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Abstract

We introduce the notion of asuper-strong extractor. Given two independent weak random sourcesX,Y ,
such extractor EXT(·, ·) has the property that EXT(X,Y ) is statistically random even if one is givenY .
Namely,〈Y,EXT(X,Y )〉 ≈ 〈Y,R〉. Super-strong extractors generalize the notion of strong extractors [16],
which assume thatY is truly random, and extractors from two weak random sources[26, 7] which only assure
that EXT(X,Y ) ≈ R. We show that super-extractors have many natural applications to design of crypto-
graphic systems in a setting when different parties have independent weak sources of randomness, but have
to communicate over an insecure channel. For example, they allow one party to “help” other party extract
private randomness: the “helper” simply sendsY , and the “client” gets private randomness EXT(X,Y ). In
particular, it allows two parties to derive a nearly random key after initial agreement on only a weak shared
key, without using ideal local randomness.

We show that optimal super-strong extractors exist, which are capable of extracting all the randomness
fromX , as long asY has a logarithmic amount of min-entropy. This generalizes asimilar result from strong
extractors, and improves upon previously known bounds [7] for a weaker problem of randomness extraction
from two independent random sources. We also give explicit super-strong extractors which work provided the
sum of the min-entropies ofX andY is at least their block length.

Finally, we consider the setting of our problem where the public communication channels arenot authen-
ticated. Using the results of [13], we show that non-trivial authentication is possible when the min-entropy
rate of the shared secret key is at least a half. Combining this with our explicit super-extractor construction,
we get the first privacy amplification protocol over an adversarially controlled channel, where player do not
have ideal local randomness.
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1 INTRODUCTION

IMPERFECTRANDOMNESS. Randomization has proved to be extremely useful and fundamental in many areas
of computer science. Unfortunately, in many situations onedoes not have ideal sources of randomness, and one
has to base a given application onimperfect sources of randomness. Among many imperfect sources considered
so far, perhaps the most general and realistic source is theweaksource [29, 7]. The only thing guaranteed about
a weaksource is that no particular string has a very high probability of occurring. This is characterized by a
parameterb (called themin-entropyof the source) by saying that no string (of some given lengthℓ) occurs with
probability more than2−b (for any distribution of the source). We will call this source(ℓ, b)-weak. Unfortunately,
handling such weak sources is often necessary in many applications, as it is typically hard to assume much
structure on the source beside the fact that it contains somerandomness. Thus, by now a universal goal in basing
some application on imperfect sources is to make it work withthe weak source.

The most direct way of utilizing weak sources would be to extract nearly perfect randomness from such a
source. Unfortunately, it is trivial to see [7] that that nodeterministicfunction can extract even one random bit
from a weak source, as long asb < ℓ (i.e., the source is not random to begin with). This observation leaves two
possible options. First, one can try to use weak sources for agiven applicationwithout an intermediate step of
extracting randomness from it. Second, one can try designing probabilisticextractors, and later justify where and
how one can obtain the additional randomness needed for extraction.

USING A SINGLE WEAK SOURCE. A big successful line of research [27, 25, 7, 8, 29, 3] following the first
approach showed that a single weak source is sufficient to simulate any probabilistic computation of decision or
optimization problems (i.e., problems with a unique “correct” output which are potentially solved more efficiently
using randomization; this class is calledBPP). Unfortunately, most of the methods in this area are not applicable
for applications of randomness, where the randomness is needed by the applicationitself, and not mainly for the
purposes of efficiency. One prime example of this is cryptography. For example, secret keys have to be random,
and many cryptographic primitives (such as public-key encryption) mustbe probabilistic. Indeed, it is not good
enough to produce a set of secret keys most of which are “good”, if one does not know which of these keys
to actually use, or to say that “at least half of the ciphertext does not reveal the message”. Thus, new methods
are needed to base cryptographic protocols on weak sources.So far, this question has only been studied in the
setting of information-theoretic symmetric-key cryptography. In this scenario, the shared secret key between the
sender and the recipient is no longer random, but comes from aweak source. As a very negative result, McInnes
and Pinkas [14] proved that one cannot securely encrypt evena single bit, even when using an “almost random”
(ℓ, ℓ−1)-weak source. Thus, one cannot base symmetric-key encryption on weak sources. Dodis and Spencer [9]
also consider the question of message authentication and show that one cannot (non-interactively) authenticate
even one bit using(ℓ, ℓ/2)-weak source (this bound is tight as Maurer and Wolf [13] showed how to authenticate
up toℓ/2 bits whenb > ℓ/2).

Basing more advanced cryptographic primitives on a single weak random sources also promises to be chal-
lenging. For example, it is not clear how to meaningfully model access a single weak source by many parties
participating in a given cryptographic protocol. Additionally, moving to thecomputationalsetting will likely
require making very non-standard cryptographic assumptions.

USING SEVERAL WEAK SOURCES. Instead, we will assume that each party will have its own weak source,
which is independentfrom all the other weak random sources. In other words, whileeach individual party
cannot assume that his source is truly random, the parties are located “far apart” so that their imperfect sources
are independent from each other. For simplicity, we will restrict the number of independent sources to two for
the remainder of this paper. One of the questions we will consider if it is possible to construct cryptographic
protocols, like secret-key encryption or key exchange, in this new setting. In fact, rather than construct these
primitives from scratch, we will try to extract nearly idealrandomness from two weak sources, and then simply

1



use whatever standard methods exist for the cryptographic task at hand!

