
Publi Key Trae and Revoke Sheme Seure against AdaptiveChosen CiphertextYevgeniy Dodis�dodis�s.nyu.edu Nelly Fazio�fazio�s.nyu.eduAbstratA (publi key) Trae and Revoke Sheme ombines the funtionality of broadast enryption with theapability of traitor traing. Spei�ally, (1) a trusted enter publishes a single publi key and distributesindividual seret keys to the users of the system; (2) anybody an enrypt a message so that all but aspei�ed subset of \revoked" users an derypt the resulting iphertext; and (3) if a (small) group ofusers ombine their seret keys to produe a \pirate deoder", the enter an trae at least one of the\traitors" given aess to this deoder.We onstrut the �rst hosen iphertext (CCA2) seure Trae and Revoke Sheme based on the DDHassumption. Our sheme is also the �rst adaptively seure sheme, allowing the adversary to orruptplayers at any point during exeution, while prior works (e.g., [17, 19℄) only ahieves a very weak formof non-adaptive seurity even against hosen plaintext attaks.Of independent interest, we present a slightly simpler onstrution that shows a \natural separation"between the lassial notion of CCA2 seurity and the reently proposed [18, 1℄ relaxed notion of gCCA2seurity.1 IntrodutionA broadast enryption sheme allows the sender to seurely distribute data to a dynamially hanging set ofusers over an inseure hannel. Namely, it should be possible to seletively exlude (i.e., \revoke") a ertainsubset of users from reeiving the data. For that reason, it is often onvenient to think of broadast enryptionas a revoation sheme, sine the revoation ability is what makes the task of broadast enryption non-trivial.In partiular, eah user should reeive an individualized deoder (i.e., a deryption devie with a unique seretkey) whih derypts only the iphertexts intended for the given user. Broadast enryption has numerousappliations, inluding pay-TV systems, distribution of opyrighted material, streaming audio/video andmany others.The formal study of broadast enryption was initiated by Fiat and Naor [9℄, who showed a sheme withmessage overhead roughly O(z2 log2 z logN), where z is the maximum number of exluded users (so alledrevoation threshold) and N is the total number of users. Subsequent works inlude [14, 13, 11℄, and, morereently, [16, 12℄ whih show how to ahieve linear message overhead O(z) and !(logN) storage per user.A related line of work onerns multiast seurity [20, 15, 21, 4, 5℄. However, in this setting revoking asingle user involves hanging the keys for all the users, whih makes it inappliable to situations where thereeivers are \stateless", do not always stay \on-line", or where the set of reeivers an hange rapidly.Most of the above works primarily onentrate on the entralized setting, where only the trusted enter(the entity who generates all the seret keys) an send messages to the reeivers. In the publi key setting,studied in this paper, the enter also prepares a �xed publi key whih allows any entity to play the roleof the sender. Aside from ahieving this extra funtionality, the publi key setting also allows the enter tostore seret keys in a more seure plae than the station used for data transmission (e.g., o�-line), and aessthis storage only for \system maintenane" (e.g., when a new user joins the system).�Courant Institute of Mathematial Siene, New York University1



In the publi key setting, the only known publi key Broadast Enryption Shemes have been onstrutedby [17, 19℄ based on the DDH assumption, and ahieve publi key and message overhead O(z). In fat, theseshemes are essentially idential: in the following we will refer to the work of [19℄, who emphasize more thepubli key nature of their sheme.Some Critiism. Despite providing a simple and elegant sheme, the work of [19℄ has several notieableshortomings. First, the given (informal) notion of seurity makes little sense in a revoation setting. Indeed,to show the \seurity" of revoation, [19℄ shows the following two laims: (1) the sheme is semantiallyseure when no users are revoked; (2) no set of z a-priori �xed users an ompute the seret key of anotheruser. Clearly, these properties do not imply the seurity notion we really are about and whih informallystates: (3) if the adversary ontrols some set R of up to z revoked users, then the sheme remains semantiallyseure. Atually, the sheme of [19℄ an be shown to satisfy the needed property (3) only when the set R ishosen by the adversary non-adaptively, and in fat only if it is hosen before the adversary learns the publikey. Suh weak non-adaptive seurity is learly insuÆient for realisti usages of a publi key revoationsheme.Most importantly, the extended sheme of [19℄ is proven to be CCA2-seure when none of the users isorrupted, but stops being suh the moment just a single user is orrupted, even if this user is immediatelyrevoked for the rest of the protool. Again, this is too weak | the sheme should remain CCA2-seure evenafter many users have been revoked. As we will see, ahieving this strong type of seurity is very non-trivial,and requires a muh more involved sheme than the one proposed by [19℄.Our Contributions. We onstrut the �rst adaptive hosen iphertext (CCA2) seure publi key BroadastEnryption Sheme under the DDH assumption (with no random orales). We remark that no CCA2 shemeswere known even in the symmetri setting. Moreover, it doesn't seem obvious how to extend urrentsymmetri shemes (e.g. [16℄) to meet the CCA2 notion. Our publi key sheme is based on the regularCramer-Shoup enryption [7, 8℄, but our extension is non-trivial, as we have to resolve some diÆultiesinherent to Broadast Enryption. Furthermore, we introdue for the �rst time a preise formalization of anappropriate notion of adaptive seurity for Broadast Enryption (for both the CPA and the CCA2 setting).We also extend the CPA sheme of [19℄ to ahieve suh higher level of seurity, while maintaining essentiallythe same eÆieny in all the parameters (up to a fator of 2).Of independent interest, we also provide another sheme ahieving a slightly weaker (but still very strong)notion of generalized CCA2 seurity (gCCA2) [18, 1℄. As argued in [1℄, the gCCA2 seurity is muh morerobust to syntati hanges, while still suÆient for all known uses of CCA2 seurity. Interestingly, all theexamples separating CCA2- and gCCA2-seure enryption were \arti�ial" in a sense that they made a moreompliated sheme from an already existing CCA2-seure enryption. Our work shows the �rst \natural"separation, but for the setting of broadast publi key enryption.A Note on Traitor Traing. As �rst expliitly notied by Gafni et al. [10℄, Broadast Enryption ismost useful when ombined with a Traitor Traing mehanism [6℄ by whih the enter an extrat the identityof (at least one) \pirate" from any illegal deoder produed ombining deryption equipments of a groupof legal members (the \traitors"). By slightly modifying standard traing algorithms from previous weakershemes (e.g. [17, 19℄ ), traing algorithms an be added to our shemes, thus yielding fully funtional Traeand Revoke shemes [17℄. However, we will fous only on Broadast Enryption (i.e. revoation), whih isalso the main novelty of this paper.2 Notations and Basi FatsLagrange Interpolation in the Exponent. Let q be a prime and f(x) a polynomial of degree z overZq; let j0; : : : ; jz be distint elements of Zq, and let f0 = f(j0); : : : ; fz = f(jz). Using Lagrange Interpolation,we an express the polynomial as f(x) =Pzt=0(ft � �t(x)), where �t(x) = Q0�i 6=t�z ji�xji�jt ; t = 0; : : : ; z. Wean now de�ne the Lagrange Interpolation Operator as follows:LI(j0; : : : ; jz; f0; : : : ; fz)(x) := zXt=0(ft � �t(x)):2



