On Extracting Private Randomness Over a Public Channel

Yevgeniy Dodig Roberto Oliveira

April 14, 2003

Abstract

We introduce the notion of super-strong extractorGiven two independent weak random sour&ed”,
such extractor ET(-,-) has the property that>& (X,Y) is statistically random even if one is givén.
Namely, (Y, EXT(X,Y)) = (Y, R). Super-strong extractors generalize the notion of stromgetors [16],
which assume that is truly random, and extractors from two weak random soui@@s7] which only assure
that ExT(X,Y) =~ R. We show that super-extractors have many natural apglitatio design of crypto-
graphic systems in a setting when different parties havegaddent weak sources of randomness, but have
to communicate over an insecure channel. For example, fl@y ane party to “help” other party extract
private randomness: the “helper” simply seridsand the “client” gets private randomnessT#X,Y). In
particular, it allows two parties to derive a nearly randogy lfter initial agreement on only a weak shared
key, without using ideal local randomness.

We show that optimal super-strong extractors exist, whiehcapable of extracting all the randomness
from X, as long ag” has a logarithmic amount of min-entropy. This generalizsigralar result from strong
extractors, and improves upon previously known boundsdi7gfweaker problem of randomness extraction
from two independent random sources. We also give explipgsstrong extractors which work provided the
sum of the min-entropies of andY is at least their block length.

Finally, we consider the setting of our problem where thelipidommunication channels amot authen-
ticated Using the results of [13], we show that non-trivial authieation is possible when the min-entropy
rate of the shared secret key is at least a half. Combinisgwtth our explicit super-extractor construction,
we get the first privacy amplification protocol over an adaegly controlled channel, where player do not
have ideal local randomness.
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1 INTRODUCTION

IMPERFECTRANDOMNESS. Randomization has proved to be extremely useful and fuedéahin many areas

of computer science. Unfortunately, in many situations does not have ideal sources of randomness, and one
has to base a given application iomperfect sources of randomnes&mong many imperfect sources considered
so far, perhaps the most general and realistic source isd¢hksource [29, 7]. The only thing guaranteed about
a weaksource is that no particular string has a very high prolgbdf occurring. This is characterized by a
parameteb (called themin-entropyof the source) by saying that no string (of some given ledyjtbiccurs with
probability more thar2~? (for any distribution of the source). We will call this soar@, b)-weak. Unfortunately,
handling such weak sources is often necessary in many appiis, as it is typically hard to assume much
structure on the source beside the fact that it contains sant®mness. Thus, by now a universal goal in basing
some application on imperfect sources is to make it work tithweak source.

The most direct way of utilizing weak sources would be to asttmearly perfect randomness from such a
source. Unfortunately, it is trivial to see [7] that that deterministicfunction can extract even one random bit
from a weak source, as long as< / (i.e., the source is not random to begin with). This obséwadeaves two
possible options. First, one can try to use weak sources fres applicationwithoutan intermediate step of
extracting randomness from it. Second, one can try degignwbabilistic extractors, and later justify where and
how one can obtain the additional randomness needed f@uoixin.

USING A SINGLE WEAK SOURCE. A big successful line of research [27, 25, 7, 8, 29, 3] foltayvthe first
approach showed that a single weak source is sufficient tolgienany probabilistic computation of decision or
optimization problems (i.e., problems with a unique “cott®@utput which are potentially solved more efficiently
using randomization; this class is callBBP). Unfortunately, most of the methods in this area are nolicgige

for applications of randomness, where the randomness tkeddsy the applicatioitself, and not mainly for the
purposes of efficiency. One prime example of this is cry@phy. For example, secret keys have to be random,
and many cryptographic primitives (such as public-key wyotion) mustbe probabilistic. Indeed, it is not good
enough to produce a set of secret keys most of which are “gabdhe does not know which of these keys
to actually use, or to say that “at least half of the ciphdrtioes not reveal the message”. Thus, nhew methods
are needed to base cryptographic protocols on weak sousgefar, this question has only been studied in the
setting of information-theoretic symmetric-key cryptaghy. In this scenario, the shared secret key between the
sender and the recipient is no longer random, but comes fraea#t source. As a very negative result, Mcinnes
and Pinkas [14] proved that one cannot securely encrypt &gimgle bit, even when using an “almost random”
(¢,£—1)-weak source. Thus, one cannot base symmetric-key enonypti weak sources. Dodis and Spencer [9]
also consider the question of message authentication awd thlat one cannot (non-interactively) authenticate
even one bit using?, ¢/2)-weak source (this bound is tight as Maurer and Wolf [13] stblow to authenticate

up to?/2 bits whenb > ¢/2).

Basing more advanced cryptographic primitives on a singlaknrandom sources also promises to be chal-
lenging. For example, it is not clear how to meaningfully ralodccess a single weak source by many parties
participating in a given cryptographic protocol. Additaly, moving to thecomputationalsetting will likely
require making very non-standard cryptographic assumgtio

USING SEVERAL WEAK SOURCES Instead, we will assume that each party will have its ownknsaurce,
which is independenfrom all the other weak random sources. In other words, wédgeh individual party
cannot assume that his source is truly random, the partemeated “far apart” so that their imperfect sources
are independent from each other. For simplicity, we wiltniesthe number of independent sources to two for
the remainder of this paper. One of the questions we will idendf it is possible to construct cryptographic
protocols, like secret-key encryption or key exchangehis hew setting. In fact, rather than construct these
primitives from scratch, we will try to extract nearly ideahdomness from two weak sources, and then simply



use whatever standard methods exist for the cryptographicat hand!