This brings us to the question of randomness extraction fromseveral independent random sources. This
question originated as early as [18], who showed that one canextract randomness from “many” so called “semi-
random” sources (later calledSV-sources), which are very special cases of the weak sources. Vazirani[26]
considered two SV-sources, and showed that the inner product function indeed extracts an almost random bit in
this case (he also extended this construction to extract more than one bit). Chor and Goldreich [7] were the first
to consider general weak sources of equal block length; let us say that the sourcesX andY are(ℓ1, b1)-weak
and(ℓ2, b2)-weak, for concreteness, while here we also assumeℓ1 = ℓ2 = ℓ. First, they showed that a random
function can extract almost(b1 + b2 − ℓ) nearly random bits in this setting.1 The also gave an explicit number-
theoretic construction that can essentially match this (non-optimal) bound. Moreover, they showed that the simple
inner product function is also a good bit-extractor under the same condition thatb1 + b2 > ℓ. Recently, Trevisan
and Vadhan [24] broke this the “barrier”b2 + b2 > ℓ, but only for the very “imbalanced” case whenb1 = ε2ℓ,
b2 = (1 − O(ε))ℓ (for any ε > 0). To summarize, while non-trivial randomness extraction is possible, the
known constructions and parameters seem far from optimal. Unfortunately, improving this situation seems to be
extremely challenging. Indeed, it is easy to see that the question of extracting randomness from two independent
sources beyond what is currently known is even harder than a notoriously hard problem of explicitly constructing
certain bipartite Ramsey graphs (see [28, 17]).

EXTRACTORS. A special case of the above question has received a huge amount of attention recently. It involved
the case when one of the two sources, sayX, is perfect: b1 = ℓ1. In this case, one investsb1 bits of true
randomnessX (called theseed) and hopes to extract nearlyb1 + b2 random bits fromX and a given(b2, ℓ2)-
weak sourceY . A deterministic functionEXT achieving this task has simply been called anextractor [16]. A
strong extractoradditionally requiresX itself to be part of the extracted randomness. In this case,X is usually
excluded from the output ofEXT, so that the goal becomes to extract up tob2 random bits fromY . By now, it is
well known that one can indeed achieve this goal providedb1 ≫ log ℓ2. Moreover, many explicit constructions
of strong extractors which come very close to this bound are known by now (see [15, 23, 11, 20, 19] and the
references therein). Not surprisingly, strong extractorshave found many applications (e.g., see [19, 6, 12]).

OUR QUESTION. The general question of extracting randomness from two weak sources [18, 26, 7] concentrated
on regular, non-strong extractors. Namely, one could not publish the random seedX. If the extracted randomness
is to be used as the secret key of the conventional cryptographic systems, this means that one should sample
X andY from two independent weak sources, and securely “transport” X to Y . Consider, for example, the
following application. Alice and Bob stay together and wishto securely communicate when Alice goes away.
Then can agree on an auxiliary secret keyX sampled from their common weak source. When Alice leaves far
away, she gets access to an independent sourceY . Assuming the parameters are right, Alice can now extract a
nearly random secret keyk = EXT(X,Y ). However, Bob only knowsX, so Alice has to sendY to Bob. In
cryptography, it is conventional to assume that the communication channel between Alice and Bob is public.
Thus, Alice has to sendY “in the clear”. With regular extractors, even from two weak sources, there is no
guarantee thatEXT(X,Y ) will look random to the eavesdropper who learnsX. On the other hand, conventional
strong extractors resolve this problem, but rely on a strongassumption that Alice can sample a truly randomY
and send it over the channel. In the world with no “true randomness” and only weak sources, this assumption is
not realizable, unless eventually two independent sourcesare secretly brought together.

The above example motivates our common generalization of previous work. We wish to considerstrong
extractors withweakseeds. We will call such extractorssuper-strong. Namely, we want to design a functionEXT

such thatEXT(X,Y ) looks random even for an observer who knowsY , for anyX andY sampled from their
corresponding(ℓ1, b1) and(ℓ2, b2) weak sources.

1A trivial strengthening of their technique can push this number tomin(b1, b2); we will later non-trivially push this tob1 + b2.
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OUR RESULTS. As we demonstrate, such remarkable super-strong extractors exists. In particular, we show that
a random function can be used to extract essentially all the randomness fromX (i.e., nearlyb1 bits), provided
only thatb2 ≥ log ℓ1 (and alsob1 ≥ log ℓ2). The latter condition says that as long as the public seedY has
barely enough randomness, we can extract almost all the randomness for our target sourceY . Clearly, this
bound generalizes the standard setting of (strong) extractors, where one needsℓ2 = b2 ≥ log ℓ1 to extract all
the randomness fromX. We also remark that our analysisnon-trivially extends the previous work. In particular,
it is not just a “trivial application” of the Chernoff bound,like is the case for the existence proof for regular
extractors [21, 22].2 Proving our bound will involve a careful martingale construction, and then applying the
famous Azuma’s inequality to bound its deviation from the mean. Also, our bound strengthens what was known
for regular (non-strong) extraction from two weak sources [7]. As mentioned, their result gave onlyb1 + b2 − ℓ
bits. It is easy to improve it tomin(b1, b2) bits, but gettingb1 + b2 bits — which follows from ourmore general
bound — does not seem possible when using standard Chernoff type bounds used by [7].

Next, we address explicit constructions of super-strong extractors. Unfortunately, the large body of work
on strong extractors does not seem to be applicable to super-strong extractors. Intuitively, standard extractors
use the seed to perform a random walk on some expander, or to select a hash function from a small family of
functions. These arguments seem to fall apart completely once the seed comes from a weak random source. On
the other hand, any explicit constructions of super-strongextractors will in particular implies extraction from two
independent weak sources, for which any improvement seems very hard, as we mentioned earlier. Thus, the best
we can hope for is to extend the best known constructions in this latter setting to yield super-strong extractors.
And, indeed, this is exactly what we achieve. First, we show that the inner product function is a super-strong
bit-extractor for the caseℓ1 = ℓ2 = ℓ, providedb1 + b2 > ℓ. This argument involves extending the combinatorial
lemma of Lindsey (see Section 4). Second, we show that Vazirani’s milti-bit extraction for SV-sources can be
applied to weak source as well. This allows to extractΩ(ℓ) bits providedb1 + b2 ≫ 3ℓ/2. Finally, we show that
the explicit extractor of [7] based on discrete logarithms can also be also be extended to our setting, which gives
a way to extract nearly(b1 + b2 − ℓ)/2 random bits. Again, we remark than all these extensions actually involve
non-trivial modifications to the existing arguments.