Now, onsider any yli group G of order q and a generator g of G . For any distint values j0; : : : ; jz of Zqand (non neessarily distint) elements v0; : : : ; vz of G , let us de�ne the Lagrange Interpolation Operator inthe Exponent as:EXP-LI(j0; : : : ; jz; v0; : : : ; vz)(x) := gLI(j0;:::;jz;loggv0;:::;loggvz)(x) = zYt=0 g(loggvt��t(x)) = zYt=0 v�t(x)t :The last expression shows that the funtion EXP-LI is poly-time omputable, despite being de�ned in termsof disrete logarithms (whih are usually hard to ompute). We also remark on another useful property ofthe above operator: EXP-LI(j0; : : : ; jz ; vr0 ; : : : ; vrz)(x) = [EXP-LI(j0; : : : ; jz; v0; : : : ; vz)(x)℄r .In what follows, we will refer to a funtion of the form gf(x), where f(x) is a polynomial, as an EXP-polynomial.DDH Assumption. The seurity of our shemes will rely on the Deisional DiÆe-Hellman (DDH) Assumptionin the group G : namely, it is omputationally hard to distinguish a random tuple (g1; g2; u1; u2) of fourindependent elements in G from a random tuple satisfying logg1 u1 = logg2 u2 (for a survey, see [3℄).A Probabilisti Lemma. The following useful lemma states that to estimate the di�erene between tworelated experiments U1 and U2, it is suÆient to bound the probability of some event F whih \subsumes"all the di�erenes between the experiments. Formally,Lemma 1 If U1; U2 and F are events suh that (U1 ^ :F ) and (U2 ^ :F ) are equivalent events, then���Pr[U1℄� Pr[U2℄��� � Pr[F ℄.3 Definition of Broadast Enryption ShemeSine a publi-key broadast enryption is typially used by enrypting a session key s for the privilegedusers (this enryption is alled the enabling blok), and then symmetrially enrypting the \atual" messagewith s, we will often say that the goal of a Broadast Enryption Sheme is to enapsulate [8℄ a session keys, rather than to enrypt a message M .De�nition 2 (Broadast Enryption Sheme)A Broadast Enryption Sheme BE is a 4-tuple of poly-time algorithms (KeyGen, Reg, En, De), where:� KeyGen, the key generation algorithm, is a probabilisti algorithm used by the enter to set up all theparameters of the sheme. KeyGen takes as input a seurity parameter 1� and a revoation thresholdz (i.e. the maximum number of users that an be revoked) and generates the publi key PK and themaster seret key SKBE.� Reg, the registration algorithm, is a probabilisti algorithm used by the enter to ompute the seretinitialization data needed to onstrut a new deoder eah time a new user subsribes to the system.Reg reeives as input the master key SKBE and a (new) index i assoiated with the user; it returns theuser's seret key SKi.� En, the enryption algorithm, is a probabilisti algorithm used to enapsulate a given session key swithin an enabling blok T . En takes as input the publi key PK, the session key s and a set R ofrevoked users (with jRj � z) and returns the enabling blok T .� De, the deryption algorithm, is a deterministi algorithm that takes as input the seret key SKi ofuser i and the enabling blok T and returns the session key s that was enapsulated within T if i wasa legitimate user when T was onstruted, or the speial symbol ?.3.1 Seurity of RevoationIntuitively, we would like to say that even if a maliious adversary A learns the seret keys of at most z users,and these users are later revoked, then subsequent broadasts do not leak any information to suh adversary.3



The seurity threat posed by suh adversary is usually referred to as Chosen Plaintext Attak (CPA), and aBroadast Enryption Sheme withstanding suh an attak is said to be z-Resilient against CPA. It is wellknown that suh an attak is not powerful enough to model some realisti adversarial senarios, e.g. in thepresene of an insider who helps the adversary to get deryptions of arbitrary iphertexts.To be on the safe side, it is possible to onsider the Chosen Ciphertext Attak (CCA2) in whih theadversary is allowed to \play" with the deryption mahinery as she wishes, subjet only to the onditionthat she doesn't ask about enabling bloks losely related to her \hallenge" T �. In formalizing the notion of\lose relationship", the usual treatment is to impose a minimal restrition to the adversary, just disallowingher to submit the hallenge itself to the deryption mahinery. As already noted in [1, 18℄, suh a mildonstraint does in turn restrit too muh the lass of shemes that an be proven seure, exluding evenshemes that ought to be onsidered seure under a more intuitive notion. For this reason, it seems morereasonable to onsider a variant of the CCA2, to whih we will refer to as Generalized Chosen CiphertextAttak (gCCA2), following the terminology introdued in [1℄.In a Generalized Chosen Ciphertext Attak, the set of enabling bloks the adversary is forbidden to askabout is de�ned in term of an eÆiently omputable equivalene relation <(�; �). In fat, in the ase of abroadast (as opposed to ordinary) enryption, there is no unique deryption mahinery, sine the deryptionalgorithm an be used with the seret key of any legitimate user. For this reason, in our setting we need toonsider a family of eÆient equivalene relations f<i(�; �)g, one for eah user i. As in the regular ase [1℄,the equivalene relation <i(�; �) orresponding to eah user i needs to be i-deryption-respeting : equivalentenabling bloks under <i are guaranteed to have exatly the same deryption aording to the seret dataof user i. Finally, this family should form an expliit parameter of the sheme (i.e., one has to speify somederyption-respeting family f<ig when proving the gCCA2 seurity of a given sheme).Formal Model. We now formalize the above attak senarios, starting with the CPA.First, (PK;SKBE) BE:KeyGen(1�; z) is run and the adversary A is given the publi key PK. Then Aenters the user orruption stage, where she is given orale aess to the User Corruption Orale CorSKBE(�).This orale reeives as input the index i of the user to be orrupted, omputes SKi  BE:Reg(SKBE; i) andreturns the user's seret key SKi. This orale an be alled adaptively for at most z times. Let us say thatat the end of this stage the set R of at most z users is orrupted.In the seond stage, a random bit � is hosen, and A an query the Enryption Orale (sometimesalso alled the left-or-right orale) EPK;R;�(�; �) on any pair of session keys s0; s1.1 This orale returnsEn(PK; s� ;R). Without loss of generality (see [2℄), we an assume that the enryption orale is alledexatly one, and returns to A the hallenge enabling blok T �. At the end of this seond stage, A outputsa bit �� whih she thinks is equal to �. De�ne the advantage of A as AdvCPABE;A(�) := jPr(�� = �)� 12 j.Additionally, in the ase of a Chosen Ciphertext Attak (generalized or not), A has also aess to aDeryption Orale DSKBE(�; �), whih she an query on any pair hi; T i, where i is the index of some userand T is any enabling blok of her hoie. A an all this orale at any point during the exeution (i.e.,both in the �rst and in the seond stage, arbitrarily interleaved with her other orale alls). To prevent theadversary from diretly derypting her hallenge T �, the deryption orale �rst heks whether <i(T ; T �)holds2: if so, D outputs ?; if not, D omputes SKi  BE:Reg(SKBE; i) and uses it to output BE:De(i; T ).As before, we de�ne the orresponding advantages AdvgCCA2BE;A (�) and AdvCCA2BE;A(�).De�nition 3 (z-Resiliene of a Broadast Enryption Sheme)Let � 2 fCPA; gCCA2;CCA2g. We say that a Broadast Enryption Sheme BE is z-resilient against a �-typeattak if the advantage, Adv�BE;A(�), of any probabilisti poly-time algorithm A is a negligible funtion of �.1For the sake of generality, we ould have allowed A to interleave the alls to CorSKBE (i) and EPK;R;� (where A an hooseany i's and R's only subjet to i 62 R). However, this lumsier de�nition is easily seen to be equivalent to the one we present.2This preliminary hek applies to the standard Chosen Ciphertext Attak as well, whih orresponds to all the <i's beingthe equality relation.
4