This brings us to the question of randomness extraction fsemeral independent random sources. This
guestion originated as early as [18], who showed that onextact randomness from “many” so called “semi-
random” sources (later calle8V-sources which are very special cases of the weak sources. VaZzig&ji
considered two SV-sources, and showed that the inner préaluction indeed extracts an almost random bit in
this case (he also extended this construction to extrace ihan one bit). Chor and Goldreich [7] were the first
to consider general weak sources of equal block length;deday that the source¥ andY are (¢4, by )-weak
and (¢, by )-weak, for concreteness, while here we also asstime ¢, = ¢. First, they showed that a random
function can extract almogb; + b, — £) nearly random bits in this settiflgThe also gave an explicit number-
theoretic construction that can essentially match this{ogtimal) bound. Moreover, they showed that the simple
inner product function is also a good bit-extractor underdame condition that + b, > ¢. Recently, Trevisan
and Vadhan [24] broke this the “barrieb3 + b, > ¢, but only for the very “imbalanced” case whéenp = 2/,
by = (1 — O(e))¢ (for anye > 0). To summarize, while non-trivial randomness extractismpaossible, the
known constructions and parameters seem far from optimabrtlunately, improving this situation seems to be
extremely challenging. Indeed, it is easy to see that thetgureof extracting randomness from two independent
sources beyond what is currently known is even harder thatagiausly hard problem of explicitly constructing
certain bipartite Ramsey graphs (see [28, 17]).

EXTRACTORS. A special case of the above question has received a hugenaofaitention recently. It involved
the case when one of the two sources, 3ayis perfect: by = /¢;. In this case, one invests bits of true
randomnessX (called theseed and hopes to extract neardy + b, random bits fromX and a given(by, ¢2)-
weak sourcey”. A deterministic functiorExT achieving this task has simply been calledextractor[16]. A
strong extractoradditionally requiresX itself to be part of the extracted randomness. In this c&sis, usually
excluded from the output dixT, so that the goal becomes to extract uptoandom bits front”. By now, it is
well known that one can indeed achieve this goal provided> log /5. Moreover, many explicit constructions
of strong extractors which come very close to this bound am@vk by now (see [15, 23, 11, 20, 19] and the
references therein). Not surprisingly, strong extrackarge found many applications (e.g., see [19, 6, 12]).

OuUR QUESTION. The general question of extracting randomness from twdwsearces [18, 26, 7] concentrated
on regular, non-strong extractors. Namely, one could nbligluthe random seed. If the extracted randomness

is to be used as the secret key of the conventional cryptbgragystems, this means that one should sample
X andY from two independent weak sources, and securely “trarsporto Y. Consider, for example, the
following application. Alice and Bob stay together and wishsecurely communicate when Alice goes away.
Then can agree on an auxiliary secret Keéysampled from their common weak source. When Alice leaves far
away, she gets access to an independent sdlrogssuming the parameters are right, Alice can now extract a
nearly random secret kdy = ExT(X,Y). However, Bob only knowsX, so Alice has to send” to Bob. In
cryptography, it is conventional to assume that the comuoatitin channel between Alice and Bob is public.
Thus, Alice has to send” “in the clear”. With regular extractors, even from two wealuses, there is no
guarantee thaExt(X,Y") will look random to the eavesdropper who leafkis On the other hand, conventional
strong extractors resolve this problem, but rely on a stewgumption that Alice can sample a truly randgm
and send it over the channel. In the world with no “true randess” and only weak sources, this assumption is
not realizable, unless eventually two independent sowaesecretly brought together.

The above example motivates our common generalization exfigus work. We wish to considestrong
extractors withweakseeds. We will call such extractosaper-strong Namely, we want to design a functi@xT
such thatexT (X, Y") looks random even for an observer who knaWsfor any X andY sampled from their
correspondind?;, b1 ) and ({2, b2) weak sources.

LA trivial strengthening of their technique can push this bemtomin(b:, b2); we will later non-trivially push this tch; + bs.



OuR REsuLTs. As we demonstrate, such remarkable super-strong extsaetests. In particular, we show that
a random function can be used to extract essentially allahdamness fronkX (i.e., nearlyb; bits), provided
only thatbs > log#; (and alsob; > log#s). The latter condition says that as long as the public Sédths
barely enough randomness, we can extract almost all theomamess for our target sourdé. Clearly, this
bound generalizes the standard setting of (strong) ertrcivhere one needs = by, > log ¢y to extract all
the randomness fronY. We also remark that our analysisn-trivially extends the previous work. In particular,
it is not just a “trivial application” of the Chernoff bountike is the case for the existence proof for regular
extractors [21, 22§. Proving our bound will involve a careful martingale constion, and then applying the
famous Azuma'’s inequality to bound its deviation from theameAlso, our bound strengthens what was known
for regular (non-strong) extraction from two weak sourcds As mentioned, their result gave ortly + by — /¢
bits. It is easy to improve it tmin(by, b2) bits, but gettingh; + b, bits — which follows from oumore general
bound — does not seem possible when using standard Cheypefbbunds used by [7].

