numberw(log \),

Pr [3 ™" round value collision duringd < ¥, for somer € {s... k}} < €zor

Here the bound,,,- denotes the maximum advantage of the XOR finding adversary that mimeiQ(t 4 + (q4k)?),
wheret 4 is the running time of the adversaryandq 4 denotes the number of queries made by it. Alg0q4 and
the input length are all polynomial in\.

This corollary is easily proved since tBeXOR finding adversary simply runs the collision finding adversary, and
performs a brute-force search foba&OR condition when it finds a round value collision. From lemma 4.1, such
a 5-XOR condition is guaranteed to exist. In fact, we will make use of this cokoiteeach of the results that we
present in the next section, since each of these function families will turio te5-XOR resistant (the proof of this
will also be given in the appropriate subsection; here we just state tHgresu

Theorem 4.4 For each of the primitives: (1ynpredictable functionq2) pseudorandom function$2) verifiable
unpredictable functionsand (4)verifiable random functions function family that yields an independent random
sample of the appropriate primitive is/aXOR resistant function family.
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5 Implications

All the cryptographic applications of the Feistel construction until receralyehrelied on all or some of the round
functions not being visible to the adversary. In the previous section,rexe@ a combinatorial property of the
Feistel construction where the internal round function values were viililee adversary. Now we will describe
how this property can be applied to a variety of scenarios to yield new or iragrryptographic constructions than
before.

We get the following constructions using this new technique: (1) securstrt@tion ofunpredictable permu-
tationsfrom unpredictable functiong2) more resilient construction @seudorandom permutatiofi®m pseudo-
random functions(3) construction o¥erifiable unpredictable permutatiofi®m verifiable unpredictable functions
and (4) construction oferifiable random permutatiorfsom verifiable random functions

In each case, the proof consists of three parts: (1) showing thatrtbiédn family under consideration is5aXOR
function family (see Theorem 4.4); (2) using Corollary 4.3 to show thatdineesponding permutation construction
is unlikely to have collisions at “advanced” rounds; and (3) show thataitle of such collisions implies that the
construction is secure.

5.1 Unpredictable Permutations

We saw in the section 3 that observing the output bfan/w(log \) round Feistel construction with unpredictable
round functions may leak all the intermediate round values. Even for redliBg¢ some partial information about

the intermediate round values may be leaked through the output. As we éd@aastier, in such a case none of the
previous proof techniques are applicable. We will prove a much straegett here, by showing that if we use a
super-logarithmic number of rounds in the Feistel construction then thkimgsuP construction is secure even if

the adversary gets all the intermediate round values along with the permutatjmrt.o

The UP constructionly;, that we propose consists éf = w(log A) rounds of the Feistel construction using
independentinpredictable functiong; . .. fr < F. The following theorem essentially states that this construction
is a secure UP construction. The proof of this theorem can be foungandjx C.

Theorem 5.1 If there exists an efficient UP adversaty, that has non-negligible advantagg in the unpredictabil-
ity game agains®; ;, and which makes a polynomial number of querie¥tg,, then there also exists a UF adver-
sary Ay that has non-negligible advantage in the unpredictability game against addipked from the UF family
F. From this, we get that the maximum advantage of the UP adversaig e, = O (es - (¢k)®). Heree; denotes
the maximum advantage of a UF adversary running in tidfe + (¢k)°) against a UF sampled fromy, wheret is
the running time of the PRP adversafy. andq is the number of queries made by it.

DomMAIN EXTENSION OFMACS. The above result can also be viewed as a construction of MACsZrota 2n
bits using MACs from to n bits. We observe that it is possible to reduce the output length in the abostwction

to n by simply dropping the left half of the output. Using this technique, we get &M@énstruction fron2n to n
bits. To briefly justify it, in the usual MAC attack game the attacker can only maieaird queries. From corollary
4.3, we get that for any = w(log A\) no efficient attacker can cause a collision on any round valge{s. ..k}
with non-negligible probability. Thus, a proof of security for this MAC willopeed by plugging in the target to
n-bit MAC in the last round function of the Feistel construction, and argthiag the attacker predicting tfe- to
n-bit constructed MAC must also forge this last-rourrdo n-bit MAC. This is done using a similar proof technique
to that for theorem 5.1 (albeit using second part of corollary 4.3 to atgiao collision occurs at the last round).

5.2 More Resilient PRPs from PRFs

In this section, we give a construction p$eudorandom permutatiofit®m pseudorandom functionthat remains
secure even if the PRF input/output pairs used in the intermediate roundisiate to an attacker. Our proposed
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PRP construction¥' r ,, is ak = w(log A)-round Feistel construction, with independent PRFs.. f;, < F as
round functions. The following theorem states that this construdltign is a secure PRP. The proof of this theorem
can be found in appendix D.

Theorem 5.2 If there exists an efficient PRP adversafy. that has a non-negligible advantage in the PRP
attack game against the constructigr ;, (using round function from PRF famil§y), then there also exists a PRF
adversaryA that has non-negligible advantage in the PRF attack game against a PRF sampled from the PRF

family F. From this, we get a bound, = © (qk‘ef 4 (gb)"

2n
adversary running in timé (¢ + (¢k)%) against a PRF sampled frofi, andt, ¢ are the running time and number
of queries made by .

), wheree; denotes the maximum advantage of a PRF

5.3 \Verifiable Unpredictable Permutations

Our VUP constructionly ;. is ak-round Feistel construction using independent VUFs. . f; — F' as round
functions. The public/private keys dfy ;. are simply the concatenation of the public/private keys ofithvJFs.
TheProve functionality for Wy ;. simply gives the permutation output, and as proof, it gives all intermediatelrou
values along with the VUF proofs. Théerify functionality simply checks if all intermediate VUF proofs verify
correctly.