4 Revoation ShemesIn this setion, we present three Broadast Enryption Shemes, ahieving z-resiliene in an adaptive settingfor the ase of a CPA, gCCA2 and CCA2 attak respetively. Subsequent shemes build on the previous one,in a inremental way, so that it is possible to obtain inreasing seurity at the ost of a slight eÆieny loss.Considering the subtlety of the arguments, our proofs follow the strutural approah advoated in [8℄de�ning a sequene of attak games G0, G1, . . . , all operating over the same underlying probability spae.Starting from the atual adversarial game G0, we inrementally make slight modi�ations to the behaviorof the orales, thus hanging the way the adversary's view is omputed, while maintaining the view's distri-butions indistinguishable among the games. While this strutural approah takes more spae to write down,it is muh less error-prone and muh more understandable than a sliker \diret argument" (e.g., ompare[7℄ and [8℄).4.1 z-Resiliene against CPA attakAs a warm-up before addressing the more hallenging ase of hosen iphertext seurity, we desribe a simplerCPA-seure sheme. Our sheme naturally builds upon previous works [17, 19℄, but ahieves a muh moreappropriate notion of adaptive seurity, whih those previous shemes do not enjoy.The Key Generation Algorithm. The �rst step in the key generation algorithm KeyGen(1�; z) is tode�ne a group G of order q, for a random �-bit-long prime q suh that p = 2q+1 is also prime, in whih theDDH assumption is believed to hold. This is aomplished seleting a random prime q with the above twoproperties and a random element g1 of order q modulo p: the group G is then set to be the subgroup of Z�pgenerated by g1, i.e. G = fgi1 mod p : i 2 Zqg � Z�p. A random w  R Zq is then hosen and used to omputeg2 = gw1 . (In what follows, all omputations are mod q in the exponent, and mod p elsewhere.) Then, thekey generation algorithm selets two random z-degree polynomials3 Z1(�) and Z2(�) over Zq, and omputesthe values: h0 := gZ1;01 � gZ2;02 ; : : : ; hz := gZ1;z1 � gZ2;z2 . Finally, the pair (PK;SKBE) is given in output, wherePK := hg1; g2; h0; : : : ; hzi and SKBE := hZ1; Z2i.The Registration Algorithm. Eah time a new user i > z (in all our shemes, we reserve the �rstindies 0 : : : z for \speial purposes"), deides to subsribe to the system, the enter provides him with adeoder box ontaining the seret key: SKi := hi; Z1;i; Z2;ii .The Enryption Algorithm. The enryption algorithm En is given in Figure 1. It reeives as input thepubli key PK, a session key s and a set R = fj1; : : : ; jzg of revoked users and returns the enabling blokT . If there are less than z revoked users, the remaining indies are set to 1 : : : (z � jRj), whih are nevergiven to any \real" user.E1: r1  R ZqE2: u1  gr11E3: u2  gr12E4: Ht  hr1t ; t = 0 : : : zE5: Hjt  EXP-LI(0; : : : ; z;H0; : : : ; Hz)(jt); t = 1 : : : zE6: S  s �H0E7: T  hS; u1; u2; (j1; Hj1); : : : ; (jz; Hjz )iFigure 1: Enryption algorithm: En(PK; s;R)The Deryption Algorithm. If a legitimate user i wants to reover the session key embedded in theenabling blok T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz)i, he an proeed as in Figure 2. If i is a revoked user3For oniseness, we will use the following notation: Z1;i := Z1(i) and Z2;i := Z2(i).5



(i.e. i 2 fj1; : : : ; jzg), the algorithm fails in step D2, sine the interpolation points j1; : : : ; jz; i are notpairwise distint. D1: Hi  uZ1;i1 � uZ2;i2D2: s S=EXP-LI(j1; : : : ; jz; i;Hj1 ; : : : ; Hjz ; Hi)(0)Figure 2: Deryption algorithm (for user i) De(i; T )Seurity. As shown in the theorem below, the z-resiliene of the above sheme relies on the DeisionalDiÆe-Hellman (DDH) assumption.Theorem 4 If the DDH problem is hard in G , then the above Broadast Enryption Sheme is z-resilientagainst hosen plaintext attaks. In partiular, for all probabilisti poly-time algorithm A, we have thatAdvCPABE;A(�) � �(�).Proof: We de�ne a sequene of \indistinguishable" games G0; : : :, where G0 is the original game, and thelast game learly gives no advantage to the adversary.Game G0. In game G0, A reeives the publi key PK and adaptively queries the orruption oraleCorSKBE(�). Then, she queries the enryption orale EPK;R;�(�;�) on (s0; s1), where R must ontain allusers that A ompromised through the orale CorSKBE(�); A reeives bak the enabling blok T �. At thispoint, A outputs her guess �� 2 f0; 1g. Let T0 be the event that � = �� in game G0.Game G1. Game G1 is idential to gameG0, exept that, in gameG1, step E4 of the enryption algorithmin Figure 1, is replaed with the following:E40: Ht  uZ1;t1 � uZ2;t2 ; t = 0 : : : zBy the properties of the Lagrange Interpolation in the Exponent, it is lear that step E40 omputes the samevalues Ht, t = 0 : : : z as step E4. The point of this hange is just to make expliit any funtional dependenyof the above quantities on u1 and u2. Let T1 be the event that � = �� in game G1; learly, it holds thatPr[T0℄ = Pr[T1℄ .Game G2. To turn game G1 into game G2 we make another hange to the enryption orale used in gameG1. In game G2 steps E1; E3 are replaed with the following:E10: r1  R Zq; r2  R Zq n fr1gE30: u2  gr22Let T2 be the event that � = �� in game G2. Notie that while in game G1 the values u1 and u2 areobtained using the same value r1, in game G2 they are independent subjet to r1 6= r2. Therefore, using astandard redution argument, any non-negligible di�erene in behavior between G1 and G2 an be used toonstrut a PPT algorithm A1 that is able to distinguish DiÆe-Hellman tuples from totally random tupleswith non negligible advantage. Hene, ��Pr[T2℄� Pr[T1℄�� � �1 for some negligible �1.Game G3. To de�ne game G3, we again modify the enryption orale as follows:E60: e R Zq; S  ge1Let T3 be the event that � = �� in gameG3. Beause of this last hange, the hallenge no longer ontains�, nor does any other information in the adversary's view; therefore, we have that Pr[T3℄ = 12 . Moreover,we an prove (see Appendix 4.3, Lemma 9), that the adversary has the same hanes to guess � in bothgame G2 and G3, i.e. Pr[T3℄ = Pr[T2℄ .Finally, ombining all the intermediate results together, we an onlude that adversary A's advantageis negligible; more preisely: AdvCPABE;A(�) � �1. 6



4.2 z-Resiliene against gCCA2 AttakOne we have onstruted a Broadast Enryption Sheme z-resilient against CPA attaks, it is natural totry to devise an extension ahieving adaptive hosen iphertext seurity. This was already attempted by [19℄,but they do not elaborate (neither formally nor informally) on what an \adaptive hosen iphertext attak"on a Broadast Enryption Sheme exatly is. As a onsequene, in their seurity theorem (Theorem 3 of[19℄), the authors only show the seurity of their sheme against an adversary that does not partiipate tothe system, while their sheme is ertainly not CCA2-seure with respet to even a single maliious revokeduser.To ahieve CCA2 seurity, we will �rst try to apply the standard tehnique of [7, 8℄ to the sheme presentedin Setion 4.1. Unfortunately, this natural approah does not ompletely solve the CCA2 problem; still itleads us to an interesting sheme that ahieves the (sligthly weaker) notion of generalized hosen iphertextseurity.The Key Generation Algorithm. As before, the �rst task of the key generation algorithm is to seleta random group G � Z�p of prime order q and two random generators g1; g2 2 G . Then, KeyGen selets sixrandom z-degree polynomials4 X1(�), X2(�), Y1(�), Y2(�), Z1(�) and Z2(�) over Zq, and omputes the valuest := gX1;t1 � gX2;t2 , dt := gY1;t1 � gY2;t2 and ht := gZ1;t1 � gZ2;t2 , for t = 0 : : : z.Finally, KeyGen hooses at random a hash funtion H from a family F of ollision resistant hashfuntions,5 and outputs the pair (PK;SKBE), where PK := hg1; g2; 0; : : : ; z; d0; : : : ; dz; h0; : : : ; hz;Hi andSKBE := hX1; X2; Y1; Y2; Z1; Z2i.The Registration Algorithm. Eah time a new user i > z deides to subsribe to the system, the enterprovides him with a deoder box ontaining the seret key SKi := hi;X1;i; X2;i; Y1;i; Y2;i; Z1;i; Z2;ii.The Enryption Algorithm. Using the idea of [7, 8℄, in order to obtain non-malleable iphertexts, we\tag" eah enrypted message so that it an be veri�ed before proeeding with the atual deryption. Inthe broadast enryption senario, where eah user has a di�erent deryption key, the tag annot be a singlepoint | we need to distribute an entire EXP-polynomial V(x). This is aomplished appending z + 1 tagsto the iphertext: eah user i �rst omputes the tag vi using his private key and then veri�es the validity ofthe iphertext by heking the interpolation of the z + 1 values in point i against its vi.The enryption algorithm En reeives as input the publi key PK, the session key s to be embeddedwithin the enabling blok and a set R = fj1; : : : ; jzg of revoked users. It proeeds as desribed in Figure 3,and �nally it outputs T .E1: r1  R ZqE2: u1  gr11E3: u2  gr12E4: Ht  hr1t ; t = 0 : : : zE5: Hjt  EXP-LI(0; : : : ; z;H0; : : : ; Hz)(jt); t = 1 : : : zE6: S  s �H0E7: � H(S; u1; u2; (j1; Hj1); : : : ; (jz; Hjz ))E8: vt  r1t � dr1�t ; t = 0 : : : zE9: T  hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz); v0; : : : ; vziFigure 3: Enryption algorithm En(PK; s;R)The Deryption Algorithm. If a legitimate user i wants to reover the session key embedded in theenabling blok T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz); v0; : : : ; vzi, he an proeed as in Figure 4. If i is a4For oniseness, we will use the following notation: X1;i := X1(i); X2;i := X2(i); Y1;i := Y1(i); Y2;i := Y2(i); Z1;i :=Z1(i) and Z2;i := Z2(i).5Reall, it is hard to �nd x 6= y suh that H(x) = H(y) for a random member H of F .7