Next, we address explicit constructions of super-strongaetors. Unfortunately, the large body of work
on strong extractors does not seem to be applicable to stqoerg extractors. Intuitively, standard extractors
use the seed to perform a random walk on some expander, olett achash function from a small family of
functions. These arguments seem to fall apart completatg tme seed comes from a weak random source. On
the other hand, any explicit constructions of super-strextgactors will in particular implies extraction from two
independent weak sources, for which any improvement seergshard, as we mentioned earlier. Thus, the best
we can hope for is to extend the best known constructionsisndkter setting to yield super-strong extractors.
And, indeed, this is exactly what we achieve. First, we shoat the inner product function is a super-strong
bit-extractor for the casg = ¢, = ¢, providedb; + b, > £. This argument involves extending the combinatorial
lemma of Lindsey (see Section 4). Second, we show that \faamnilti-bit extraction for SV-sources can be
applied to weak source as well. This allows to extfatt) bits providedb; + be > 3¢/2. Finally, we show that
the explicit extractor of [7] based on discrete logarithras also be also be extended to our setting, which gives
a way to extract nearlyp; + b2 — ¢)/2 random bits. Again, we remark than all these extensionsaigtimvolve
non-trivial modifications to the existing arguments.

PrIvACY AMPLIFICATION. Finally, we return to applications of super-strong exiex to the setting where
different parties have independent weak sources, buta@lcdmmunication between them is public. The most
natural such application is that of key agreement {@keacy amplifications, 4]) by public discussion: sending
Y over the channel allows Alice and Bob to agree on a (nearlyjlom keyk = Ex7(X,Y’), provided the
communication channel iguthentic Therefore, the remaining interesting case to considerhiat \mappens
when the channel is not only public, batlversarially controlled13]. In particular, the question is whether
we can build any kind of message authentication with a shieegdcoming from &¢;, b; )-weak block source,
and without any local randomness. Specifically, assumeeAlitd Bob share a key, ..., X; (wherei will be
determined from their need; see below) coming friosamples from thé/,, b; )-weak block source. When Alice
gets her hands on an independent soi¥fcehe would like to authenticaé using Xs ... X;. Then, they both
can agree on the key = ExT(X1,Y’), whereExT is our super-strong extractor. As we mentioned, [9] showed
that non-interactive one-time authentication from Aliodbb is impossible wheby < ¢, /2. On the other hand,
Maurer and Wolf [13] gave a way to non-interactively autleate up to¢; /2 bits per each shared;, provided

b1 > 61/2.3 Thus, sharing = 1 4 2¢5/¢; valuesX; will allows Alice to authentically transmi¥” over the
channel, so that both can apply a super-strong extract@gree on a random = Ex1(X1,Y).

Combining this observation with our explicit constructoof super-strong extractor féf = ¢, = ¢, we get
that the first efficient privacy amplificationithout ideal local randomnesgrovidedb;, > ¢/2 andby > ¢ — b;.

\We are not aware of any written proof for the existencetaingextractors, as all the references we found point to [21, 22].
3We remark that unlike our setting, Alice and Bob hideal local randomness in the setting of [13], and used it at |asgyes of their
application. Luckily, the authentication step was deteistic, which makes it “coincidentally applicable” to outustion.



2 Preliminaries
2.1 Basic notation

We mostly employ standard notation. The symiloglis reserved for the bagelogarithm. For a positive integer

t, U; denotes a random variable that is uniform o{r1}* and independent of all other random variables under
consideration. We also writg] = {1,2,...t}. For two random variablesg!, B taking values in the finite
setA, their statistical distancés |4 — B|| = 3,4 |Pr(A = a) — Pr(B = a)|, and the min-entropy of
Ais Hy, (A) = minge 4 —log(Pr(A = a)). Finally, if C is another random variablé€]| 41—, represents the
distribution of C' conditioned o4 = a € A.

2.2 Extraction vs. Super-Strong Extraction

Min-entropy quantifies the amount of hidden randomness ouece X. The objective of extractors is to purify
this randomness with the aid of a (small amount of) truly candits.

Definition 1 Letk > 0, e > 0. A (k, ¢)-extractorExt : {0,1}" x {0,1}¢ — {0,1}™ is a function such that for
all n-bit random variablesX with min-entropyH ., (X) > k ||EXT(X,Uy) — Up|| < e. ExT is a(k, €)-strong
extractor if the functiorExt’ : (x,y) — y o ExT(z,y) is an extractor.

Efficient extraction from weakly random sources using sreedld length is a non-trivial problem on which a lot
of progress has been made recently (see references intbeuation). However, even a minimal amount of true
randomness can be very difficult to obtain in many situati@igen the impossibility of deterministic extraction
[7], it is therefore natural to consideairs of weak sourcedNe adopt a special notation for those.

Definition 2 [7] The setCG(¢;,¢2,b1,b2) of pairs of independent (Chor-Goldreich) weak sources & ght
of all pairs of independent random variabléX’,Y") where X (respectivelyY) is ¢ (resp. ¢3) bits long and
Heo (X) > by (resp. Ho (Y) > by).

We define extractors fror@ weak sources whose output remains random even if one of fhe 8irings is
revealed. This is stronger than the definition usedi7jnand this extra strength is essential for cryptographic
purposes.

Definition 3 A (b1, by, €)-super-strong extractorgSH is a functioneExt : {0,1}% x {0,1}* — {0,1}™ such
that for all pairs (X,Y") € CG(¢y, {2, b1, b2), we have|(Y,ExT(X,Y)) — (Y,Un)| <e.