Recall that a VUP construction needs to satisfy three security propei@espletenesssoundnesgor unique
proofs) andUnpredictability Completeness of the constructidn ¢, is a direct consequence of completeness of
each of the VUFs used as round functions. $bandnessf the construction is also obvious given the fact that all
the intermediate VUFs are sound. If there are two output/proof paidsef;, that verify correctly, then we can
find two VUF output/proof pairs that verify correctly for one of the rodndctions. Theunpredictabilityproperty
follows very similarly to Theorem 5.1, which we used to prove the UF to UPtocaction.

Theorem 5.3 Let Wy, = (G, 11, V;) be the VUP construction usingrounds of the Feistel construction using
independent VUF$; ... fi «— F. For any probabilistic polynomial time oracle machidg that does not make a
forward query onz or an inverse query op, the advantage ofi in winning the VUP game againdty;, is at
mostO(q%k" - €¢), wheree; denotes the maximum advantage of a VUF adversary running in@et (gk)°)
against a VUF sampled frorf, ¢ is the running time ofi, andq is the number of queries made Hy.

5.4 \Verifiable Random Permutations

The VRP constructioly r ;. that we use is identical to the VUP constructidgy; ;. described above, except that
we use independent VRFs instead of VUFs. Thenpletenesandsoundnesgroperties of the VRP construction
Uy 71 can be proven similar to that for the VUP constructibig ;..

The pseudorandomnegsoperty of the VRP constructiofiy r ;. can be proven in a way similar to the proof for
the PRP constructiod i ;. in theorem 5.2. Thus, we get that

Theorem 5.4 Let Uy i, = (Gr, 11, V;) be the VRP construction usingkaround Feistel construction using inde-
pendent VRFY; ... fr < F. For any probabilistic polynomial time oracle machidg = (A, A3) that does not
query its oracle o or try to invert the response to the challenge query, the advantage. @ winning the VRP

game againstly i ;. is at mostO (qkef + (q’i)e), wheree ¢ denotes the maximum advantage of a VRF adversary

that runs in timeO(t + (¢k)®) against a VRF sampled frofi, andt and ¢ are the running time and number of
gueries made byl ..
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6 Other Applications

MORE RESILIENT BLock CIPHERS Although not as strong as pseudorandomness, unpredictability is a mean-
ingful property of block ciphers. First, we already mentioned that it isighdor message authentication, and our
Feistel construction is also useful in the context of domain extension of MA® notice that it is also enough to
argue certain weaker properties of popular modes of operation on tilglo&rs. For example, one can easily argue
that the CBC mode with UPs (rather than PRPSs) yield a “computatioaalhiversal” hash function [2], which can
then be used with an ordinary block cipher to get a secure “encrypt€l@BC". Even in the context of encryp-
tion, one can argue that CBC, OFB and CFB modes with UPs satisfy the fofjdatm of one-wayness against
the usual chosen message attack. The attacker can ask encryptiogswessages. For the challenge, it specifies
any message with one missing block. Then this block is chosen at randomieagacryption of the entire message
(using the corresponding mode) is given to the attacker. Finally, the attaakeo recover this missing block, and
using UPs guarantees that the attacker only has a negligible probabilityceesied in this game.

To summarize, the usage of UPs in place of PRPs still maintains weaker, botestilingful security properties.
Therefore, we see their primary utility as a way for providing a “grac&fliback” property for the Feistel con-
struction. If (nearly) pseudorandom round functions are used,witéno(log A) rounds the resulting permutation
is a PRP. As a bonus, it remains a PRP even if the intermediate round valldd¥edeaked! Additionally, even if
the round functions are only unpredictable, we still have some basidtydettr so at the very least the system will
not be “completely broken”.

IDEAL CIPHER MODEL USING SEMI-HONEST TRUSTED PARTY. Theldeal Cipher Mode[(ICM) (also known as

the “Shannon Model”) assumes the existence of a publicly accessibleBlbe& Cipher, meaning that for every
possible keys one has a fresh random permutatidn and its inversdl;!. Although the ICM is not as popular

as the random oracle model, there are still several notable examplesenfieshvhere this model has been used
[7, 12, 17, 25, 26]. Unfortunately, just like the random oracle model]@i model cannot be provably realized
without a trusted party{” (see [6]). A naive implementation is easy, but inconvenient. Fifsthould keep track

of all the queries already asked to ensure consistency, which quickbnies very impractical. Second, the parties
must trust thafl” has evaluated the valdg;(x) consistently across invocations. Third, once they get such a value,
they cannot convince any other party of its validity: that party must indégetty go to7" to check the correctness.
Finally, they must trust that the answersiofre actually random.

It turns out that a VRP can considerably improve this naive implementatiost, iie start with implementing
a single truly random permutatidi (corresponding to an ideal cipher with a fixed key). THewan publish the
public key for a VRPr, and only keep the secret key as its state. When some party cofieanioh asks a forward
or backward query tdl, T simply evaluatesr or 7—! on that query, and returns the result together with a proof
of correctness. This way the parties are assured that: (a) theyeecemrrect andonsistenvalue ofII; (b) they
are really talking tdl” (or, if not, the value is correct anyway); (c) on€ds committed to the public key’ cannot
dynamically adjust the values BfandII—'; (d) even ifT” selected a bad public ke¥,is committed to germutation)
in particular, the value dfl on arandompoint is guaranteed to be random. Finally, once somebody gets a value of
II or II~! from T, it can transfer this value on its own, without the need of other parties to tmand verify it.

To extend this to a full blown Ideal Cipher, we face a problem fhatust generate a new VRP for every key
of the Ideal Cipher. However, for our particular VRF-based cortivn we can do better. Instead of assuming the
existence of a VRF from to n bits, we assume the existence of a VRF from a to n bits, whereu is the length of
the keys (if needed, such VRF can always be constructed from another VIRE thee domain extension techniques
we developed earlier). In this casB,will always prepend the key to all the VRFs inputs when evaluating the
Feistel Network for the value dfis. This wayT still stores onlyw(log \) keys for the VRFs, and can emula&e
possible random ciphers.