revoked user, the algorithm fails in step D6, sine the interpolation points j1; : : : ; jz; i are not pairwisedistint. D1: � H(S; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz))D2: �vi  uX1;i+Y1;i�1 � uX2;i+Y2;i�2D3: vi  EXP-LI(0; : : : ; z; v0; : : : ; vz)(i)D4: if vi = �viD5: then Hi  uZ1;i1 � uZ2;i2D6: s S=EXP-LI(j1; : : : ; jz ; i;Hj1 ; : : : ; Hjz ; Hi)(0)D7: return sD8: else return ?Figure 4: Deryption algorithm (for user i) De(i; T )Seurity. As mentioned above, the presene of many deryption keys leads to the use of an EXP-polynomialV(x) to tag the enryption of the message. This in turn makes the iphertext malleable: sine eah useri an verify the value of V(x) only in one point, the adversary an modify the vj 's values and onstruta di�erent EXP-polynomial V 0(x) interseting V(x) at point i | thus fooling user i to aept as valid aorrupted iphertext. In the next setion we show a non-trivial solution to this problem; here, we assessthe z-resiliene of the Broadast Enryption Sheme presented above against a gCCA2 attak. As alreadydisussed in Setion 3.1, to this aim it is neessary to introdue a family of equivalene relations f<ig:intuitively, two iphertexts T and T 0 are equivalent for user i if they have the same \data" omponents, andthe tag \relevant to user i" is orretly veri�ed, i.e. vi = v0i (even though other \irrelevant" tags ould bedi�erent). Clearly, this relation is eÆiently omputable and i-deryption-respeting.De�nition 5 (Equivalene Relation)Consider V(x) = EXP-LI(0; : : : ; z; v0; : : : ; vz)(x) and V 0(x) = EXP-LI(0; : : : ; z; v00; : : : ; v0z)(x). Given a user i,and the two enabling bloks T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ); v0; : : : ; vzi and T 0 = hS; u1; u2; (j1; Hj1);: : : ; (jz; Hjz ); v00; : : : ; v0zi, we say that T is equivalent to T 0 with respet to user i, and we write <i(T ; T 0), ifthe two EXP-polynomials V(x) and V 0(x) interset at point i, i.e. vi = V(i) = V 0(i) = v0i.Theorem 6 If the DDH Problem is hard in G and H is hosen from a ollision-resistant hash funtionsfamily F , then the above Broadast Enryption Sheme is z-resilient against generalized hosen iphertextattaks, under the family of equivalene relations f<ig.Proof: To prove this theorem, we pursue the same approah as in the proof of Theorem 4, where the startingsenario of the sequene of games is de�ned as in the de�nition of the adaptive gCCA2 attak.Game G0. Reall that in game G0, A reeives the publi key PK and adaptively interleaves queries tothe orruption orale CorSKBE(�) with queries to the deryption orale DSKBE(�; �). Then, she queries theenryption orale EPK;R;�(�; �) on (s0; s1), where R must ontain all users that A ompromised through theorale CorSKBE(�); A reeives bak the enabling blok T �. Then, A an again query the deryption oraleDSKBE(i; T ), restrited only in that :<i(T ; T �). Finally, she outputs her guess �� 2 f0; 1g. Let T0 be theevent that � = �� in game G0.Game G1. Game G1 is idential to game G0, exept that, in game G1, steps E4; E8 of the enryptionalgorithm in Figure 3, are replaed with the following:E40: Ht  uZ1;t1 � uZ2;t2 ; t = 0 : : : zE80: vt  uX1;t+Y1;t�1 � uX2;t+Y2;t�2 t = 0 : : : zBy the properties of the Lagrange Interpolation in the Exponent, it is lear that step E40 omputes thesame values Hjt , t = 0 : : : z as steps E4; similarly, step E80 omputes the same values vt, t = 0 : : : z as step8



E8. The point of these hanges is just to make expliit any funtional dependeny of the above quantitieson u1 and u2.Let T1 be the event that � = �� in game G1. Clearly, it holds that Pr[T0℄ = Pr[T1℄ .Game G2. To turn game G1 into game G2 we make another hange to the enryption orale used in gameG1. In game G2 steps E1; E3 are replaed with the following:E10: r1  R Zq; r2  R Zq n fr1gE30: u2  gr22Let T2 be the event that � = �� in game G2. Notie that while in game G1 the values u1 and u2 areobtained using the same value r1, in game G2 they are independent subjet to r1 6= r2. Therefore, using astandard redution argument, any non-negligible di�erene in behavior between G1 and G2 an be used toonstrut a PPT algorithm A1 that is able to distinguish DiÆe-Hellman tuples from totally random tupleswith non negligible advantage. Hene, ��Pr[T2℄� Pr[T1℄�� � �1 for some negligible �1.Game G3. To de�ne game G3 we slightly modify the deryption orale: instead of using the algorithm inFigure 4, in game G3 steps D2; D4; D5 are replaed with the following:D20: �vi  u(X1;i+Y1;i�)+(X2;i+Y2;i�)�w1D40: if (u2 = uw1 ^ vi = �vi)D50: then Hi  uZ1;i+Z1;i�w1The rationale behind these hanges is that we want to strengthen the ondition that the enabling blokhas to meet in order to be onsidered valid and hene to be derypted. This will make it easier to show theseurity of the sheme; however, for these hanges to be useful, there should be no observable di�erene inthe way invalid enabling bloks are \aught" in games G2 and G3. To make it formal, we now introduethe following two events: let T3 be the event that � = �� in game G3, and let R3 be the event that Asubmits some deryption query that would have been derypted in game G2 but is rejeted in game G3; inother words, R3 is the event that some deryption query that would have passed the test in step D4 of thederyption orale used in game G2, fails to pass the test in step D40 used in game G3. Clearly, G2 and G3are idential until event R3 ours; hene, if R3 never ours, the adversary has the same hanes to win inboth the two games, i.e. (using Lemma 1) T3 ^ :R3 � T2 ^ :R3 ) ��Pr[T3℄� Pr[T2℄�� � Pr[R3℄ .To bound the last probability, we onsider two more games, G4 and G5.Game G4. To de�ne game G4, we again modify the enryption orale as follows:E60: e R Zq; S  ge1Let T4 be the event that � = �� in gameG4. Beause of this last hange, the hallenge no longer ontainsthe bit �, nor does any other information in the adversary's view; therefore, we have that Pr[T4℄ = 12 .Let R4 be the event that A submits some deryption query that would have been derypted in game G2but is rejeted in game G4; in other words, R4 is the event that some deryption query that would havepassed the test in step D4 of the deryption orale used in game G2, fails to pass the test in step D40 usedin game G4. In Appendix 4.3, we prove (Lemma 10) that those events happen with the same probability asthe orresponding events of game G3, i.e. Pr[T4℄ = Pr[T3℄ and Pr[R4℄ = Pr[R3℄ .Game G5. In this game, we again modify the deryption algorithm, adding the following speial rejetionrule, whose goal is to prevent the adversary from submitting illegal enabling bloks to the deryption orale,one she has reeived her hallenge.After A reeives her hallenge T � = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z ); v�0 ; : : : ; v�z i, the deryp-tion orale rejets any query hi; T i, with T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ); v0; : : : ; vzi suhthat hS; u1; u2; (j1; Hj1); : : : ; (jz; Hjz )i 6= hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z )i, but � = ��, and itdoes so before exeuting the test in step D40. 9