PRIVACY AMPLIFICATION . Finally, we return to applications of super-strong extractors to the setting where
different parties have independent weak sources, but all the communication between them is public. The most
natural such application is that of key agreement (akaprivacy amplification[5, 4]) by public discussion: sending
Y over the channel allows Alice and Bob to agree on a (nearly) random keyk = EXT(X,Y ), provided the
communication channel isauthentic. Therefore, the remaining interesting case to consider is what happens
when the channel is not only public, butadversarially controlled[13]. In particular, the question is whether
we can build any kind of message authentication with a sharedkey coming from a(ℓ1, b1)-weak block source,
and without any local randomness. Specifically, assume Alice and Bob share a keyX1, . . . ,Xi (wherei will be
determined from their need; see below) coming fromi samples from the(ℓ1, b1)-weak block source. When Alice
gets her hands on an independent sourceY , she would like to authenticateY usingX2 . . . Xi. Then, they both
can agree on the keyk = EXT(X1, Y ), whereEXT is our super-strong extractor. As we mentioned, [9] showed
that non-interactive one-time authentication from Alice to Bob is impossible whenb1 ≤ ℓ1/2. On the other hand,
Maurer and Wolf [13] gave a way to non-interactively authenticate up toℓ1/2 bits per each sharedXi, provided
b1 ≫ ℓ1/2.3 Thus, sharingi = 1 + 2ℓ2/ℓ1 valuesXi will allows Alice to authentically transmitY over the
channel, so that both can apply a super-strong extractors toagree on a randomk = EXT(X1, Y ).

Combining this observation with our explicit constructions of super-strong extractor forℓ1 = ℓ2 = ℓ, we get
that the first efficient privacy amplificationwithout ideal local randomness, providedb1 ≫ ℓ/2 andb2 ≫ ℓ− b1.

2We are not aware of any written proof for the existence ofstrongextractors, as all the references we found point to [21, 22].
3We remark that unlike our setting, Alice and Bob hadideal local randomness in the setting of [13], and used it at later stages of their

application. Luckily, the authentication step was deterministic, which makes it “coincidentally applicable” to our situation.
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2 Preliminaries

2.1 Basic notation

We mostly employ standard notation. The symbollog is reserved for the base2 logarithm. For a positive integer
t, Ut denotes a random variable that is uniform over{0, 1}t and independent of all other random variables under
consideration. We also write[t] ≡ {1, 2, . . . t}. For two random variablesA,B taking values in the finite
setA, their statistical distanceis ‖A − B‖ ≡ 1

2

∑

a∈A |Pr(A = a) − Pr(B = a)|, and the min-entropy of
A is H∞ (A) ≡ mina∈A− log(Pr(A = a)). Finally, if C is another random variable,C|A=a represents the
distribution ofC conditioned onA = a ∈ A.

2.2 Extraction vs. Super-Strong Extraction

Min-entropy quantifies the amount of hidden randomness in a sourceX. The objective of extractors is to purify
this randomness with the aid of a (small amount of) truly random bits.

Definition 1 Letk ≥ 0, ε > 0. A (k, ε)-extractorEXT : {0, 1}n × {0, 1}d → {0, 1}m is a function such that for
all n-bit random variablesX with min-entropyH∞ (X) ≥ k ‖EXT(X,Ud) − Um‖ ≤ ε. EXT is a (k, ε)-strong
extractor if the functionEXT′ : (x, y) 7→ y ◦ EXT(x, y) is an extractor.

Efficient extraction from weakly random sources using smallseed length is a non-trivial problem on which a lot
of progress has been made recently (see references in the Introduction). However, even a minimal amount of true
randomness can be very difficult to obtain in many situations. Given the impossibility of deterministic extraction
[7], it is therefore natural to considerpairs of weak sources. We adopt a special notation for those.

Definition 2 [7] The setCG(ℓ1, ℓ2, b1, b2) of pairs of independent (Chor-Goldreich) weak sources is the set
of all pairs of independent random variables(X,Y ) whereX (respectivelyY ) is ℓ1 (resp. ℓ2) bits long and
H∞ (X) ≥ b1 (resp.H∞ (Y ) ≥ b2).

We define extractors from2 weak sources whose output remains random even if one of the input strings is
revealed. This is stronger than the definition used in[7], and this extra strength is essential for cryptographic
purposes.

Definition 3 A (b1, b2, ε)-super-strong extractor (SSE) is a functionEXT : {0, 1}ℓ1 × {0, 1}ℓ2 → {0, 1}m such
that for all pairs(X,Y ) ∈ CG(ℓ1, ℓ2, b1, b2), we have‖〈Y, EXT(X,Y )〉 − 〈Y,Um〉‖ ≤ ε.
We state for later convenience the following proposition, which can be deduced from the linear programming
argument in [7] (i.e. the fact that general sources of a givenmin-entropy are convex combinations of flat distri-
butions with the same min-entropy).

Proposition 1 If b1 andb2 are integers, then foranyfunctionEXT : {0, 1}ℓ1 ×{0, 1}ℓ2 → {0, 1}m the maximum
of ‖〈Y, EXT(X,Y )〉 − 〈Y,Um〉‖ over all (X,Y ) ∈ CG(ℓ1, ℓ2, b1, b2) is achieved by flat random variables, that
is, by a pair(X,Y ) for whichX is uniform over a subsetSX ⊂ {0, 1}ℓ1 with |SX | = 2b1 , andY is uniform over
SY ⊂ {0, 1}ℓ2 , |SY | = 2b2 .

3 Existence of super-strong extractors
Form now onm, ℓ1 ≥ b1 ≥ 2 andℓ2 ≥ b2 ≥ 2 are positive integers andε > 0 is a positive real number. The aim
of this section is to prove that super-strong extractors exist for certain choices of parameters.

Theorem 1 There exists a(b1, b2, ε)-SSE EXT : {0, 1}ℓ1 × {0, 1}ℓ2 → {0, 1}m for any choice of parameters
satisfying
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m ≤ b1 − 2 log 1
ε

b1 ≥ log2(ℓ2 − b2) + 2 log 1
ε +O(1)

b2 ≥ log2(ℓ1 − b1) + 2 log 1
ε +O(1)

(1)

Our proof of Theorem 1 is non-constructive and does not provide an efficiently computable SSE. Nevertheless,
Theorem 1 is important because it provides nearly tight conditions for existence of super-strong extractors, as
demonstrated by Theorem 2 (proved in the Appendix A).