Next, we mention several examples how VRPs could be useful in scemdr@ye plain VRFs are not enough.
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NON-INTERACTIVE ZERO-KNOWLEDGE (NI1ZK). We show that VRPs (and, thus, indirectly, VRFs), could be
used to construct NIZK proofs (in the common reference string modelyevdark, however, that Dwork and Naor
[16] already gave a completely different construction of NIZK proatsrf VRFs (and even a weaker primitive
calledverifiable pseudorandom generatofThus, our construction only gives an alternative (and differerapfpr
of an already known result by [16]. Nonetheless, we believe that iralitullustrates the usefulness of VRPs in
comparison to VRFs, and also solves a question left open by Goldwasb€&rstrovsky [23] (see below).

Feige et al. [18] reduced the question of constructing NIZK proofs @cbmmon reference string model) to
the question of implementing the so called “hidden bits system” HBS, and shawetbhimplement HBS using
trapdoor permutations. Later, Goldwasser and Ostrovsky [23] shdwedto implement HBS using so called
invariant signatures In our modern terminology, invariant signatures are quite similar to VRFpxfor one
additional requirement: they should induce a (pseudo)random distribanidine output when applied to a random
input, even if the public key for the VRF is adversarially chosdihus, we can think ofnvariant signaturesas
“balanced” VRFs. Unfortunately, it is easy to see that regular VRFa@atrenough to plug into the construction of
[23]. Namely,

(a) Plain VRFs do not have to satisfy this property (and, as far as wsemgrthere is no trivial way to enforce it
in VRFs; although, our results imply a non-trivial way to do so).

(b) More severely, there exist secure (and, of course, unbalahieFs for which the transformation of [23] is
completely insecure.

To briefly see point (a), imagine adding a new special public Réy* to any secure VRF, for which the VRF
is defined to be identically zero. It is clear that this still defines a VRF, sinegtbver is still committed to a
unique function, even for the key K*. And pseudorandomness holds, since the chaR@és will be selected are
negligible. Yet, the new VRF is obviously unbalanced. In fact, if we use tevg YRF in place of the invariant
signature in the construction of [23], we will get a completely insecure HB&m (thus, showing (b)). Briefly, in
the construction of [23] a VRBelected by the proves applied to a bunch or random points to define the “hidden
random string” (for which the prover can selectively open some parldfehe prover choose® K* as his public
key, then the hidden random string is all zero as well, and it is easy to sebliffia construction of [18] will
completely fails with such non-random HRS.

On a positive side, VRPs trivially satisfy balancedness, since they aramgeed to be permutations for any value
of the public key. This means one can build NIZK proofs from VRPs. Byaanstruction of VRPs from VRFs, we
see that VRFs are also sufficient for NIZK proofs for NP. Also, evéiPs coupled with the Goldreich-Levin bit
turn out to be sufficient for this application.

NON-INTERACTIVE LOTTERY FORMICROPAYMENTS. Micali and Rivest [33] suggested the following elegant way
to perform non-interactive lottery (with the main application in micropaymentsg merchant published a public
key PK for a VRF f, the user chooses a ticketand wins if some predicate abof(tx) is true (for example, iff ()

is less than some threshald Sincef looks random to the user, the user cannot significantly bias his odds na matte
whatz he chooses. Similarly, since the merchant is committefl by the public keyP K, they merchant cannot

lie about the valug (z). Unfortunately, this still leaves exactly the same problem we had for the Niz#ication
above. Nothing stops the merchant from publishing a “non-balanced: WfRhe extreme case, a constant function
f(x) = ¢, wherec is selected so that the predicate does not hold. Once again, we neecktbaless to ensure that
the merchant not only cannot change the valug¢ after the commitment, but also guarantees that the v&lugis
random at least for mandomz. Once again, VRPs perfectly solve this problem.

Moreover, VRP have an extra advantage that onepcatiselyknow the number of possible winners: it is exactly
equal to the number of stringssatisfying the given predicate. Thus, one can always allocate a giwvaber of
prizes and never worry that with some small probability there will be more wénhan prizes.

REUSABLE COIN-FLIPPING. We can extend the previous lottery example to the following coin flipping prob-
lem. Alice wants to publish some valueK (keeping the corresponding val$ds< secret) allowing other to non-
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interactively select a random numbeas follows. Any party Bob can choose a random valaad send it to Alice.
The valuex (combined withP K) uniquely defines the final value ef If needed, Alice can open the valuercnd
convince Bob that this value is correct. Additionally, we want the followingpprties.

(a) No matter how Bob selecis the valuer looks random to Bob (except if he “replays” some o)d

(b) For anyz, Alice cannot produce two differemtas the final value, even if she adversarially chooses the public
key PK.

(c) Bob is sure that that if he selectsat random, the value is random, even if Alice adversarially chooses the
public keyPK.

(d) Alice can reuse the samieK for many executions (and only has to worry about the replay attack froip).B

It is clear that VRPs precisely solve this problem. In contrast, VRFs desatigfy property (c), while other
existing coin-flipping protocols are either inefficient or do not appeagate tthe reusability property (d).

Finally, we mention examples how VRPs could be useful to add verifiability to squpkécation of PRPs (where,
again, PRFs are not sufficient).

VERIFIABLE CBC ENCRYPTION. As the simplest example, using VRPs one can add verifiability to CBC encryp-
tion and decryption.

VERIFIABLE HUGE RANDOM OBJECTS A bit less straightforwardly, we consider the question of “truthfully”,
yet efficiently, sampling huge (pseudo)random objects, initiated by Goldet al. [21]. In this work, the authors
showed several applications where PRPs can be used to efficiently seamiples exponential-sized objects (like
random connected graphs). Using VRPs one can naturally add viditifitdothese constructs, so that the sampler
can compactly commit and selectively reveal small parts of the huge objeetaftikedge). However, there is a
subtlety. Since the PRP is often used as only part of the sampling proceekgealing the proofs might leak a lot
of extra information which might be undesirable. For example, in the randomected graph example one first
samples a (pseudo)random graph, and then uses the PRP to addra Hentdtonian cycle to it (in order to make
it connected). With VRPs in place of PRPs, revealing the VRP proof wikakthis a given edge is part of the
“special” Hamiltonian cycle, which is probably undesirable.