Notie that in the gCCA2 setting the adversary is not allowed to query the deryption orale De(i; T ) onenabling bloks <i-equivalent to the hallenge T �. Therefore, when the speial rejetion rule is applied, wealready know that it holds :<i(T ; T �).Let C5 be the event that the adversary submits a deryption query that is rejeted using the abovespeial rejetion rule; let R5 be the event that A submits some deryption query that would have passedthe test in step D4 of the deryption orale used in game G2, but fails to pass the test in step D40 used ingame G5. Notie that this implies that suh a query passed the <i-equivalene test and the speial rejetionrule, beause otherwise step D40 wouldn't have been exeuted. Clearly, G4 and G5 are idential until eventC5 ours, i.e. R5 ^ :C5 � R4 ^ :C5 ) ��Pr[R5℄� Pr[R4℄�� � Pr[C5℄ , where the impliation follows fromLemma 1.Our �nal task is to show that events C5 and R5 our with negligible probability: while the argument tobound event C5 is based on the ollision resistane assumption for the family F (using a standard redutionargument, we an onstrut a PPT algorithm A2 that breaks the ollision resistane assumption with nonnegligible advantage), the argument to bound event R5 hinges upon the fat that the adversary is not allowedto submit queries that are \<i-related" to her hallenge, and upon information-theoreti onsiderations(as proven in Appendix 4.3, Lemma 11). From these onsiderations, we obtain that Pr[C5℄ � �2 andPr[R5℄ � QA(�)q , where �2 is a negligible quantity and QA(�) is an upper bound on the number of deryptionqueries made by the adversary.Finally, ombining the intermediate results, we an onlude that adversary A's advantage is negligible;more preisely: AdvgCCA2BE;A (�) � �1 + �2 +QA(�)=q.4.3 z-Resiliene against CCA2 AttakIn Setion 4.2, we saw how a diret appliation of the standard tehnique of [7, 8℄ does not provide aomplete solution to the CCA2 problem, but only suÆes for gCCA2 seurity. As proven in Lemma 11 (seeAppendix 4.3), the restrition imposed by the gCCA2 attak (namely, forbidding the adversary to submitderyption queries hi; T i suh that <i(T ; T �) holds) is essential for the seurity of the previous BroadastEnryption Sheme. Indeed, given a hallenge T � with tag sequene v0 : : : vz , it is trivial to ome up witha di�erent sequene v00 : : : v0z suh that vi = v0i, resulting in a \di�erent" enabling blok T 0 6= T �: however,De(i; T �) = De(i; T 0), allowing the adversary to \break" the CCA2 seurity.Although we feel that gCCA2 seurity is enough for most appliations of Broadast Enryption Shemes,it is possible to non-trivially modify the Broadast Enryption Sheme presented in Setion 4.2 to obtainCCA2 seurity (with only a slight eÆieny loss). The modi�ed sheme, presented in this setion, maintainsthe same Key Generation and Registration algorithms desribed before; the essential modi�ations involvethe operations used to onstrut the enabling blok. In partiular, to ahieve CCA2 seurity, it is neessaryto ome up with some trik to make the tag sequene v0; : : : ; vz non-malleable. To this aim, we will use anyseure (deterministi) message authentiation ode (MAC) to guarantee the integrity of the entire sequene.In fat, we only need any one-time MAC, satisfying the following simple property: given a (unique) orretvalue MACk(M) for some messageM (under key k), it is infeasible to ome up with a orret (unique) valueof MACk(M 0), for any M 0 6=M .The Enryption Algorithm. The enryption algorithm En reeives as input the publi key PK, thesession key s to be embedded within the enabling blok and a set R = fj1; : : : ; jzg of revoked users. Toonstrut the enabling blok T , the enryption algorithm (de�ned in Figure 3) operates similarly to thegCCA2 enryption algorithm: the main di�erene is that now a MAC key k, randomly hosen from the MACkey spae K, is used to MAC the tag sequene v0; : : : ; vz, and is enapsulated within T along with the sessionkey s.The Deryption Algorithm. If a legitimate user i wants to reover the session key embedded in theenabling blok T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz)i, he an proeed as in Figure 6. If i is a revoked user,the algorithm fails in step D6, sine the interpolation points j1; : : : ; jz ; i are not pairwise distint.Seurity. The seurity analysis for this sheme is very subtle, beause there is the risk of irularity in the10



E1: r1  R ZqE2: u1  gr11E3: u2  gr12E4: Ht  hr1t ; t = 0 : : : zE5: Hjt  EXP-LI(0; : : : ; z;H0; : : : ; Hz)(jt); t = 1 : : : zE6: k  R KE7: S  (s k k) �H0E8: � H(S; u1; u2; (j1; Hj1); : : : ; (jz; Hjz ))E9: vt  r1t � dr1�t ; t = 0 : : : zE10: �  MACk(v0; : : : ; vz)E11: T  hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ); v0; : : : ; vz ; �iFigure 5: Enryption algorithm En(PK; s;R)D1: � H(S; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ))D2: �vi  uX1;i+Y1;i�1 � uX2;i+Y2;i�2D3: vi  EXP-LI(0; : : : ; z; v0; : : : ; vz)(i)D4: if vi = �viD5: then Hi  uZ1;i1 � uZ2;i2D6: s k k  S=EXP-LI(j1; : : : ; jz; i;Hj1 ; : : : ; Hjz ; Hi)(0)D7: extrat s and k from s k kD8: if � 6= MACk(v0; : : : ; vz)D9: then return ?D10: else return sD11: else return ?Figure 6: Deryption algorithm (for user i) De(i; T )use of the MAC key k. Namely, k is part of the iphertext (sine it is enapsulated, along with the session keys, within S); this means that �, the hash of the iphertext, depends on k (at least Information-Theoretially),and thus the sequene of tags depends on k. In other words, we are MAC-ing something that depends on theMAC key k, whih ould be a problem. Lukily, the Information-Theoreti nature of the strutural approahto the seurity analysis that we are pursuing (following [8℄) allows us to prove that atually k is ompletelyhidden within S, so that MAC-ing the resulting tag with k is still seure.The solution to the CCA2 problem for Broadast Enryption Shemes and the relative seurity analysisan be viewed as the main tehnial ontribution of this paper; at the same time, the apability to resolvethe apparent irularity in the use of the MAC demonstrates the importane of providing a formal modeland preise de�nitions, without whih it would have been muh harder to devise a orret proof of seurityfor the above sheme.Theorem 7 If the DDH Problem is hard in G , H is hosen from a ollision-resistant hash funtions familyF and MAC is a one-time message authentiation ode, then the above Broadast Enryption Sheme isz-resilient against hosen iphertext attaks.Proof: The proof proeeds de�ning a sequene of games similar to that presented in Theorem 6. Thede�nition of games G0, . . . , G5 losely follow the exposition given in Theorem 6: however, the statements11