Theorem 2 There exists a constantc such that ifb1 ≤ ℓ1−c andb2 ≤ ℓ2−c, then the first and second conditions
(1) of Theorem 1 are in fact necessary for the existence of a(b1, b2, ε)-SSE EXT : {0, 1}ℓ1×{0, 1}ℓ2 → {0, 1}m.

We believe that some condition along the lines of the second one in Theorem 1 is also necessary for the exis-
tence of SSE’s. However, our proof technique for Theorem 2, which is based on the lower bounds of Ta-Shma
and Radhakrishnand [22] for (regular) extractors, does notallow us to conclude this fact (cf. Remark 1 in the
Appendix A).

3.1 Reformulating Theorem 1

Theorem 1 follows from the following combinatorial theorem.

Theorem 3 Let 0 < δ < 1/2 be given, and letL1 ≥ B1, L2 ≥ B2 andM be integers, all of which are at least
two. Assume that

δ ≥ max

{

2

√

M

B1
, 4

√

lnL1 + 1− lnB1

B2
, 4

√

lnL2 + 1− lnB2

B1

}

(2)

Then there exists a matrixH = {Hij}L1,L2

i=1,j=1 ∈ [M ]L1×L2 such that for all sets of rowsR ⊂ [L1] of sizeB1 and
all sets of columnsC ⊂ [L2] of sizeB2

1

2B1B2

∑

α∈[M ]

∑

i∈R

∣

∣

∣

∣

∣

∣

∑

j∈C

[Hij = α]− B2

M

∣

∣

∣

∣

∣

∣

≤ δ (3)

Indeed, if we set2bi = Bi, 2ℓi = Li (i = 1, 2), 2m = M , ε = δ and letEXT(x, y) = Hxy (identifying
[M ] ≈ {0, 1}m), we note that the conditions of Theorem 3 correspond naturally to those of Theorem 1. The
result (3) of Theorem 3 corresponds to‖〈Y, EXT(X,Y )〉 − 〈Y,Um〉‖ ≤ ε whereX is flat onR andY is flat on
C. By Proposition 1, this implies‖〈Y, EXT(X,Y )〉 − 〈Y,Um〉‖ ≤ ε for all (X,Y ) ∈ CG(ℓ1, ℓ2, b1, b2), which
is exactly the defining property of SSE’s. We prove Theorem 3 below.

3.2 Proof of Theorem 3

Proof: (of Theorem 3)The proof is probabilistic: we choose a matrixH ∈ [M ]L1×L2 uniformly at random and
prove that under the hypotheses this matrix has a positive probability of satisfying the desired low-discrepancy
property (3). For each fixedα the indicator random variables[Hij = α] are i.i.d Bernoulli with common mean
1/M and one could try to apply a Chernoff bound to bound the probability of their sum being too big for a
fixed choice of column and row setsC,R4. This standard approach would finish with a union bound over all
α,R,C. However, this doesnot work directly: we are consideringa sum of absolute values of sumsof these
random variables. A two-step approach of bounding the “inside” sum first and then the “outside” sum does
not seem work either, for it only provides weak bounds. We circumvent this difficulty by employing a stronger
concentration inequalitydiscussed below.

4Of course, for differentα, β [Hij = α] and[Hij = β] are actually dependent
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THE CONCENTRATION INEQUALITY. Let g :
∏k

i=1 Λi → R be a function defined on a Cartesian product (for
simplicity, we assume that eachΛi finite). We assume thatg is c-Lipschitz; that is, ifx, y ∈

∏k
i=1 Λi differ at at

most one coordinate,|g(x)−g(y)| ≤ c. Now let(X1,X2, . . . ,Xk) be ak-tuple of independent random variables
that takes values in

∏k
i=1 Λi, and defineZ ≡ g(X1, . . . ,Xk). The proposed inequality is

∀t ≥ 0 Pr(Z − E(Z) > t
√
k) ≤ e−t2/2c2 (4)

This is a consequence of Azuma’s Inequality (cf. [10, Chapter 2] or [2, Chapter 6]) applied to the Doob’s
martingale in which the values ofX1,X2, . . . Xk are revealed one at a time. We now show how to apply this
result in our present context.

CONSIDERING ONE SUBMATRIX. LetH be randomly picked fromH ∈ [M ]L1×L2 . Fix a choice ofR,C as in
the statement of the theorem. That is,R ⊂ [L1] has sizeB1 andC ⊂ [L2] has sizeB2. Consider

ZR,C ≡
1

2

∑

i∈R,α∈[M ]

∣

∣

∑

j∈C

[Hij = α]− B2

M

∣

∣ (5)

We shall use the concentration inequality (4) to bound the probability ofZR,C > δB1B2. To this end, note that
ZR,C is a function of(Hij)(i,j)∈R×C ∈ [M ]R×C . This space is the Cartesian product ofB1B2 copies of[M ],
the choices ofHij are all independent, andZR,C is also1-Lipschitz on this space. The last assertion is proved as
follows: choose(i, j) ∈ R× C and change the value ofHij from α to β (say). This changes the value of

1

2

∣

∣

∑

t∈C

[Hit = α]− B2

M

∣

∣ +
1

2

∣

∣

∑

t∈C

[Hit = β]− B2

M

∣

∣

by at most1 while leaving all other summands in (5) unchanged; therefore, ZR,C changes by at most1. This
proves thatZR,C satisfies the assumptions of (4), and we can deduce

∀t ≥ 0 Pr(ZR,C − E(ZR,C) > t
√

B1B2) ≤ e−t2/2 (6)

We now estimate the expectation ofZR,C . Observe that for any fixedi ∈ [L2] andα ∈ [M ],
∑

j∈C [Hij =
α] − B2/M is distributed like Bin(n, p) − np, where Bin(n, p) is the Binomial distribution ofn i.i.d Bernoulli
summands with common meanp (in our case,n = B1 andp = 1/M ). It follows that

E(
∣

∣

∑

j∈C

[Hij = α]−B2/M
∣

∣) ≤
√

E
(∣

∣

∑

j∈C

[Hij = α]−B2/M
∣

∣

2)
<

√

B2/M (7)

ZR,C is half of the sum ofMB1 such terms, so that E(|ZR,C |) < 2−1B1

√
MB2 = 2−1B1B2

√

M/B2 and by
assumption, this last quantity is upper bounded byδB1B2/2. We plug this estimate into inequality (6) and set
t = δ

√
B1B2/2 to obtain

Pr(ZR,C > δB1B2) ≤ e−δ2B1B2/8 (8)

THE UNION BOUND. Our next step is to take an union bound over all valid choicesof rowsR and columnsC.