Nevertheless, we can avoid this “privacy problem” in scenarios whelyePRPs are used to sample the given
object. We give one such example (not present in [21]). Specificafiycam use PRPs to sample a pseudorandom
constant-degree graph or exponential size (which is very likely to bea grpander). In the case the graph should
be bipartite, such sampling simply consists of choosirigdependent PRPs, whetlds the required degree. This
allows one to easily find all the neighbors of a given node on either sideeajrdph. In case of regular graphs,
we need to samplé random matchings, which can also be done using PRPs by using an ekgahof Naor and
Reingold [36] allowing one to sample pseudorandom permutations with arfpedcycle structure. In either case,
by using VRPs in place of PRPs we gafrifiablerandom, constant-degree graphs, which do not suffer from the
problem we had for random connected graphs.

Notice also that PRFs/VRFs are not sufficient for this application, sincehigthprobability they will not result
in a truthful implementation. Additionally, such sampling is not “reversible” (i.ef(if) = y, then givenz one can
see thay is connected to it, but not vice versa).

We hope that more “verifiable” huge random objects could be “privatsdyfipled using our technique.
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A Formal Definitions

Let A denote the security parameter. We usegl(\) to denote a negligible function of.

Leta : N — N andb,c : N — Nbe polynomial time computable functions. We first define the notion of
pseudorandom functions (PRFs). The definition given below is a sebndiffgrent from the usual definition of
PRFs, but is essentially equivalent.

Definition 2 (Pseudorandom Functions)A pseudorandom function familf, ;y.c) = {0, 132 — {0,1}60)

an efficiently samplable distribution over the set of all functions ) to b(\ ) blts such that, for any probabilistic
polynomial time (PPT) adversary pa# = (A;, A2), none of which query their oracles on the challenge query,it
holds that,

s — {0,1}°W; (z,0) — AF=(11); 0<—F( );

g — {0,11N; b — {0,111 — AL (yy, ) = negl(A)

Pr [b =¥

Similar to the notion of PRFs, we can define the notion (fteong) pseudorandom permutatiofRPs).

Definition 3 (Pseudorandom Permutations)A pseudorandom permutation family, ;.. : {0, 132 — {0, 1}™
is an efficiently samplable distribution of permutationsagi) bits such that, for any probabilistic polynomial time
(PPT) adversary paid = (A;, A2), none of which query their oracles on the challenge query or its inveiiselds
that,

-1
s {0, 13V (deg_y 1y, 2, ) = AT (12590 « T(2);

. = negl(\)
g1 {0,110 b {0,1};0 — AT (3, )

Pr [b =

A slightly weaker notion than PRFs is that Ohpredictable FunctiongUFs). Unpredictable functions are also
popularly known addessage Authentication Cod@dACS).

Definition 4 (Unpredictable Functions) An unpredictable function familyFy, ;y.c) @ {0, 132 — {0,1}P0) s
an efficiently samplable distribution over the set of all functions o) to b(\) blts such that, for any probabilistic
polynomial time (PPT) adversary, that does not query its oracle on the prediction query, it holds that,

Pr[y = Fy(z)| s < {0,1}*W; (z,y) « AF*(1}) | = negl(\)

Similarly, we can also define the notion dhpredictable Permutation@JPs).
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Definition 5 (Unpredictable Permutations) An unpredictable function family«“{o,l}cm - 40,1} — {0,112

is an efficiently samplable distribution over the set of all permutationg(on bits such that, for any probabilistic
polynomial time (PPT) adversary, that does not query its oracle on the prediction query or its inverse,lisho
that,

Prfy = 1) | 5 0,115 (2,) — ATT (1) | = megi(Y)

We can define verifiable analogs of each of the definitions above. lstardy defining the notion doferifiable
Pseudorandom Functiorf¢ RFs).

Definition 6 (Verifiable Random Functions) A Verifiable random function family, ;. : {0, 1} — {0, 1360
consists of three algorithr(&en, Prove, Verify) such thatGen(1*) outputs a pair of key6P K, SK); Provesx ()
outputs a pairf Fsx (z), proofsk(x)), whereFsk () is the function output anghroo fsx (x)) is the corresponding
proof of correctness; anWerify p i (z, y, prf) verifies thaty = Fsx () using the proopr f (by outputtingl if so).
This VRF family should satisfy three requirements:

e Correctness if (y,prf) <« Provesx(x), thenVerify p (z,y,prf) = 1.
e Soundnessno ValueS(PK’ xz, ylvprfh y27p7"f2)1 with (yl)prfl) # (y27p’rf2)! can SatiSfy

Verify p (@, y1, prf1) = Verify pyc (z,y2,pr f2) = 1

e PseudorandomnessFor any PPT adversary paill = (Aj, As), neither of which query their oracle on the
challenge inputr, it holds that

(PK,SK) « Gen(1Y); (z,a) « A]™SK (1Y); yo « Fag(z);

— negl(\
g1 {0, 11PN b — {0,118 — AP (3 ) negl(A)

Pr [b =¥

Along similar lines, we can define the notions\@drifiable Pseudorandom Permutatiof&RPs), Verifiable Un-
predictable Functionand Verifiable Unpredictable Permutatiores verifiable analogs of PRPs, UFs and UPs re-
spectively, each of which has three algorithfGen, Prove, Verify), and satisfies the Completeness and Soundness
properties as well.

Letf:{0,1}" — {0,1}" be afunction from: bits ton bits. TheFeistel transformatiomisingf is a permutation

U, on2n bits defined asy ¢ (x) = xR || . @ f(xgr). The symbols:;, andz i denote the left and right halves of
2n bit stringz. We will also call the construction based briterated applications of the Feistel transformatioh, a
round LR construction, and denote it By;, , (which we also call;, for brevity) wheref; ... f;, are the round
functions used. On 2n bit input, the constructiod;, generategk + 2) n-bit round values, the last two of which
together form the output of the construction.