of all lemmas (and their proofs) need to be hanged to aommodate for the use of the MAC. In partiular,we an easily state and prove a lemma analogous to Lemma 10, where the only di�erene is the preseneof information about the MAC key k in the hallenge (see Lemma 12). More importantly, to bound theprobability Pr[R5℄ we introdue a new game G6 to deal with the use of the MAC in the enabling blok,while a lemma similar to Lemma 11 is used to bound the probability of event R6 de�ned in game G6 (seeAppendix 4.3 for the details on the proofs).Game G6. To de�ne this game, we modify the deryption algorithm, adding the following seond speialrejetion rule, whose goal is to detet illegal enabling bloks submitted by the adversary to the deryptionorale, one she has reeived her hallenge. Notie that, while the speial rejetion rule, de�ned in game G5,is used to rejet adversary's queries aiming at exploiting any weakness in the ollision-resistant hash familyF , the seond speial rejetion rule is used to rejet iphertexts aiming at exploiting any weakness in theMAC sheme.After A reeives her hallenge T � = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z ); v�0 ; : : : ; v�z ; ��i, the de-ryption orale rejets any query hi; T i, with T = hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz ); v0; : : : ; vz ; �isuh that hS; u1; u2; (j1; Hj1); : : : ; (jz ; Hjz )i = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z )i and (v0; : : : ; vz)6= (v�0 ; : : : ; v�z), but � = MACk�(v0; : : : ; vz), and it does so before exeuting the test in step D40,and before applying the speial rejetion rule.Let M6 be the event that the adversary submits a deryption query that is rejeted in game G6 using theseond speial rejetion rule; let C6 be the event that the adversary submits a deryption query that isrejeted in game G6 using the speial rejetion rule; let R6 be the event that A submits some deryptionquery that would have passed both the test in step D4 and in step D8 of the deryption orale used in gameG2, but fails to pass the test in step D40 used in game G6. Notie that this implies that suh a query passedboth the seond speial rejetion rule and the speial rejetion rule, beause otherwise step D40 wouldn'thave been exeuted at all.Event M6 is losely related to the seurity of the one time MAC used in the sheme; in partiular, anydi�erene in behavior between game G5 and game G6 an be used to onstrut a PPT algorithm A3 thatis able to forge a legal authentiation ode under a one-message attak with non-negligible probability, thusbreaking the MAC sheme. Hene, Pr[M6℄ � �3 , for some negligible �3.Moreover, sineG5 andG6 are idential until eventM6 ours, if it doesn't our at all, they will proeedidentially; i.e., by Lemma 1:C6 ^ :M6 � C5 ^ :M6 ) ��Pr[C6℄� Pr[C5℄�� � Pr[M6℄R6 ^ :M6 � R5 ^ :M6 ) ��Pr[R6℄� Pr[R5℄�� � Pr[M6℄ :Our �nal task is to bound the probability that events C6 and R6 our: the argument to bound Pr[C6℄ isbased on the ollision resistane assumption for the family F , while the argument to bound Pr[R6℄ hingesupon information-theoreti onsiderations (as proven in Appendix 4.3, Lemma 13). From those fats, weobtain that Pr[C6℄ � �2 and Pr[R6℄ � QA(�)q , where �2 is a negligible quantity and QA(�) is an upperbound on the number of deryption queries made by the adversary.Finally, ombining the intermediate results, we an onlude that adversary A's advantage is negligible;more preisely: AdvCCA2BE;A(�) � �1 + �2 + 2�3 +QA(�)=q.AknowledgmentsWe wish to thank Jonathan Katz, Yevgeniy Kushnir, Antonio Niolosi and Vitor Shoup for helpful obser-vations on an preliminary version of the paper and the anonymous referees for useful omments.12
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[19℄ W.G. Tzeng and Z.J. Tzeng. A Publi-Key Traitor Traing Sheme with Revoation Using DynamisShares. In Publi Key Cryptography - PKC '01, pages 207{224. Springer-Verlag, 2001. LNCS 1992.[20℄ D. Wallner, E. Harder, and R. Agee. Key Management for Multiast: Issues and Arhitetures. Availableat ftp://ftp.ietf.org/rf/rf2627.txt, 1997.[21℄ C.K. Wong, M. Gouda, and S. Lam. Seure Group Communiations Using Key Graphs. In Proeedingsof the ACM SIGCOMM '98, 1998.AppendixThe proofs of the following lemmas is based on the same tehniques used in [8℄; the main tool is the followingtehnial lemma.Lemma 8 Let k,n be integers with 1 � k � n, and let K be a �nite �eld. Consider a probability spaewith random variables ~� 2 Kn�1; ~� = (�1; : : : ; �k)T 2 Kk�1; ~ 2 Kk�1, and M 2 Kk�n, suh that ~� isuniformly distributed over Kn; ~� =M~�+~, and for 1 � i � k, the �rst ith rows of M and ~ are determinedby �1; : : : ; �i�1. Then, onditioning on any �xed values of �1; : : : ; �k�1 suh that the resulting matrix M hasrank k, the value of �k is uniformly distributed over K in the resulting onditional probability spae.In what follows, we will denote with Coins the oin tosses of A and we de�neXt := X1;t + wX2;t; Yt := Y1;t + wY2;t; Zt := Z1;t + wZ2;t; t = 0 : : : z:Proof of the Lemma stated in Theorem 4Lemma 9 Pr[T4℄ = Pr[T3℄.Proof: Consider the quantity V := (Coins; w;Z1; : : : ;Zz; �; r�1 ; r�2) and the value Z0. Aording to thespei�ation of games G2 and G3, V and Z0 assume the same value in both games. Let us now onsider thevalue e� = logg1 S�: unlike the previous two quantities, e� assumes di�erent values in the above two games.In partiular, while in game G2 e� ontains information about the session key s� , in game G3 e� is just arandom value: let us denote with [e�℄2 and [e�℄3 the values of e� in game G2 and game G3, respetively.By de�nition of game G2, event T2 solely depends on (V;Z0; [e�℄2); similarly, by de�nition of game G3,event T3 solely depends on (V;Z0; [e�℄3). Moreover, event T2 depends on (V;Z0; [e�℄2) aording to the samefuntional dependene of event T3 upon (V;Z0; [e�℄3). Therefore, to prove the lemma, it suÆes to show that(V;Z0; [e�℄2) and (V;Z0; [e�℄3) have the same distribution.Aording to the spei�ation of game G3, [e�℄3 is hosen uniformly over Zq, independently from V andZ0. Hene, to reah the thesis, it suÆes to prove that the distribution of [e�℄2, onditioned on V and Z0,is also uniform in Zq.In game G2, the quantities (V;Z0; [e�℄2) are related aording to the following matrix equation:� Z0[e�℄2� = � 1 wr�1 wr�2�| {z }M � �Z1;0Z2;0� + � 0logg1s��where det(M) = w(r�2 � r�1) 6= 0, sine r�2 6= r�1 .As soon as we �x the value of V , the matrix M is ompletely �xed, but the values Z1;0 and Z2;0 are stilluniformly and independently distributed over Zq. Now, �xing a value for Z0 also �xes a value for s� ; hene,by Lemma 8, we an onlude that the onditioned distribution of [e�℄2, w.r.t. V and Z0, is also uniformover Zq. 14