Pr(∃R,C ZR,C > δB1B2) ≤
(

L1

B1

)(

L2

B2

)

e−δ2B1B2/8

< exp

{(

lnL1 + 1− lnB1 −
δ2B2

16

)

B1 +

(

lnL2 + 1− lnB2 −
δ2B1

16

)

B2

}

≤ 1 (9)

by the assumption thatlnL1 + 1 − lnB1 ≤ δ2B2/16 andlnL2 + 1 − lnB2 ≤ δ2B1/16. It follows that there
exists a matrixH for whichZR,C ≤ δB1B2 for all R,C. From the definition ofZR,C (5), we have shown the
existence of a matrixH satisfying (3). This concludes the proof.
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4 Efficient constructions

This section is devoted to constructions of efficiently computable SSE. Most standard techniques applied to the
construction of regular and strong extractors (e.g. using list-decodable codes, walks on expanders, mergers or
even hash functions) seem to fail when the seed is not completely random. As a result, even our1-bit SSE is
only useful when the sources have the same lengthℓ1 = ℓ2 = ℓ and their min entropies add up to more thanℓ.
However, the present constructions are both useful and elegant. We propose the construction of more efficient
SSE’s as a challenging open problem.

4.1 Hadamard matrices and extraction of one bit

A class of1-bit super-strong extractors which includes the inner product function is now considered, thus provid-
ing a strengthening of a result of Chor and Goldreich [7]. Identify [L] ≡ [2ℓ] ≈ {0, 1}ℓ and letH = {Hxy}Lx,y=1

be aL× L Hadamard matrix (i.e. a±1 matrix with pairwise orthogonal rows and columns). Define

EXTH : {0, 1}ℓ × {0, 1}ℓ → {0, 1}
(x, y) 7−→ 1+Hxy

2

(10)

We shall prove the following two results.

Theorem 4 EXTH as defined above is a(b1, b2, ε)-SSE with log 1
ε = b1+b2−ℓ

2 + 1.

Corollary 2 The inner product function onℓ-bit strings is a(b1, b2, ε)-SSE with ε as above.

Proof: (of Corollary 2) Inner product is of the formEXTH for some Hadamard matrixH (as one can easily
show).

Proof: (of Theorem 4) The proof parallels that of the corresponding theorem in [7]. In particular, we also employ
Lindsay’s Lemma.

Lemma 3 (Lindsay’s Lemma cf. [7])LetG = (Gij)
T
i,j=1S be aT×T Hadamard matrix, andR andC be subsets

of [T ] corresponding to choices of rows and columns ofG (respectively). Then|∑i∈R

∑

j∈C Gij | ≤
√

|R| |C|T .

For any choice of(q1, . . . , qL) ∈ {−1,+1}L, the matrixH̃ = (H̃ij) whoseith row isqi times theith row ofH
is Hadamard. Hence Lindsay’s Lemma applies and for all setsR,C ⊂ [L] the sum

∑

i∈R

∑

j∈C H̃ij, which is

just
∑

i∈R

(

qi
∑

j∈C Hij

)

, is bounded by≤
√

|R| |C|L. From this fact it is easy to deduce a stronger form of

Lemma 3.

∀R,C ⊂ [N ]
∑

i∈R

∣

∣

∣

∣

∣

∣

∑

j∈C

Hij

∣

∣

∣

∣

∣

∣

≤
√

|R| |C|L (11)

Now let (X,Y ) ∈ CG(ℓ, ℓ, b1, b2) be flat random variables and assume thatX is uniform onSX , |SX | = 2b1

andY is uniform onSY , |SY | = 2b2 . For eachy ∈ SY

‖EXTH(X, y) − U1‖ =
1

2

(

|Pr(EXTH(X, y) = 1)− 1

2
|+ |Pr(EXTH(X, y) = 0)− 1

2
|
)

=
1

2
|Pr(EXTH(X, y) = 1) − Pr(EXTH(X, y) = 0)| = 1

2

∣

∣

∣

∣

∣

∣

∑

x∈SX

Hxy

|SX |

∣

∣

∣

∣

∣

∣

(12)

Averaging over ally and using (11) withR = SX , C = SY , we obtain
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‖〈Y, EXTH(X,Y )〉 − 〈Y,U1〉‖ =
1

|SY |
∑

y∈SY

‖EXTH(X, y) − U1‖

=
1

2|SY |
∑

y∈SY

∣

∣

∣

∣

∣

∣

∑

x∈SX

Hxy

|SX |

∣

∣

∣

∣

∣

∣

≤ 1

2

√

L

|SX ||SY |
= 2−

b1+b2−ℓ

2
−1 (13)

By Proposition 1 this finishes the proof.

4.2 Extracting many bits

We now adapt a construction from [26] based on error-correcting codes to obtain many bits from weak sources
of same length and sufficiently high min-entropy. In what follows ECC : {0, 1}m → {0, 1}ℓ is a linear error
correcting code with distanced, {~ei : 1 ≤ i ≤ m} is the canonical basis of{0, 1}m as a vector space overZ2,
and for(x, y) =

(

(x1, . . . , xℓ), (y1, . . . , yℓ)
)

∈ {0, 1}ℓ × {0, 1}ℓ we let~v(x, y) ∈ {0, 1}ℓ be the vector whose
ith coordinate isxiyi. The proposed SSE is

EXT : {0, 1}ℓ × {0, 1}ℓ → {0, 1}m
(x, y) 7−→

(

ECC(~e1) · ~v(x, y)
)

◦ · · · ◦
(

ECC( ~em) · ~v(x, y)
) (14)

Note that each bit thatEXT outputs corresponds to the inner product of matching segments of the input stringsx
andy. We show that

Theorem 5 The functionEXT constructed above is a(b1, b2, ε)-SSE with log 1
ε = 1 + b1+b2+d

2 − (ℓ+m).