The seminal result of Luby and Rackoff [27] shows thdtraund LR construction with independent and secure
PRFs in each round is a secure (strong) pseudorandom permutatiBh¢@struction.

B Proof of Lemma4.1

Assume that thé-XOR condition does not hold for the given sequence of queries. Witlhes of generality, say
one of the queries involved in thé" round value collision is the last(*) query. If this is not the case, then we can
consider a smaller sequence of queries for which this happens. Véseapthe*” round value associated with the
ith query asR[i, j]. Thus we know thalli < ¢ : Rlq,7] = R[i,r].

19



We maintain a; vectorb that denotes the direction of each query. Thus[if = 1 then thei* query was a
forward one, else ib[i] = 0 then thei’" query was an inverse query. We define a “first occurrence” fundtio
eachround value,i.@: {1...¢} x{0...k+1} — {1...q}. Forany round valui]i, j], p(¢, j) is theleast input
numbersuch thatR[p(i, j), j] = R[i, j].

Assume that the colliding round number< k/2. In this case, if thej'" query is a forward query then we
get a worse lower bound on the number of queries: # k/2 then we get a worse bound if thé" query is an
inverse query. Thus, for now assume thatgfequery is a forward query, since this gives us the worst case bound
if r <k/2.

As a first step, we prove that all the round valuelg, 1] ... R [q,r — 1] collide with the corresponding round
value in an earlier query.

ClamB.1 If 3i < g : Rlg,r] = R[i,r], then each of the round valuéggq, 1] ... R [¢,r — 1] were defined before
the¢*" query was made. That is,

Vie{l...r} :p(q,j) <q

proof of claim B.1: We will use induction on the round numbgto show thab(q, j) < ¢. However, we will start
the induction withj = r and go down tg = 1.

Forj = r, we already know thap(q, ) = i from the statement of the claim. Now say the same holds for all
j=r...c(for ¢ < r), then we will show that théc — 1) round value also collides with the corresponding round
value in an earlier query. Say, for the sake of contradiction, Ef@tc — 1] is a new round value in input number
(i.e. p(q, c—1) = g). Then the round function evaluatigi._,) (R[q, c — 1]) is a new round function evaluation, and
henceR|[q, c] is a new round function value. B&[q, c] = R[p(q, ¢),c], andp(q,c) < ¢ by induction hypothesis.
But this is not possible since tfeXOR condition does not hold for this sequence of queries. O

Thus, we know that all the round valu®$q, 1] . .. R [, r] were defined strictly before input numbgrAs our next
step, we will show that the order in which the queni¢s, 1) ... p (¢, ) occur is one of very few possible orders.

Claim B.2 There is a round numbere {1...r}, such that,

p(¢,1) > ... > ple,(G—1) > plg])
p(¢,j) < ... < pl(gr—1) < plgr)

That is, the round valué]q, j] was defined before any of the other round vali®g, 1] ... R [q,r]. Moreover,
the latter queries were made in the oragy, j)...p (¢, ), while the firstj queries were made in the order
p(q,5)---p(g,1).

proof of claim B.2: We will first prove that for any three consecutive round valdds, (: — 1)], R|q, ] and
Rlq, (i+1)] (wherei € {2...r — 1}), it holds that,

[p(Q7 (Z - 1)) > p(Qa Z)] N {p(% l) < p(‘]a (Z + 1))]

The claim will then follow as a straightforward consequence.

Assume to the contrary that(q, (i — 1)) < p(q,i) andp(q,i) > p(g, (i + 1)) for somei € {2,r —1}. If
p(g, (i — 1)) = p(g,1) (orp(q,i) = p(g, (i + 1))) then it is easy to verify that queriggq, i) andq are the same,
which is not the case sinegs the first query colliding with an earlier query in th& round value.

Thus, we have the case thay, (i — 1)) < p(q,4) andp(q,i) > p(q, (¢ + 1)). But we know from the design of
v, that,

fi(R[p(q,9),1]) = Rlp(g, 1), (i = 1)] & R[p(q, %), (i +-1)]
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Itis also the case that,

fi(R[g,1]) = Rlg,(i—1)]® R[g, (i + 1)]
= [fi(Rlp(q,1),1]) = R[p(q,(i—1)),(i—1)] ® R[p(q, (i + 1)), (i + 1)]
= Rlp(q,7),(i =] @ R[p(q,7), (i +1)] = R[p(q,(i—1)),(i—1)]® Rlp(q, (i +1)), (i +1)]

Thus, ifb[p(g,i)] = 0 thenR[p(q,1), (i — 1)] can be represented as an XOR of three previously existing round
values otherwisé?[p(q, i), (i + 1)] has such an XOR representation. In any case, this will gixX®R condition
which we know does not hold. Thus we can say that

Vie{2,7—1} : [p(q,(i —1)) > p(q,i)] V [p(g,7) < p(g, (i +1))]

Now it is a straightforward task to verify that the query orders consistéhtthis constraint are exactly the ones in
the statement of claim B.2. O

From claim B.2, we can deduce that there exist at |§astnsecutive round values in thé& query, whose “first
occurrence” queries are in strictly ascending/descending temporal ékithout loss of generality, we can assume
thatg > p(¢,1) > ... >p (q, %)

As our next step, we will prove a general property of such a strictlgred sequence of “first occurrence” queries
of consecutive round values. For this purpose, consider any tbresecutive “first occurrence” queries out of such
a sequence, say = p(q,7), ij4+1 = p(q,j + 1) andijio = p(q,j + 2) (so thati; > i1 > ij12). We will
concentrate on proving properties of the “first occurrence” quefidse round values of th@h query. Sinceg < &,
we will assume thab(i;) = 1 or that thez';h query is a forward query. The reason for this choice is again the fact
that it gives us the worse bound on the number of queries.

We will now show that all the round valu€gi;, 1] ... R[i;, j — 1] collide with the corresponding round values
in queries before th%h query. Moreover, we also show that the queri€s, 1) ... p(i;, j — 2) were made after the
zz’_‘H query, but before thégh guery. This is formally stated in the following claim.