We state for later convenience the following propositiomjck can be deduced from the linear programming
argument in [7] (i.e. the fact that general sources of a gimamentropy are convex combinations of flat distri-
butions with the same min-entropy).

Proposition 1 If b; andb, are integers, then faanyfunctionExt : {0,1}% x {0,1}*2 — {0, 1}™ the maximum
of (Y, ExT(X,Y)) — (Y,Up)| overall (X,Y) € CG(¢1,¢2,b1,b2) is achieved by flat random variables, that
is, by a pair(X, Y') for which X is uniform over a subsefx C {0, 1}‘* with|Sx| = 2%, andY is uniform over
Sy  {0,1}%2,|Sy | = 202,

3 Existence of super-strong extractors

Form now onm, ¢; > b; > 2 and/y > by > 2 are positive integers and> 0 is a positive real number. The aim
of this section is to prove that super-strong extractorstdai certain choices of parameters.

Theorem 1 There exists &by, by, £)-SSE ExT : {0,1}* x {0,1}*2 — {0,1}™ for any choice of parameters
satisfying



m < by — QIOg%
b1 > logy(ly — by) +2log 1 + O(1) (1)
by > logy(f1 — b1) +2log = + O(1)

Our proof of Theorem 1 is non-constructive and does not gean efficiently computable SSE. Nevertheless,
Theorem 1 is important because it provides nearly tight itimmd for existence of super-strong extractors, as
demonstrated by Theorem 2 (proved in the Appendix A).

Theorem 2 There exists a constantsuch that ifb; < ¢; —candby < ¢5—¢, then the first and second conditions
(1) of Theorem 1 are in fact necessary for the existence(bf a,, €)-SSE ExT : {0, 1}%1 x {0,1}2 — {0,1}™.

We believe that some condition along the lines of the secadio Theorem 1 is also necessary for the exis-
tence of SSE’s. However, our proof technique for Theoremiiclvis based on the lower bounds of Ta-Shma
and Radhakrishnand [22] for (regular) extractors, doesaliotv us to conclude this fact (cf. Remark 1 in the
Appendix A).

3.1 Reformulating Theorem 1

Theorem 1 follows from the following combinatorial theorem

Theorem 3 Let0 < § < 1/2 be given, and leL; > By, L, > B, and M be integers, all of which are at least
two. Assume that

M Inll{+1—1nB; \/lnL2+1—lnB2
6> 2/ —=—.,4 4 2
_maX{ \/Bl, \/ B ; B } 2)

Then there exists a matri{ = {Hi]}fl’lLf | € [M]F1*L2 such that for all sets of rowB C [L;] of sizeB; and

all sets of columng’ C [Lo] of sizeB,

By
23132 > D D Hy=al- 7| <0 (3)

a€[M]i€eR |jeC

Indeed, if we se® = B;, 2% = L, (i = 1,2), 2™ = M, ¢ = § and letExt(z,y) = H,, (identifying
[M] ~ {0,1}™), we note that the conditions of Theorem 3 correspond nitu@athose of Theorem 1. The
result (3) of Theorem 3 corresponds|it, ExT(X,Y)) — (Y, U,)|| < e whereX is flat onR andY” is flat on
C'. By Proposition 1, this implie§(Y, ExT(X,Y)) — (Y,Upn)|| < eforall (X,Y) € CG(¢1,¥2,b1,b2), which
is exactly the defining property of SSE’s. We prove Theorernel8w.

3.2 Proof of Theorem 3

Proof: (of Theorem 3)he proof is probabilistic: we choose a matfik € [M]%** 2 uniformly at random and
prove that under the hypotheses this matrix has a positoeapility of satisfying the desired low-discrepancy
property §). For each fixedy the indicator random variablg#/;; = «] are i.i.d Bernoulli with common mean
1/M and one could try to apply a Chernoff bound to bound the pritibabf their sum being too big for a
fixed choice of column and row sef$ R*. This standard approach would finish with a union bound oller a
a, R, C. However, this doesot work directly: we are considering sum of absolute values of sumfsthese
random variables. A two-step approach of bounding the dgissum first and then the “outside” sum does
not seem work either, for it only provides weak bounds. Weuwitvent this difficulty by employing a stronger
concentration inequalitgiscussed below.

40f course, for differenty, 3 [H;; = o] and[H,; = ] are actually dependent
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THE CONCENTRATION INEQUALITY. Letg : ]"[f:1 A; — R be a function defined on a Cartesian product (for
simplicity, we assume that eady finite). We assume thatis c-Lipschitz that is, ifx,y € Hle A; differ at at

most one coordinatég(z) —g(y)| < c. Nowlet(X;, X»,. .., Xy) be ak-tuple of independent random variables
that takes values i]T[f:1 A;, and defineZ = ¢g(X1, ..., X}). The proposed inequality is
Vt >0 Pr(Z — E(Z) > tVk) < e /2 (4)

This is a consequence of Azuma’s Inequality (cf. [10, Chagieor [2, Chapter 6]) applied to the Doob’s
martingale in which the values of, X5, ... X, are revealed one at a time. We now show how to apply this
result in our present context.