There exist efficiently encodable linear codes of codeword lengthℓ, dimensionm = δ3ℓ and distanced =
(1
2 − δ)ℓ, for all fixed 0 < δ < 1

2 . Plugging one such code into Theorem 5 yields an efficiently computable
(b1, b2, ε)-SSE withε = ℓ−ω(1) for all min-entropies satisfyingb1+b2

2 ≥ (3/4 + δ)ℓ+ ω(log ℓ), and the number
of extracted bits ism = δ3n. It remains to prove Theorem 5, and for that we use two lemmas (the second being
fairly standard).

Lemma 4 (Parity Lemma, [26]) For anyt-bit random variableT , ‖T − Ut‖ ≤
∑

~v∈{0,1}t\{~0}

∥

∥

(

T · ~v) − U1

∥

∥.

Lemma 5 If Z = Z1Z2 . . . Zt is a t-bit random variable andW ⊂ [t], letZ|W denote the concatenation of all
Zi with i ∈W . ThenH∞ (Z|W ) ≥ H∞ (Z)− t+ |W |.

Proof: (of Theorem 5)We need to show that for any pair(X,Y ) ∈ CG(ℓ, ℓ, b1, b2)

‖〈Y, EXT(X,Y )〉 − 〈Y,Um〉‖ =
∑

y∈{0,1}ℓ

Pr(Y = y) ‖EXT(X, y) − Um‖ (15)

is bounded byε = 2ℓ+m−
b1+b2+d

2
−1. To this end, we apply Lemma 4 to each of the above summands.

‖〈Y, EXT(X,Y )〉 − 〈Y,Um〉‖ ≤
∑

y∈{0,1}ℓ

Pr(Y = y)
∑

~a∈{0,1}m\{~0}

∥

∥

(

EXT(X, y) · ~a
)

− U1

∥

∥

=
∑

~a∈{0,1}m\{~0}

∥

∥〈Y,
(

EXT(X,Y ) · ~a
)

〉 − 〈Y,U1〉
∥

∥ (16)

It now suffices to show that for any~a ∈ {0, 1}m\{~0}
∥

∥〈Y,
(

EXT(X,Y ) · ~a
)

〉 − 〈Y,U1〉
∥

∥ ≤ ε

2m
= 2ℓ−

b1+b2+d

2
−1 (17)

Fix some non-zero~a =
∑m

i=1 ai~ei and note that by the linearity ofECC
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EXT(X,Y ) · ~a =

m
∑

i=1

ai

(

ECC(~ei) · ~v(X,Y )
)

= ECC(~a) · ~v(X,Y ) =
∑

i∈S

XiYi =
(

X|S
)

·
(

Y |S
)

(18)

whereS is the set of all non-zero coordinates ofECC(~a), andX|S andY |S are defined as in the statement
of Lemma 5. Applying that same lemma, we conclude thatX|S (Y |S) has min-entropy at leastb1 − ℓ + |S|
(respectivelyb2 − ℓ+ |S|). It now follows from (18), Corollary 2 and the fact thatX|S andY |S have length|S|
that

∥

∥〈Y,
(

EXT(X,Y ) · ~a
)

〉 − 〈Y,U1〉
∥

∥ ≤ 2
|S|−b1−b2+2ℓ−2|S|

2
−1 = 2ℓ−1−

b1+b2+|S|
2 (19)

Since|S| = (weight ofECC(~a)) ≥ d by definition ofS, equation (19) proves (17) and finishes the proof.

4.3 A number-theoretic construction

A third efficient SSE construction is now presented. Its minimal min-entropy requirement is basicallyb1 + b2 >
ℓ, which roughly matches the Hadamard matrix construction for 1-bit extraction. However, this SSE has the
drawback of requiring a pre-processing stage for efficiencyto be achieved. The construction dates back to [7],
in which it was shown thatEXT(X,Y ) is close to random. We claim that the same is true even ifY is given to
the adversary, thus establishing that this construction satisfies our definition of SSE. In what follows,p > 2 is a
prime and we takeℓ = ⌊log p⌋ so that we can assume{0, 1}ℓ ⊆ Zp. Let k be a divisor ofp − 1; our SSE will
output elements ofZk (the definition of a SSE easily generalizes to this case). Finally, let g be a generator of the
multiplicative groupZ∗

p and denote bylogg the base-g discrete logarithm inZ∗
p. We define

EXT : {0, 1}ℓ × {0, 1}ℓ → Zk

(x, y) 7−→ logg(x− y) mod k
(20)

We prove in the Appendix B that approximatelym = log k ≈ b1+b2−ℓ
2 − log 1

ε bits can be extracted by this
construction.

Theorem 6 The functionEXT defined above is a(b1, b2, ε)-SSE with log 1
ε = b1+b2−ℓ

2 + 1− log k.

We refer to [7] for details on the efficient implementation ofEXT and the pre-computation ofp, k andg.

5 Simple authentication with weak sources

5.1 Motivation

Assume that two parties Alice and Bob share the output of aℓ1-bit weak random sourceX with min-entropy
H∞ (X) ≥ b1. It is then clear that a(b1, b2, ε)-SSE EXT : {0, 1}ℓ1 × {0, 1}ℓ2 → {0, 1}m can be used by
both Alice and Bob to extract an almost perfectly random secret keyS = EXT(X,Y ) from the shared secret
informationX and a weakly random public stringY with min-entropyH∞ (Y ) ≥ b2. This shows that super-
strong extractors trivially solve the problem of privacy amplification over passive public channels when weak
random sources are used. In this Section we provide a simple protocol PA for privacy amplification over an
adversarially controlledchannel, when only weak sources of randomness are available. Following [13], we show
that weak sources can be used in conjunction with the simple “ax + b” message authentication code (MAC) to
transmit the non-secret inputY over the adversarial channel. For completeness, we prove (in the Appendix C)
appropriate versions of the results of [13].