Claim B.3 Letthe queries numberég i, andi;, be the “first occurrence” queries of the round valuR¥, j|,R[¢, j+
1] and R[¢, j + 2], respectively. Moreover, say that > i;.1 > 0. If the i§h query is a forward query (i.e.
bli;] = 1) then,

ij > p(ij,l) > 00> p(ij,j — 2) > ij+1
On the other hand, i6[i;] = 0 then,

ij; > plij, k) > ... >p(ij,j +2) > i1

proof of claim B.3: Let us start by considering the case that] = 1, and the inverse query will turn out to be
symmetric. We will analyze the round valuB$i;, 1] ... R[i;, j — 1]. Consider the round valug|i;, j — 1]. Ifitis

a new round value at th@h query, thenf;_1 (R[i;, j — 1]) is a new round function evaluation aftli;, j] is the new
round value generated. But we know that

fir1(R[E, j +1]) = R[(,j]®R[(,j+ 2]
=  fir1(Rlijp1,7+1]) = R[ij,j]© Rlijy2,] + 2]
= Rlij, j] = Rlij12,7+2]® R[ij11,7] ® Rlij11,7 + 2]

And sincei; > i;41 > 742, this would give us &-XOR condition, which we know does not hold. Thus, we
know thatp(ij,j — 1) < i;.
Conclusion 1:As in claim B.1, we can also deduce tvgt € {1...j — 1} : p(i;,5") < i;.
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Now we will try to find the order in which the querie$:;, ;') could have been made. In addition, since we know
thati; o < ij41 < i;, we will also be interested when the quenés;, ;') were made relative tt 1, andi; . Let
us start by concentrating our attention on the queiies, p(i;, (j — 1)) andp(i;, (j — 2)).

Consider the case thpati;, (j — 1)) < 4,41 andp(ij, (j — 2)) < i;4+1. Then we know that,

fiv1(Rlijy1, (7 4+ 1)]) = R[ij41,7] ® Rlij11, (§ + 2)]
= fi+1(R[ij+1, (G + 1)) = Rlij+1, (7 +2)] @ Rlij, (7 — 2)] © fj-1(Rliz, (j — 1)])
= Rlij+1,(J +2)]® Rlij11,5] = Rlij+1, (+2)] & Rlp(ij, (j —2)), (j — 2)]

®R[p(ij, (7 —1)),4]1 @ Rlp(ij, (j — 1)), 5 + 1]

Thus depending on whethar, ; is a forward or inverse query, we get a representatidR[of, 1, j] or R[i;11, (j+2)]

as an XOR of five previous round values and sii¢g 1, (j + 1)] is a new round value this contradicts the fact that
5-XOR condition does not hold for these queries. Th{s, (j —1)) > 41 or p(ij, (j —2)) > i;41. Along similar
lines, we can also show thati;, (j — 2)) > p(i;, (j — 1)) orij+1 > p(ij, (j — 1)).

Conclusion 2:We can deduce that the only possible orders for these three queries are

p(ij, (7 —2)) > p(ij, (j — 1)) > ij41 00 p(ij, (j — 2)) > ij41 > p(ij, (j — 1))

We saw in claim B.2 that if we consider the “first occurrence” queriesrekticonsecutive round values, the query
corresponding to the middle round value cannot be the last one to be madsinge we know thai(i;, (j —2)) >
p(ij, (j—1)) from conclusion 1we can see tha(i;, (j —3)) > p(i;, (j—2)). Carrying this argument uptB[i;, 1],
we thus deduce that,

’ij > p(ij, 1) >0 > p(ij, (] - 2)) > ’ij+1

If the query numbei; is an inverse query, then we can carry out the same argument for thevalueR|i;, (j +
1)] ... RJij, k] and deduce that

ij > p(ij,k) > > p(z'j,(j —1—2)) > ij+1

Now we can apply claim B.3 to the sequence of first occurrence queiges) > ... > p (q, g). Considering
queryp(q, i) (fori = 1...5 — 2), we have deduced that if this was a forward query, at least anbthe@rqueries
we made before this one but after the quety, (¢ + 1)). And since thesé — 2 queries are in a strictly descending
temporal order as well from claim B.3, we can recursively apply ounraent to each of these queries as well.

In order to bound from below the number of queries that produce a callmiother?” round value, we will
need to count the number of queries that are bound to exist by the argabmye. Thus consider a strictly ascend-
ing/descending sequence of “first occurrence” querieg adnsecutive round values, i.e(i,1) > ... > p(i,7)
for some query. We will denote byQ(;j) the number of queries that were made before query nuinibesrder to
get such a sequence of queries. If we apply claim B.3 to the qusfies) . .. p(i, (j — 2)), we get a new sequence
of (¢ — 2) strictly ascending/descending “first occurrence” queries betweemafahe pairs of queries(i, ¢) and
p(i,(¢+1))fore =1...(j — 2). Hence we get the following expression (),

Q) = j+iao(-2)
= Q) = QU-1)+0Q(—4)+1
= Q@U) = 2:QU—-1)-Q9(U—-2)+QU—4) -2 —5)

The solution to the above homogeneous equation can be expressed inftéresoevers of the roots of the following
algebraic equation:
5 4 ,,.3 4 _
-2z +x° —x"+1=0
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This equation has only one root greater tHamvhich is1.3803. Thus we can represent the solution of the above
recurrence as: .
Q(j) = ©(1.38037)

And from claim B.2, we get that if any query collides with an earlier query avtf round value, we can find a
strictly increasing/decreasing sequencg 6first occurrence” queries. Thus, we get that

¢ > Q(3)
= ¢ = Q(1.3803/2)
= ¢ > Q(1.3803%/2) ,sincer € {s...(k—s)}

The above proof only took into account the case thatk /2. If » > k/2 then a similar argument can be carried out
by assuming the intermediate queries to be inverse queries and we cantativ= (2 (1.3803(’“—’")/2). In either
case, we get the bound that= Q (1.3803%/2), sincer € {s, (k — s)} ands < (k/2).