CONSIDERING ONE SUBMATRIX Let H be randomly picked fronff € [M]*1*12, Fix a choice ofR, C as in
the statement of the theorem. ThatfisC [L;] has sizeB; andC C [Ls] has sizeB,. Consider

Bs
> DH=al- 57 (5)

i€R,a€[M] jEC

ZR,C =

DO =

We shall use the concentration inequality (4) to bound tlebgbility of Zr > 6B B,. To this end, note that
Zp,c is a function of(H;;)(; jyerxc € [M]E*C . This space is the Cartesian productifB, copies of[M],

the choices ofi;; are all independent, andr ¢ is alsol-Lipschitz on this space. The last assertion is proved as
follows: choosg(i, j) € R x C and change the value &f;; from « to 3 (say). This changes the value of

1 By 1 By
§‘Z[Hit =a] — Sy §|Z[Hit =p] - i
teC teC
by at mostl while leaving all other summands in (5) unchanged; theegfdr, - changes by at modt This
proves thatZr ¢ satisfies the assumptions of (4), and we can deduce

¥t >0 Pr(Zpc — E(Zrc) > ty/B1B2) < e/ (6)

We now estimate the expectation Bf c. Observe that for any fixed € [Lo] anda € [M], 30, o[Hij =
a] — By /M is distributed like Birin, p) — np, where Bir{n, p) is the Binomial distribution of. i.i.d Bernoulli
summands with common mear(in our casen = B; andp = 1/M). It follows that

E(S[Hy = o] — Bo/M]|) < \/E(E[HU — o] - By/M) < \/BafM (7)

jel jeC

Zg ¢ is half of the sum of\/ B; such terms, so that(EZr ¢|) < 27'B1v/M By = 271 By By/M/B; and by
assumption, this last quantity is upper bounded By B> /2. We plug this estimate into inequalitg)(and set
t =0y B1B2/2 to obtain

PI"(ZR,C > 53132) < 6_52B1B2/8 (8)

THE UNION BOUND. Our next step is to take an union bound over all valid choafesws R and columng’'.

L L
Pr(3R,C Zpc > 6B Ba) < | 1) (2 )e " BrB2/8

52B 52B
<exp{<lnL1+1—lnBl— 162>B1+<lnL2+1—lnB2— 161>32}g1 9)

by the assumption that L; + 1 — In By < §°Bs/16 andln Ly + 1 — In By < §2B;/16. It follows that there
exists a matrixf for which Zr ¢ < 6B B, for all R,C. From the definition oZr ¢ (5), we have shown the
existence of a matri¥! satisfying (3). This concludes the proof. ]
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4 Efficient constructions

This section is devoted to constructions of efficiently cotaple SSE. Most standard techniques applied to the
construction of regular and strong extractors (e.g. usstgdecodable codes, walks on expanders, mergers or
even hash functions) seem to fail when the seed is not coetpletndom. As a result, even oltbit SSE is
only useful when the sources have the same leAgth /5 = ¢ and their min entropies add up to more than
However, the present constructions are both useful anduaieyVe propose the construction of more efficient
SSE'’s as a challenging open problem.

4.1 Hadamard matrices and extraction of one bit

A class of1-bit super-strong extractors which includes the inner pobdunction is now considered, thus provid-
ing a strengthening of a result of Chor and Goldreich [7]ntifg [L] = [2] ~ {0,1}" and letH = {H,,}% _,
be al. x L Hadamard matrix (i.e. &1 matrix with pairwise orthogonal rows and columns). Define

R G () (10
7y) 2

We shall prove the following two results.
Theorem 4 ExTy; as defined above is (@, by, £)-SSE with log 2 = bitb2=t 4 1,

Corollary 2 The inner product function oftbit strings is a(b1, b2, £)-SSE with £ as above.

Proof: (of Corollary 2 Inner product is of the forneExT gy for some Hadamard matrikl (as one can easily
show). L]

Proof: (of Theorem %The proof parallels that of the corresponding theorem nlfvparticular, we also employ
Lindsay’'s Lemma.

Lemma 3 (Lindsay’s Lemmacf. [7]LetG = (Gij)szls be aT' x T Hadamard matrix, and? andC be subsets
of [T'] corresponding to choices of rows and columné&dfespectively). Thef) ", >~ .o Gij| < /|R[|C|T.

For any choice ofqy,...,q.) € {~1,+1}*, the matrixd = (H;;) whoseith row isg; times theith row of H
is Hadamard. Hence Lindsay’'s Lemma applies and for all Bets C [L] the sum}_, >~ Hij, which is

just) . p (qi > jec Hz-j>, is bounded by< /|R||C| L. From this fact it is easy to deduce a stronger form of
Lemma 3.