Let us specify the idealized world we shall deal with when discussing the protocol. We assume that Bob can
either beclose (to Alice) or far from Alice. Each one of them has a weak source (specified below). If Bob is
close, they can share secret information at will, but their sources should be assumed to be arbitrarily correlated
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(which is reasonable for purely physical and adversarial sources). On the other hand, if Bob isfar, the sources
can be assumed to be independent, but only active adversarial communication channels are available. Finally, we
assume that Bob’s source outputs aℓ-bit long stringY with min-entropyH∞ (Y ) ≥ b2, whereas Alice’s source
outputs threeℓ-bit stringsA,B,X, which are assumed that they form ab1-block source[7]. That is, for any
a, b ∈ {0, 1}ℓ,A,B|A=a andX|A=a,B=b all have min entropy at leastb1.

Our scenario differs from that of previous work on privacy amplification (e.g. [13]). In most of those works,
the secret keyX satisfies a min-entropy condition (that is, the adversary does not know it completely), but Alice
and Bob are capable of sampling perfectly random bits. By contrast, under our constrants, no perfect randomness
is available to either Alice or Bob, and geographical distance between the sources is necesary for independence,
which is a reasonable assumption for physical and adversarial sources. Whereas in [13] (for instance) it is not
clear that it would not be possible for the parties to agree ona perfectly random secret key when they meet in
the first place, this is impossible in our case. Therefore, the need for privacy amplification is arguably better
motivated in the present work. We also note that, although our assumption on Alice’s source is stronger than that
on Bob’s source, it is still much weaker than the capability to generate truly random bits.

5.2 The protocol

Alice and Bob’s aim is to agree on a secret keyS that is very close to being random from Eve’s point of view. This
is achieved by the protocol PA which we now describe (see alsoTable1 in the Appendix D), in which we identify
{0, 1}ℓ with the finite fieldF2ℓ for the purpose of arithmetic operations, andEXT : {0, 1}ℓ × {0, 1}ℓ → {0, 1}m
is a function (we will later choose it to be a suitable SSE). Briefly, Alice and Bob share(A,B,X) when Bob
is close. Then Bob moves tofar, samples,Y and sendsY,Z = AY + B to Alice. Eve then intercepts(Y,Z),
which she substitutes for(Ỹ , Z̃) and sends to Alice. Alice checks ifAỸ + B = Z̃ and, if this is satisfied, she
computesS̃ = EXT(X, Ỹ ), rejecting otherwise. In the meantime, Bob has computedS = EXT(X,Y ). As we
shall see (see Theorem 7), with high probability eitherS = S̃ and Alice and Bob share a secret key, or else Alice
has rejected. Note that we always assume thatỸ andZ̃ as in Table1 have lengthℓ each by establishing that Alice
rejects otherwise.

We demonstrate in the Appendix C that protocol PA is indeed secure as long asb1 = ℓ
2 + ω(log ℓ) and a

(b1, b2, ℓ
−ω(1))-SSE exists. For instance, the number-theoretic SSE (Theorem 6) permits agreement on a key of

lengthm ≈ b1+b2−ℓ
2 + ω(log ℓ).

Theorem 7 If EXT is a(b1, b2, ε)-SSE, the protocolPA has the following property. If Eve is passive, Alice never
rejects,S̃ = S and‖〈Y, S〉 − 〈Y,Um〉‖ ≤ ε. If Eve is active, the probability of either Alice rejectingor S = S̃
and‖〈Y, S〉 − 〈Y,Um〉‖ ≤ ε is at least1− 2ℓ−2b1 .
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A Lower bounds - proof of Theorem 2

In this subsection we prove Theorem 2.

Proof: (of Theorem 2)We use the following lower bounds of Ta-Shma and Radhakrishnan [22] for (regular)
extractors.

Theorem 8 [22] There exists a constantc such that the following holds. LetEXT ’ : {0, 1}n×{0, 1}d → {0, 1}m
be a regular(k, ε)-extractor withd ≤ m − 2 and k ≤ n − c. Thend ≥ log(n − k) + 2 log 1

ε − O(1) and
d+ k −m ≥ 2 log 1

ε −O(1).

Let Y be uniform on{0, 1}b2 ◦ 0ℓ2−b2 and note that it has min-entropyb2. Now set

EXT1 : {0, 1}ℓ1 × {0, 1}b2 → {0, 1}m+b2

(x, y) 7−→ y ◦ EXT(x, y ◦ 0ℓ2−b2)
(21)

For all ℓ1-bit long random variablesX with min-entropyH∞ (X) ≥ b1

‖EXT1(X,Ub2) − Um+b2‖ = ‖〈Y, EXT(X,Y )〉 − 〈Y,Um〉‖ ≤ ε (22)

since(X,Y ) ∈ CG(ℓ1, ℓ2, b1, b2) andEXT is a SSE with the adequate parameters. It follows thatEXT1 is a
(b1, ε)- extractor. By Theorem 8 we conclude

b2 ≤ log(ℓ1 − b1) + 2 log
1

ε
−O(1) and b2 + b1 −m− b2 = b1 −m ≥ 2 log

1

ε
(23)

Remark 1 In an attempt to prove thatb1 ≤ log(ℓ1 − b1) + 2 log 1
ε − O(1) is necessary, one might be tempted

to reverse the process in the above proof and built a regular extractor EXT2 out of EXT for which the random
variableX that is uniform on{0, 1}b1 ◦ 0ℓ1−b1 is the seed. The reason why this does not work is that the output
lengthm in this case is smaller than the effective seed lengthb1, and Theorem 8 does not apply to this case.

B Proof of Theorem 6

Proof: (of Theorem 6)We firstclaim that the following inequality holds for all subsetsA,B,C ⊆ Zp: setting

ΦC ≡ max1≤j≤p−1 |
∑

c∈C e
2πicj

p |,

∑

a∈A

∣

∣

∣

∣

#{b ∈ B : a− b ∈ C} − |B| |C|
p

∣

∣

∣

∣

≤ ΦC

√

|A| |B| (24)
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Inequality (24) is proven subsequently. Assuming it for themoment, chooseα ∈ Zk and set

C ≡ {c ∈ C | logg(c) = α mod k}

Following [7, Section3.2], we note that|C| = p/k andΦC <
√
p. Hence for allA,B ⊆ C

∑

a∈A

∣

∣

∣

∣

#{b ∈ B : logg(a− b) = α} − |B|
k

∣

∣

∣

∣

≤
√

p|A| |B| (25)

We deduce from (25) that for any choice of flat random variables (X,Y ) ∈ CG(ℓ1, ℓ2, b1, b2)with respective
supportsSX , SY of sizes2b1 , 2b2

‖〈Y, EXT(X,Y )〉 − 〈Y,U〉‖

=
1

2

∑

α∈Zk

∑

y∈SY

∣

∣

∣

∣

#{x ∈ SX : logg(x− y) = α}
2b1+b2

− 1

2b1k

∣

∣

∣

∣

≤ k

2

√

p

2b1+b2
= ε (26)

and this implies the theorem by Proposition 1.