C Proof of theorem 5.1

The proof of this theorem consists of two main parts:

1. A UF family that yields secure and independent UFs on each sampleX<dR resistant function family.

2. The construction;;;, that uses secure and independent UFs in each round is a sequeglictable permu-
tation.

XOR-RESISTANCE OFUFs. Consider thé-round Feistel constructiofiy; ;, using independent UFA ... f;, «— F

in each round. If there is an adversaty,,. that queriesl;;, and forces &-XOR condition through its queries with
a non-negligible advantage,,, then we can construction a UF adversarythat has non-negligible advantage in
the unpredictability game against a UF sampled from the faiily

Claim C.1 If there is an adversaryl,,, that can force &-XOR condition in an interaction witk;;;, (that uses
independent UFs sampled from a UF family, : {0,1}" — {0,1}") with non-negligible probability,,. then
there exists a VUF adversary, that has non-negligible success probabiliyin the unpredictability against a UF

sampled from the family’. In particular, we show that; > (Zﬁg)’"ﬁ.

proof of claim C.1: On getting the challenge unpredictable functibn the UF adversary chooses a random
round numbei where it plugs in the challenge UF. Next, the UF adverséfygenerategk — 1) independent UFs
f1--- fiz1, fix1 - - - fx from the same family and uses these as the remaining round functions to simel&egdtel
construction;;, for the XOR adversaryl,,, to attack.

Then it lets the UF adversary run its attack®p ;.. Assuming a fixed and large enough polynomial upper bound
q on the number of queries made By, the UF adversaryl; chooses a random query numbee {1,q¢}. It
guesses that theXOR condition occurs after thé#" round function evaluation in thg” query, i.e.R{. Instead
of querying this input to the UF oracle, it selects this as the challenge inputses an XOR of upté randomly
chosen previously existing round values as its prediction of the output.

If all its guesses are correct, i.e. it chooses the correct round nuirthercorrect query numbgrand the correct
XOR representation, then it succeeds in the UF game. The probability titatgllesses are correct is at Ie@%@.

Thus, we get thaty > (%Tﬁ. a
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SECURITY OF THE UP CONSTRUCTION We will now show that the UP constructioh;;, that uses round
functions from the UF family¥" that gives secure and independent UFs on each sample, is a setstreiciion of
aunpredictable permutation

Claim C.2 If there exists a PPT UP adversawy, that has non-negligible advantage in the unpredictability
game agains®;;, and which makes a polynomial number of querie¥/tg,, then there also exists a UF adversary
Ay that has non-negligible advantage in the unpredictability game against addipked from the UF family-.

In particular, we get that the maximum advantage of the UP adverdaris e, = O(es - (¢k)®). Heree; is the
maximum advantage of a UF adversary running in tithg@ + (¢k)°) against a UF sampled fror, wheret, q are
the running time and number of queries madedyy

proof of claim C.2: The UF adversaryl; gets oracle access to a challenge unpredictable funétioft samples
(k—1) independent UFg; ... f/2)-1, f(k/2)+1 - - - fx from the same UF family". It simulates the UP construction

by plugging in the challenge UF as ttie/2)!" round function, and using the self-generated UFs as the other round
functions.

When the UP adversary sends its challenge qu&ry| R; (or Ry || Rk+1), and its predicted outpuRy, || Ri1
(resp.Ry || R1), the UF adversary proceeds by using its self generated round fostti@valuate the intermediate
round valuesiy, Ry, Ry ... Ry o and fromRy 1, Ry, Ri—1 ... Ry 241 - Itthen sends the challenge input/output pair
(Ry /2, Rija—1 © Ry j241) as its prediction. Itis easy to see that if the round vabye, is a new round value and the
UP adversary predicted correctly, then the UF adverggrgucceeds. Thus, we can deduce that,

Pr[A; succeeds = Pr[(A, succeedsA (no (k/2)™ round collision] (1)
= Pr [(/17r succeed)s)no (k/2)"" round coIIision} - Pr[no collisior] 2)

> (Pr [Ar succeeds— Pr [(k/2)th round coIIisiorD - Pr[no collision (3)

> (&x — €xor) (1 — €xor) 4)

e <3 _i — + €aor (5)

= e = Oler- (qk)°) (6)

In the above argument, we have often bound the advantage of a Usaduvbye,. This is the maximum advantage
of a UF adversary running in tim@(¢ + (qk)>), wheret, ¢ are the running time and number of queries madeihy
The transition from step (3) to (4) is possible using corollary 4.3, thattbeyshe advantage of an efficient collision
finding adversary is same as that of an efficient XOR condition forcingradry. The last step of the argument is
possible through claim C.1. O

D Proof of theorem 5.2

We show that the PRP constructigry, x, using PRFs sampled from the PRF family, : {0,1}" — {0,1}",is a
secure PRP. The proof consists of two parts:

1. Showing that a PRF family that yields secure and independent PRRsaph sample is &XOR resistant
function family.

2. Showing that no PRP adversary can succeed with non-negligiblatagesin the PRP attack game against a
w(log A)-round Feistel construction with independent and secure PRFs in @aoth. r
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XOR-RESISTANCE OFPRFs. Consider &-round Feistel constructiofi, that use% PRFsf; . .. f, independently
sampled from a PRF family|.) : {0,1}" — {0, 1}", as round functions. Consider an XOR finding advers&yy,
that forces &-XOR condition through its queries with non-negligible advantage. We willvdhat using4.,,,., we
can design another attackéy that succeeds in the PRF attack game (see definition 2) against a PRF shomled
the family F.

Claim D.1 If there is an PPT attacked..,, that queries thé&:-round Feistel constructio;, (that uses independent
PRFs from a PRF family"), observes intermediate round values and force$tH®©R condition through its queries
with probability ., then there exists a PRF adversaty that has advantage; in the PRF attack game against a

1, _ (gk)"
PRF sampled fron#’, wheree; > g5 |\ €xor o )

proof of claim D.1: The PRF adversaryl; gets oracle access to the challenge PRF adverSaryt then needs

to choose a challenge query, to which it either gets the PRF output or amamdbit string, and its task is to
distinguish between the two cases. The attackeichooses a random round numbee {1...k}, and samples

(k — 1) independent PRF§; ... fi_1, fit+1 ... fr from the family F'. It then simulates the Feistel construction
U, with the challenge PRF as tli# round function and the self-generated PRFs making up the remaining round
functions. It then simulates the XOR attack game betwégn and V.