VR,C C[N] Y > Hy| <+/IRIIC|L (11)
i€eR |jeC

Now let (X,Y) € CG(4, ¢, by, by) be flat random variables and assume tKais uniform onSy, |Sx| = 2
andY is uniform onSy-, |Sy | = 2%2. For eachy € Sy

1 1 1
Jexria(X.) — U1l = 3 (IPHExTA(X0) = 1) = 3]+ [Pr{EXTA(X.5) = 0) ~ 5])

1 1 H,
= 5| Pr(ExTa(X,y) = 1) = Pr(ExTr(X,y) = 0)| = 5 > |5Xy| (12)
r€Sx

Averaging over ally and using (11) withR = Sx, C = Sy, we obtain



(Y, ExTa(X,Y)) — (Y, U1)| = |S | > IExTH(X,y) — UL
yESy

1 TR
DR DR Py R (13)
2\5Y\yes ol !SX\ 2\ [Sx]1Sy|

By Proposition 1 this finishes the proof. L]

4.2 Extracting many bits

We now adapt a construction from [26] based on error-camgatodes to obtain many bits from weak sources
of same length and sufficiently high min-entropy. In whatdais Ecc : {0,1}™ — {0,1}¢ is a linear error
correcting code with distancé {¢; : 1 < i < m} is the canonical basis db, 1}" as a vector space ovék,
and for(z,y) = ((z1,..., %), (y1,--.,y0)) € {0,1} x {0,1}* we letv(z,y) € {0,1}* be the vector whose
ith coordinate isc;y;. The proposed SSE is

Ext: {0,1}* x{0,1} — {o0,1}™
(2, y) —  (Ecc(éq) - d(,y)) o -+ o (Ecc(em) - (x,y))

Note that each bit thaxT outputs corresponds to the inner product of matching setgneéthe input strings:
andy. We show that

(14)

Theorem 5 The functiorExT constructed above is @, b, e)-SSE withlog L = 1 + 2t (74 ),

There exist efficiently encodable linear codes of codewerdyth ¢, dimensionm = §3¢ and distancel =

(% — 0)¢, for all fixed0 < 6 < % Plugging one such code into Theorem 5 yields an efficierdiyputable
(b1, b2, £)-SSE withs = ¢=~() for all min-entropies satisfying-$%2 > (3/4 + )¢ + w(log ¢), and the number
of extracted bits isn = ¢3n. It remains to prove Theorem 5, and for that we use two lemnhassgcond being

fairly standard).
Lemma 4 (Parity Lemma, [26]) For any-bit random variablel’, |7 — Us|| < Y 5c (0130 (0 |(T-7) — U1

Lemmab If Z = Z,Z5 ... Z, is at-bit random variable andV C [t], let Z|; denote the concatenation of all
Z;withi € W. ThenHy, (Z|w) > Hoo (Z) — t 4 |W].
Proof: (of Theorem 5)Ve need to show that for any p&ik,Y") € CG(4, ¢, b1, ba)

(Y, EXT(X,Y)) = (V,Un)[[ = D Pr(Y =y)[[ExT(X,y) — Unl (15)
4 yE{O,l}[
~1. To this end, we apply Lemma 4 to each of the above summands.

is bounded by = 2¢T~ by +bo+

IV EXT(X,Y)) = (V,U)| < ) Pr(Y=y) >  |[[(Ex7(X,y)-a@) — U]

ye{0,1}¢ ae{0,1}m\{0}
= Y (Eexr(xY)-a) - (v, U] (16)
ae{0,1}m\{0}

It now suffices to show that for any e {0,1}™\{0}

bytbotd
2

H<Y,(EXT(X,Y).@’)> _ <Y’U1>H < 2% s

17)

Fix some non-zer@ = ) ;" a;¢€; and note that by the linearity &cc
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ExT(X,Y)-@ =Y a;(Ecc(é) - #(X,Y)) = Ecc(d@) - 5(X,Y) = Y _X;V; = (X|s) - (Y]s)  (18)
=1 €S
whereS is the set of all non-zero coordinates Bfc(a@), and X |s andY'|s are defined as in the statement
of Lemma 5. Applying that same lemma, we conclude thiat (Y'|s) has min-entropy at leasy — ¢ + |5
(respectivelyb, — ¢ + |S|). It now follows from (18), Corollary 2 and the fact that|s andY'|s have length S|
that

[S|—=by —ba+2¢—2|S| _1_bitbot|S|
2 1 24 1 2

H(Y, (ExT(X,Y) - a@)) — (Y, U1>H <2 (19)

Since|S| = (weight of Ecc(d)) > d by definition of S, equation (19) proves (17) and finishes the proof. []

4.3 A number-theoretic construction

A third efficient SSE construction is now presented. Its mili min-entropy requirement is basicably + b, >

£, which roughly matches the Hadamard matrix constructionlfbit extraction. However, this SSE has the
drawback of requiring a pre-processing stage for efficidndye achieved. The construction dates back to [7],
in which it was shown thaExT(X,Y) is close to random. We claim that the same is true evénig given to
the adversary, thus establishing that this constructitiefes our definition of SSE. In what follows,> 2 is a
prime and we také = |logp| so that we can assun{®, 1}* C Z,. Letk be a divisor ofp — 1; our SSE will
output elements df;, (the definition of a SSE easily generalizes to this casehllyinet g be a generator of the
multiplicative groupZ,, and denote b¥og, the basey discrete logarithm irZ;. We define

Ext: {0,1}* x{0,1} — 7, (20)
(z,y) — log,(z —y) mod k

We prove in the Appendix B that approximately = log k ~ “+02=f — log  bits can be extracted by this
construction.

Theorem 6 The functiorExt defined above is b1, by, £)-SSE withlog L = 24—t 1 1 —_Jog k.

We refer to [7] for details on the efficient implementationesfr and the pre-computation of k£ andg.