Proof: (of inequality (24))This proof uses the method of trigonometric sums (a.k.a. Fourier Analysis onZp) and
follows closely that of Lemma6 in [1]. For simplicity, we prove the equivalent inequality

∑

a∈A

∣

∣

∣

∣

#{b ∈ B : ∃c ∈ C a+ b = c} − |B| |C|
p

∣

∣

∣

∣

≤ ΦC

√

|A| |B| (27)

Let ω ≡ e
2πi
p and define

ψT (j) ≡
∑

t∈T

ωtj (j ∈ Zp, T ⊆ Zp)

For anya ∈ A, the number ofb ∈ B satisfyinga+ b = c for somec ∈ C is precisely

1

p

p−1
∑

j=0

ωjaψB(j)ψC (−j) =
|B| |C|
p

+
1

p

p−1
∑

j=1

ωjaψB(j)ψC (−j) (28)

as a simple calculation shows. Hence for any choice ofqa ∈ ±1, a ∈ A

qa

(

#{b ∈ B : ∃c ∈ C a+ b = c} − |B| |C|
p

)

=
qa
p

p−1
∑

j=1

ωjaψB(j)ψC (−j)

We can now sum overa ∈ A; letting ψ̃A(j) ≡∑

a∈A qaω
aj

∑

a∈A

qa

(

#{b ∈ B : ∃c ∈ C a+ b = c} − |B| |C|
p

)

=
1

p

p−1
∑

j=1

ψ̃A(j)ψB(j)ψC(−j) (29)

By an appropriate choice of theqa’s, it is possible to conclude that in fact
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∑

a∈A

∣

∣

∣

∣

#{b ∈ B : ∃c ∈ C a+ b = c} − |B| |C|
p

∣

∣

∣

∣

=
1

p

p−1
∑

j=1

ψ̃A(j)ψB(j)ψC (−j) (30)

Applying Cauchy Schwartz to the RHS and noting that

p−1
∑

j=1

|ψ̃A(j)|2 ≤ p|A|and
p−1
∑

j=1

|ψB(j)ψC (−j)|2 ≤ Φ2
Cp|B|

whereΦC ≡ sup1≤j≤p−1 |ψC(j)|, we can finally bound

∑

a∈A

∣

∣

∣

∣

#{b ∈ B : ∃c ∈ C a+ b = c} − |B| |C|
p

∣

∣

∣

∣

≤ ΦC

√

|A||B| (31)

This finishes the proof.

C Proof of Theorem 7

We first prove a lemma on the “ax+ b” MAC that is similar to Theorem6 in [13].

Lemma 6 Letg : F2ℓ ×F2ℓ → F2ℓ ×F2ℓ be a function,w ∈ F2ℓ , and〈C,D〉 be twoℓ-bit long strings with joint
min-entropyH∞ (〈C,D〉) ≥ 2b1. Define(T, V ) ≡ g(w,Cw +D). Then

Pr
(

(T, V ) 6= (w,Cw +D) andCT +D = V
)

≤ 2ℓ−2b1

Proof: (of Lemma 6)Fix C = c, D = d and lets ≡ cw + d. The pair(T, V ) is then completely determined by
the value ofs. Now assume that(c, d) is bad, that is,(T, V ) = (t(s), v(s)) 6= (w, s) but ct(s) + d = v(s). The
pair (c, d) must then satisfy the following system of equations

(

1 w
1 t(s)

)(

c
d

)

=

(

s
v(s)

)

(32)

for s ∈ F2ℓ . It cannot be true thatt(s) = w, for that would imply thatv(s) = ct(s) + d = cw + d and
(t(s), v(s)) = (w, cw+d), so it must hold thatw 6= t(s). This implies that the matrix in (32) is non-singular and
that the corresponding system of equations has exactly one solution. We conclude that for each possible value of
s = cw + d there can be at most onebadpair (c, d), and that this pair is completely determined by (32). Since
there are2ℓ possible values fors and each pair(c, d) has probability≤ 2−2b1 , the probability of the sampled
value of(C,D) being bad is≤ 2ℓ−2b1 . This is precisely the desired result.

Proof: (of Theorem 7)It suffices to treat the case of a deterministic active adversary. That is, Eve’s strategy for
producing〈Ỹ , Z̃〉 is to use a deterministic function ofY andZ ≡ AY +B. Lemma 6 implies that for any value
y of Y the probability that̃Z = AỸ +B andỸ 6= y is at most2ℓ−2b1 . Assuming that this event does not happen,
Alice does not reject andS = S̃. Moreover,

‖〈Y,AY +B,S〉 − 〈Y,AY +B,Um〉‖ ≤ max
a,b∈{0,1}ℓ1

‖〈Y, EXT(X|A=a,B=bY )〉 − 〈Y,Um〉‖ ≤ ε (33)

by the SSE property and the block source condition onA,B,X.

D The Protocol PA

14



PART 1 - Bob isclose

Alice (secret info) Bob

samples (A,B,X)
(A,B,X)−−−−−−−−−−−−−−−−−−−→ stores (A,B,X)

PART 2 - Bob is far

Alice Eve (channel) Bob

samplesY
Z ≡ AY +B

receives(Ỹ , Z̃)
(Y,Z)→(Ỹ ,Z̃)←−−−−−−−−−−−−−−−−−−− sends(Y,Z)

if AỸ +B 6= Z̃ S ≡ EXT(X,Y )
reject accept

else
S̃ ≡ EXT(X,Y )
accept

Table 1:Description of protocol PA for privacy amplification. All random variablesX , Y , A, B, Ỹ andZ̃ take values in
{0, 1}ℓ ≈ F2ℓ .
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