Assume a fixed, large enough, polynomial upper bound on the numbeedgq that the adversar,.,. makes
to ¥;. The PRF adversary chooses a random query nugnbkef1...q} where it chooses its challenge query. On
getting thej*" query, it sends thé” round value as the challenge PRF query, and uses the challengesesisahe
output of thei*” round function. It computes the remaining self-generated round fusctismisual. If the’” round
function is applied to a new input, then it checks to see if the new round veherated has@XOR representation
in terms of previously existing round values. If so, then it guesses thahtdkenge response is the PRF output (say
by outputtingl), otherwise it guesses the challenge response to be random (by owggpittin

It is clear that if the attacked; makes all its guesses correctly, i.e. correct round number and coueny
number, then it succeeds if a random response also does not hawe@R representation. Hence, we get that

Adv(Ay) = Pr[(Af outputsl) A (PRF outpuf] + Pr{(A outputs0) A (Random outpyt — %

If e, denotes the advantage of an XOR adversary then we get that,

Pr[(A; outputsl) A (PRF outpuf] = Pr[(As outputsl)|(PRF outpuf] - Pr[(PRF outpuf]
> €xor }
- gk 2
Pr[(As outputs0) A (Random outpyt = Pr[(A; outputs0)|(Random outpyt - Pr[(Random outpyt
5
S [1 _ (gk) ] 1
- 2n 2

1 (qk)®
= z]d 4 > - . —
o f) = 2k |:€xor on

SECURITY OF THEPRPCONSTRUCTION We will now show that the constructiohy, ,, that is based on/eround
Feistel construction using independently sampled round functions froRfFddmily £y : {0,1}" — {0,1}",is a
secure PRP construction.
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Claim D.2 If there exists an efficient PRP adversafy that has a non-negligible advantage in the PRP at-
tack game against the constructidrg ;, (using round function from PRF famil), then there also exists a PRF
adversary A, that has non-negligible advantagg in the PRF attack game against a PRF sampled from the
PRF family F'. In particular, we get that the maximum advantage of such a PRP aalyecan be bounded by
exr = O <qkef + (‘g‘;?ﬁ). Heree; is the maximum advantage of a PRF adversary running in te+ (gk)®)
against a PRF sampled froifi, wheret, ¢ are the running time and number of queries madedhy

proof of claim D.2: The PRF adversang ; gets oracle access to a challenge FRAt samplegk —1) independent
PRFSf1 ... fi/2)—1, f(k/2)+1 - - - fx from the PRF familyF". It simulates the PRP constructidry ;. by plugging in
the challenge PRF as tl(lk/2)th round function and using the self-generated PRFs as the remainingftotidns.
It then simulates the PRP attack game between the attackand V¥ g ..

It computes the response to any query madeibyoy computing all the round valuegk(/2)"" one by querying
the PRF oracle). When the attackér sends its challenge query, thely computes all the self-generated round
functions honestly, but sends tlig/2)"" round value as its PRF challenge query and uses the challenge query
response as thi/2)™" round function output. It then continues with the post-challenge phaselastiefore the
challenge query. Finally, it simply gives the same output as the PRP advetsdi.e. guess PRF ifi,; guesses
PRP, else guess random).

We note that the PRF adversary succeeds if the following conditions all figlthe PRP adversary,. succeeds,
(2) the(k/2)™ round value in the challenge query is never required in any other quely(3) the PRP challenge
output looks random if the PRF challenge response is random. Thusuedmat,

Adv(Ay) > Pr[(A, succeedsA (no (k/2)" round collision) A (PRF randoms PRP randorj — %

Now we can estimate the probability in the above expression as,

Pr[(A, succeedsA (no (k/2)™" round collision A (PRF randors> PRP randor)j

> Pr[(A, succeedsn (PRF random;> PRP random\ no collisionin{% — 1, % 4+ 1})]
-Pr[no collision in{4 —1,% +1}]

> Pr[(A, succeed)s\(PRF randors> PRP randomA ((no collision in{4 — 1, % 4 1})]
- Pr[(PRF randora> PRP random|(no collision in{4 —1,% + 1})]
-Pr[no collision in{% — 1, % + 1}]

> Pr[(A; succeeds|(PRF random: PRP randomA ((no collision in{4 — 1,5 +1})]
Pr[(PRF randorm> PRP random|(no collision in{4 — 1, % +1})] - (1 ewr)

> Pr[(A, succeeds|(PRF random> PRP randomA ((no collision in{4 — 1, % + 1})]

(1= 2¢5) - (1 — €xor)
> (eﬂ—2ef- (2qkq+ (q2]2)6>) '(1—2€f)'(
e = O (qke]c + ((12]2)6)

(qzkn)6 )

In the above argument, we have usgdo bound the advantage of all of out PRF adversaries (in L.H.S. as well as
R.H.S.). This bound; is the maximum advantage of a PRF adversary running in @fte+ (¢k)°), wheret, g are

the running time and number of queries made by the PRP attackeFhe initial two steps of the above argument
can be derived as simple conditional probability manipulations. The third atepederived as a result of corollary
4.3, that says that the advantage of the collision finding attacker is no maréhttaof a5-XOR finding attacker.

In the fourth step, we use the fact that if a PRF family yields secure angendent PRFs, then the usual PRF
attack definition is equivalent to a modified definition where the attacker lt@ss¢o two independently sampled
PRFs from the same family. In the challenge phase of this new attack sgegittrer random or pseudorandom
responses are given to challenge queries to both these functionsti&rateacker is not permitted to query the PRF
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oracles on these challenge queries, we need the property that novaluedollision occur among round values in
{(k/2) = 1...(k/2) + 1}. O
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