5 Simple authentication with weak sources

5.1 Motivation

Assume that two parties Alice and Bob share the output Gf-bit weak random sourc& with min-entropy
H. (X) > by. Itis then clear that &b, bo,)-SSE ExT : {0,1}* x {0,1}> — {0,1}™ can be used by
both Alice and Bob to extract an almost perfectly randomeseloey S = ExT(X,Y’) from the shared secret
information X and a weakly random public strirlg with min-entropyH, (Y) > b,. This shows that super-
strong extractors trivially solve the problem of privacy @ification over passive public channels when weak
random sources are used. In this Section we provide a simpteqgol PA for privacy amplification over an
adversarially controllecchannel, when only weak sources of randomness are availdilewing [13], we show
that weak sources can be used in conjunction with the simpletb” message authentication code (MAC) to
transmit the non-secret inplit over the adversarial channel. For completeness, we prov@diAppendix C)
appropriate versions of the results of [13].

Let us specify the idealized world we shall deal with whercdssing the protocol. We assume that Bob can
either beclose (to Alice) or far from Alice. Each one of them has a weak source (specified HeltviBob is
close, they can share secret information at will, but their sosisleould be assumed to be arbitrarily correlated
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(which is reasonable for purely physical and adversariateas). On the other hand, if Bobfe, the sources
can be assumed to be independent, but only active advéis@manunication channels are available. Finally, we
assume that Bob’s source outputé-hit long stringY” with min-entropyH . (Y') > bs, whereas Alice’s source
outputs three-bit strings A, B, X, which are assumed that they formbablock source7]. That is, for any
a,b € {0,1}, A,B|s=a and X |, p= all have min entropy at least.

Our scenario differs from that of previous work on privacymification (e.g. [13]). In most of those works,
the secret ke satisfies a min-entropy condition (that is, the adversapsdwt know it completely), but Alice
and Bob are capable of sampling perfectly random bits. Byrast) under our constrants, no perfect randomness
is available to either Alice or Bob, and geographical diseabetween the sources is necesary for independence,
which is a reasonable assumption for physical and advatsaources. Whereas in [13] (for instance) it is not
clear that it would not be possible for the parties to agrea perfectly random secret key when they meet in
the first place, this is impossible in our case. Therefore,nbed for privacy amplification is arguably better
motivated in the present work. We also note that, althoughassumption on Alice’s source is stronger than that
on Bob’s source, it is still much weaker than the capabilitgénerate truly random bits.

5.2 The protocol

Alice and Bob’s aim is to agree on a secret &that is very close to being random from Eve’s point of viewisTh
is achieved by the protocol PA which we now describe (seeTabe1 in the Appendix D), in which we identify
{0, 1}* with the finite fieldF,. for the purpose of arithmetic operations, d@bdr : {0,1}¢ x {0,1}* — {0,1}™

is a function (we will later choose it to be a suitable SSE)iey, Alice and Bob shar¢A, B, X)) when Bob

is close. Then Bob moves téar, samples} and send¥’, Z = AY + B to Alice. Eve then intercept&, Z),
which she substitutes fd", Z) and sends to Alice. Alice checks#fY + B = Z and, if this is satisfied, she
computesS = ExT(X,Y), rejecting otherwise. In the meantime, Bob has compited ExT(X,Y). As we
shall see (see Theorem 7), with high probability either S and Alice and Bob share a secret key, or else Alice
has rejected. Note that we always assumeYhandZ as in Tablel have lengttf each by establishing that Alice
rejects otherwise.

We demonstrate in the Appendix C that protocol PA is indeedirgeas long ag; = g + w(log /) and a
(b1, by, £~“(1))-SSE exists. For instance, the number-theoretic SSE (€he6) permits agreement on a key of
lengthm ~ 2E2=L 1 y(log ¢).

Theorem 7 If ExTis a(by, ba, €)- SSE the protocolPA has the following property. If Eve is passive, Alice never
rejects,S = S and H(Y S) — (Y,Upn)|| < e. If Eve is active, the probability of either Alice rejecting S = S
and||(Y,S) — (Y,U,)| < eis at leastl — 26721,
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A Lower bounds - proof of Theorem 2

In this subsection we prove Theorem 2.

Proof: (of Theorem 2WWe use the following lower bounds of Ta-Shma and Radhalkaist@2] for (regular)
extractors.

Theorem 8 [22] There exists a constartsuch that the following holds. Lext’ : {0,1}" x {0,1}¢ — {0,1}™
be a regular(k, ¢)-extractor withd < m — 2 andk < n —c. Thend > log(n — k) + 210g% — O(1) and
d+k—m> 210g%—0(1).

Let Y be uniform on{0, 1}?2 o 0°2~%2 and note that it has min-entropy. Now set

Exty: {0,1}% x {0,1}2 — {0,1}7m*b2

(z,y) — yoExT(z,yo 062_1)2) D)
For all ¢,-bit long random variableX with min-entropyH, (X) > b;
[EXT1(X, Upy) = Unapo || = (Y, EXT(X,Y)) — (Y, Un)| <€ (22)

since(X,Y) € CG({1,/2,b1,b2) andExT is a SSE with the adequate parameters. It follows Exat; is a
(b1,¢)- extractor. By Theorem 8 we conclude

1 1
by < log(fq —bl)+210gg —O(l)andby +by —m —by =b; —m > 210gg (23)

(

Remark 1 In an attempt to prove that; < log(¢; — b1) + 2log% — O(1) is necessary, one might be tempted
to reverse the process in the above proof and built a regukéiraetor Ext, out of ExT for which the random
variable X that is uniform on{0,1}%* o 0©2=1 is the seed. The reason why this does not work is that the utpu
lengthm in this case is smaller than the effective seed lengtland Theorem 8 does not apply to this case.