Proofs of Lemmas stated in Theorem 6Lemma 10 Pr[T4℄ = Pr[T3℄ and Pr[R4℄ = Pr[R3℄.Proof: Consider the quantity:V := (Coins;H; w;X1;0; X2;0; : : : ; X1;z; X2;z; Y1;0; Y2;0; : : : ; Y1;z; Y2;z;Z1; : : : ;Zz ; �; r�1 ; r�2)and the value Z0. Introduing similar notations as in Lemma 9 and reasoning as above, we an notie thatevent T3 solely depends on (V;Z0; [e�℄3) and that event T4 solely depends on (V;Z0; [e�℄4). Moreover, eventT3 depends on (V;Z0; [e�℄3) aording to the same funtional dependene of event T4 upon (V;Z0; [e�℄4).The same onsiderations hold for events R3 and R4. Therefore, to prove the lemma, it suÆes to show that(V;Z0; [e�℄3) and (V;Z0; [e�℄4) have the same distribution.Aording to the spei�ation of game G4, [e�℄4 is hosen uniformly over Zq, independently from V andZ0. Hene, to reah the thesis, it suÆes to prove that the distribution of [e�℄3, onditioned on V and Z0,is also uniform in Zq.In game G3, the quantities (V;Z0; [e�℄3) are related aording to the following matrix equation:� Z0[e�℄3� = � 1 wr�1 wr�2�| {z }M � �Z1;0Z2;0� + � 0logg1s��where det(M) = w(r�2 � r�1) 6= 0, sine r�2 6= r�1 .As soon as we �x the value of V , the matrix M is ompletely �xed, but the values Z1;0 and Z2;0 are stilluniformly and independently distributed over Zq. Now, �xing a value for Z0 also �xes a value for s� ; hene,by Lemma 8, we an onlude that the onditioned distribution of [e�℄3, w.r.t. V and Z0, is also uniformover Zq.Lemma 11 If QA(�) is an upper bound on the number of deryption queries that A poses to the deryptionalgorithm, then Pr[R5℄ � QA(�)q .Proof: In what follows, for 1 � j � QA(�), we will denote with R(j)5 the event that the jth iphertexthi; T i, submitted by A to the deryption orale in game G5, fails to pass the test in step D40, but wouldhave passed the test in step D4 in game G2. Besides, for 1 � j � QA(�), we will denote with B(j)5 the eventthat the jth iphertext is submitted to the deryption orale before A reeived her hallenge, and with B̂(j)5the event that the jth iphertext is submitted to the deryption orale after A reeived her hallenge. If weshow that, for 1 � j � QA(�), Pr[R(j)5 j B(j)5 ℄ � 1q and that Pr[R(j)5 j B̂(j)5 ℄ � 1q , then the thesis will follow.Claim.: Pr[R(j)5 j B(j)5 ℄ � 1q .To prove this laim, �x 1 � j � QA(�) and onsider the quantities:V := (Coins;H; w;Z0; : : : ;Zz); V 0 := (X0; : : : ;Xz ;Y0; : : : ;Yz):These two quantities together ontain all the randomness needed to determine the behavior of A and ofall the orales she interats with, up to the moment that A performs the enryption query: one we �x Vand V 0, we totally de�ne how the adversary proeeds in her attak, before she reeives her hallenge bak.Moreover, �xing V and V 0, the event B(j)5 is ompletely de�ned: given V and V 0, we say they are relevant,if the event B(j)5 ours.Hene, to reah the laim, it suÆe to prove that the probability of event R(j)5 , onditioned on anyrelevant values of V and V 0, is less then 1=q.Reall that the ondition tested in step D40 in game G5 is (u2 = uw1 ^ vi = �vi): sine we are onsideringthe ase that the jth query fails to pass the test in step D40, but would have passed the test in step D4 ofgame G2, it must be the ase that vi = �vi but u2 6= uw1 . Therefore, we only onsider relevant values of V15



and V 0 suh that u2 6= uw1 . Taking the logs (base g1), the ondition u2 6= uw1 is equivalent to r1 6= r2 andthe ondition vi = �vi is equivalent to �i = ��i, where ��i := logg1 �vi = r1X1;i + wr2X2;i + �r1Y1;i + �wr2Y2;iand �i := logg1 vi = LI(0; : : : ; z; logg1v0; : : : ; logg1vz)(i). Notie that ��i an be expressed in terms of thevetor (X1;0; X2;0; : : : ; X1;z; X2;z; Y1;0; Y2;0; : : : ; Y1;z; Y2;z)T ; indeed, X1;i = LI(0; : : : ; z;X1;0; : : : ; X1;z)(i) =Pzt=0(X1;t � �t(i)), and similar relations hold for X2;i; Y1;i and Y2;i. Therefore, by means of some matrixmanipulation, we an write:��i = ~Æ � (X1;0; X2;0; : : : ; X1;z; X2;z; Y1;0; Y2;0; : : : ; Y1;z; Y2;z)Twhere ~Æ � (Æ0; Æ1; : : : ; Æ2z; Æ2z+1; Æ2z+2; Æ2z+3; : : : ; Æ4z+2; Æ4z+3) is de�ned as:~Æ := (r1�0(i); wr2�0(i); : : : ; r1�z(i); wr2�z(i); �r1�0(i); �wr2�0(i); : : : ; �r1�z(i); �wr2�z(i)):In game G5, the random values de�ned above are related aording to the following matrix equation:0BBBBBBBBBB�
X0...XzY0...Yz��i
1CCCCCCCCCCA = 0BBBBBBBBBB�

1 w : : : 0 0 0 0 : : : 0 0... ... ... ...0 0 : : : 1 w 0 0 : : : 0 00 0 : : : 0 0 1 w : : : 0 0... ... ... ...0 0 : : : 0 0 0 0 : : : 1 wÆ0 Æ1 : : : Æ2z Æ2z+1 Æ2z+2 Æ2z+3 : : : Æ4z+2 Æ4z+3
1CCCCCCCCCCA| {z }M �

0BBBBBBBBBBBBBBBB�
X1;0X2;0...X1;zX2;zY1;0Y2;0...Y1;zY2;z

1CCCCCCCCCCCCCCCCAWe want to show that the rank of the matrix M is 2z + 3. Clearly, the �rst 2z + 2 rows are linearlyindependent; to see why the last row (i.e. the vetor ~Æ) is independent from the others, notie that the onlyway to obtain Æ0 is by multiplying the �rst row by r1�0(i): doing so, the seond omponent of Æ results to bewr1�0(i). But sine Æ1 = wr2�0(i), this implies that r1 = r2, ontraditing the assumption that the queryfails to pass the test in step D40 in game G5.As soon as we �x V , the �rst 2z+2 rows of matrixM are �xed, but the values X1;0; X2;0; : : : ; Y1;z; Y2;z arestill uniformly and independently distributed over Zq; as for ~Æ, its value is still undetermined, sine r1; r2 andi are not yet �xed. Now, �xing a value for V 0 suh that V and V 0 are relevant and that r1 6= r2, determinesthe value of the jth query (and hene the value of ~Æ), along with the values X0; : : : ;Xz;Y0; : : : ;Yz and ��i.Therefore, by Lemma 8, we an onlude that the distribution of ��i, onditioned on relevant values of V andV 0, is uniform over Zq; sine onditioning on any �xed, relevant value of V and V 0, �i is just a single pointin Zq, it follows that Pr[�i = ��i℄ = 1q .Claim.: Pr[R(j)5 j B̂(j)5 ℄ � 1q .To prove this laim, �x 1 � j � QA(�) and onsider the quantities:V := (Coins;H; w;Z0; : : : ;Zz; r�1 ; r�2 ; e�); V 0 := (X0; : : : ;Xz ;Y0; : : : ;Yz; ��i )where ��i := logg1 v�i = LI(0; : : : ; z; logg1v�0 ; : : : ; logg1v�z)(i) and i > z. Notie that by the spei�ation ofthe enryption orale used in game G5, it holds that: logg1 v�t = r�1X1;t + wr�2X2;t + ��r�1Y1;t + ��wr�2Y2;t,t = 0; : : : ; z. Therefore, we an write:��i = zXt=0 �t(i)(r�1X1;t + wr�2X2;t + ��r�1Y1;t + ��wr�2Y2;t):Together, V and V 0 ontain all the parameters needed to determine the behavior of A and of all theorales she interats with: one we �x V and V 0, we totally de�ne how the adversary proeeds in the entire16



attak. Moreover, �xing V and V 0, the event B̂(j)5 is ompletely de�ned: given V and V 0, we say they arerelevant, if the event B̂(j)5 ours.Hene, to reah the laim, it suÆes to prove that the probability of event R(j)5 , onditioned on anyrelevant values of V and V 0, is less then 1=q.As shown above, we an onsider just relevant values of V and V 0 for whih it holds that u2 6= uw1 .Reasoning as in the previous ase, and maintaining the notation introdued there, the random values de�nedabove are related aording to the following matrix equation:0BBBBBBBBBBBB�
X0...XzY0...Yz��i��i
1CCCCCCCCCCCCA = 0BBBBBBBBBBBB�

1 w : : : 0 0 0 0 : : : 0 0... ... ... ...0 0 : : : 1 w 0 0 : : : 0 00 0 : : : 0 0 1 w : : : 0 0... ... ... ...0 0 : : : 0 0 0 0 : : : 1 wÆ�0 Æ�1 : : : Æ�2z Æ�2z+1 Æ�2z+2 Æ�2z+3 : : : Æ�4z+2 Æ�4z+3Æ0 Æ1 : : : Æ2z Æ2z+1 Æ2z+2 Æ2z+3 : : : Æ4z+2 Æ4z+3
1CCCCCCCCCCCCA| {z }M
�
0BBBBBBBBBBBBBBBB�
X1;0X2;0...X1;zX2;zY1;0Y2;0...Y1;zY2;z

1CCCCCCCCCCCCCCCCAwhere ~Æ� � (Æ�0 ; Æ�1 ; : : : ; Æ�2z; Æ�2z+1; Æ�2z+2; Æ�2z+3; : : : ; Æ�4z+2; Æ�4z+3) is de�ned as:~Æ� := (r�1�0(i); wr�2�0(i); : : : ; r�1�z(i); wr�2�z(i); ��r�1�0(i); ��wr�2�0(i); : : : ; ��r�1�z(i); ��wr�2�z(i)):We want to show that the rank of the matrix M is 2z + 4. Clearly, the �rst 2z + 2 rows of M are alllinear independent. Moreover, as shown in the previous laim, both ��i and ��i are linearly independent fromthe �rst 2z + 2 rows of M . Firstly, notie that the assumption that the jth query hi; T i is rejeted in stepD40 of gameG5, implies not only :<i(T ; T �), but also that T passed the speial rejetion rule; furthermore,we may assume that � 6= ��, sine otherwise the only way T may have passed the speial rejetion rule isthat hS; u1; u2; (j1; Hj1); : : : ; (jz; Hjz )i = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z )i. But this on one hand entails~Æ� = ~Æ, i.e. ��i = ��i, whereas on the other hand implies that �i 6= ��i (beause otherwise T and T � wouldbe <i-related). Thus, if � = �� then �i 6= ��i, ontraditing the assumption that the jth query hi; T i wouldhave passed the test in step D4 in game G2.In order to show that ~Æ is linearly independent from the �rst 2z + 3 rows, observe that the only way toobtain Æ0 is by multiplying the �rst row by (r1 � r�1)�0(i) and ~Æ� by 1; similarly, to obtain Æ2z+2 as a linearombination of the other elements in its olumn, we need to multiply the (z + 2)th row by �(r1 � r�1)�0(i)and ~Æ� by ��� : sine � 6= ��, ��� 6= 1 and so, ~Æ is linearly independent from all the other rows.As soon as we �x V , the �rst 2z + 2 rows of matrix M are �xed, but the values X1;0; X2;0; : : : ; Y1;z; Y2;zare still uniformly and independently distributed over Zq; as for Æ� and Æ, their values are still undetermined,sine r�1 ; r�2 ; r1; r2 and i, are not yet �xed. Now, �xing a value for V 0 suh that V and V 0 are relevant andthat r1 6= r2, also �xes the last 2 rows of matrix M along with the values X0; : : : ;Xz;Y0; : : : ;Yz and ��i ;hene, by Lemma 8, we an onlude that the distribution of ��i, onditioned on relevant values of V andV 0, is also uniform over Zq; sine onditioning on any �xed, relevant values of V and V 0, �i is just a singlepoint in Zq, it follows that Pr[�i = ��i℄ = 1q .Proofs of Lemmas stated in Theorem 7Lemma 12 Pr[T4℄ = Pr[T3℄ and Pr[R4℄ = Pr[R3℄ .Proof: Consider the quantities:V := (Coins;H; w;X1;0; X2;0; : : : ; X1;z; X2;z; Y1;0; Y2;0; : : : ; Y1;z; Y2;z;Z1; : : : ;Zz ; �; r�1 ; r�2 ; k):17



and the value Z0. We an repeat the same onsiderations stated in Lemma 10: the only di�erene is thatthe quantities (V;Z0; [e�℄3) haraterizing game G3 are related aording to the following slightly di�erentmatrix equation: � Z0[e�℄3� = � 1 wr�1 wr�2�| {z }M � �Z1;0Z2;0� + � 0logg1(s�kk)�For the same reasons seen in Lemma 10, as soon as we �x a value for V , the matrix M is ompletely�xed, as well as the value of k, but the values Z1;0 and Z2;0 are still uniformly and independently distributedover Zq. Now, �xing a value for Z0 also �xes a value for s� and hene for logg1(s�kk); thus, by Lemma 8,the onditioned distribution of [e�℄3, w.r.t. V and Z0, is also uniform over Zq.Lemma 13 If QA(�) is an upper bound on the number of deryption queries that A poses to the deryptionalgorithm, then Pr[R6℄ � QA(�)q .Proof: In what follows, for 1 � j � QA(�), we will denote with R(j)6 the event that the jth iphertext hi; T i,submitted by A to the deryption orale in game G6, fails to pass the test in step D40, but would havepassed both tests in step D4 and in step D8 in game G2. Besides, for 1 � j � QA(�), we will denote withB(j)6 the event that the jth iphertext is submitted to the deryption orale before A reeived her hallenge,and with B̂(j)6 the event that the jth iphertext is submitted to the deryption orale after A reeived herhallenge. If we show that, for 1 � j � QA(�), Pr[R(j)6 j B(j)6 ℄ � 1q and that Pr[R(j)6 j B̂(j)6 ℄ � 1q , then thethesis will follow.Claim.: Pr[R(j)6 j B(j)6 ℄ � 1q .This proof losely follows the one presented in Lemma 11, so we omit the details here.Claim.: Pr[R(j)6 j B̂(j)6 ℄ � 1q .To prove this laim we proeed like in Lemma 11, �xing 1 � j � QA(�) and onsidering the quantities:V := (Coins;H; w;Z0; : : : ;Zz; r�1 ; r�2 ; e�); V 0 := (X0; : : : ;Xz;Y0; : : : ;Yz; ��i ; k)where we are maintaining all the notations introdued above.Again, we an repeat exatly the same onstrution utilized in Lemma 11: the only di�erene from theargument presented there is in the onsiderations aiming at showing that we an assume that � 6= ��; thus,we only need to justify this assumption in the new senario, and the laim will follow.Under the assumptions that the jth query hi; T i is rejeted in step D40 of game G6 but would have beenderypted as valid in game G2, we an dedue that T passed both the seond speial rejetion rule and thespeial rejetion rule. We may also assume that � 6= ��, sine otherwise the only way that T may have passedthe speial rejetion rule is that hS; u1; u2; (j1; Hj1); : : : ; (jz; Hjz )i = hS�; u�1; u�2; (j�1 ; Hj�1 ); : : : ; (j�z ; Hj�z )i; butsine T must di�er from the hallenge T �, then it must be the ase that (v0; : : : ; vz) 6= (v�0 ; : : : ; v�z), andso, from the fat that T passed the seond speial rejetion rule we get that � 6= MACk�(v0; : : : ; vz), thusontraditing the assumption that the jth query would have been derypted in game G2 (sine the test instep D8, for the validity of the tag � , would have failed).
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