B Proof of Theorem 6

Proof. (of Theorem 6)Ne firstclaim that the following inequality holds for all subsets B,C' C Z,: setting

by = maxi<;j<p—1 ‘ ZceC e r ”

#{beB:a—-beC}—

< @oV/|Al|B| (24)

>

a€A

BI(C]| _
p
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Inequality (24) is proven subsequently. Assuming it foritth@ment, choose € Z; and set
C={ceCllog,(c) =a mod k}

Following [7, Sectiors.2], we note thatC'| = p/k and®c < ,/p. Hence for allA, B C C

D

a€A

#{b € B :logy(a—b)=a} - —‘ < +/p|A]|B| (25)

We deduce from (25) that for any choice of flat random vargll,Y) € CG(¢1, {2, b1, ba)with respective
supportsSy, Sy of sizes2b1, 202

Y, ExT(X,Y)) — (Y, U)]]

030>

o€l yeSy

#oe Sy ilogyla—y)=a) 1
2b1+b2 2b1 [

and this implies the theorem by Proposition 1. U

Proof: (of inequality (24))This proof uses the method of trigonometric sums (a.k.arieoAnalysis orZ,) and
follows closely that of Lemmaé in [1]. For simplicity, we prove the equivalent inequality

>

a€A

#{beBzﬂceCaer:c}—|B|})|C|‘§<I>C\/\AHB\ 27)

27i
Letw = e » and define

Yr(j) =Y W (j € Zp, T C Zy)
teT

For anya € A, the number ob € B satisfyinga + b = ¢ for somec € C' is precisely

-1

p—1
LS witun(i)o(—) = P+ Z () (28)

=0 -

as a simple calculation shows. Hence for any choicg,af +1,a € A

-1

qa<#{beB:3ceCa+b:c} |B||C|> Z (e =)

We can now sum over € A; letting /4 (j) = > aen daw™

an<#{beB:ElceCa+b:c} 'B”C|> 1Z¢ ve(—5) (29)

a€A

By an appropriate choice of thg’s, it is possible to conclude that in fact
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>

a€A

#{beBzacecaer:c}_M‘:l
p p

p—1
> ba(i)esi)vo(—j) (30)
j=1

Applying Cauchy Schwartz to the RHS and noting that

p—1 p—1
Y [bal)F <plAland Y [dp(i)de (=) < 9Ep|B]
=1 j=1

where®c = sup;<;<,_1 [¥c(j)], we can finally bound

B
Z #{bGB:EICGCa—i-b:c}—"%C“§<I>C\/\AHB] (31)
acA
This finishes the proof. ]

C Proof of Theorem 7

We first prove a lemma on thet + b” MAC that is similar to Theoreng in [13].

Lemma 6 Letg : For x Fye — Fye x Fye be a functionw € Fyr, and(C, D) be twol-bit long strings with joint
min-entropyH ., ((C, D)) > 2b;. Define(T, V') = g(w, Cw + D). Then

Pr((T,V) # (w,Cw + D) andCT + D = V) < 2072

Proof: (of Lemma 6Fix C' = ¢, D = d and lets = cw + d. The pair(7, V) is then completely determined by
the value ofs. Now assume thg(c, d) is bad that is,(T, V') = (t(s),v(s)) # (w, s) butct(s) + d = v(s). The
pair (¢, d) must then satisfy the following system of equations

(o ) ()=t ) &

for s € Fy. It cannot be true that(s) = w, for that would imply thatv(s) = ct(s) + d = cw + d and
(t(s),v(s)) = (w,cw+d), so it must hold thatr # (s). This implies that the matrix in (32) is non-singular and
that the corresponding system of equations has exactlyaugan. We conclude that for each possible value of
s = cw + d there can be at most ofad pair (¢, d), and that this pair is completely determined by (32). Since
there are2’ possible values fos and each paitc, d) has probability< 2721, the probability of the sampled
value of(C, D) being bad is< 2¢-2%1, This is precisely the desired resuilt. L]

Proof: (of Theorem 7}t suffices to treat the case of a deterministic active adwgrsThat is, Eve’s strategy for
producing(Y’, Z) is to use a deterministic function f andZ = AY + B. Lemma 6 implies that for any value
y of Y the probability thatZ = AY + B andY # y is at mos2‘~—2%1, Assuming that this event does not happen,

Alice does not reject and = S. Moreover,

0V AY +B,5) — (VAY £ B U < max (V. EXT(XamanmY)) — (VU S (39
a,0€40, 1

by the SSE property and the block source conditiomoi, X . L]

D The Protocol PA
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‘ PART 1 - Bob isclose ‘
Alice \ (secret info) \ Bob

samples 4, B, X) (4.8,X) stores @, B, X)

\ PART 2 - Bob isfar \

Alice \ Eve (channel) \ Bob
samplesy”
Z =AY + B
receivesY , Z) 2)=0%2) sendgY, Z)
if AY +B+# 72 S = ExT(X,Y)
reject accept
else
S =ExT(X,Y)
accept

Table 1:Description of protocol PA for privacy amplification. Allmdom variablesY, Y, 4, B, Y andZ take values in
{0, 1}€ ~ IFQZ.
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