
Space-Time Tradeo�s for Graph PropertiesYevgeniy Dodis1 and Sanjeev Khanna21 Laboratory for Computer Science, MIT, USA. E-mail: yevgen@theory.lcs.mit.edu2 Department of Fundamental Mathematics Research, Bell Labs, USA. E-mail:sanjeev@research.bell-labs.com.Abstract. We initiate a study of space-time tradeo�s in the cell-probemodel under restricted preprocessing power. Classically, space-time trade-o�s have been studied in this model under the assumption that the pre-processing is unrestricted. In this setting, a large gap exists betweenthe best known upper and lower bounds. Augmenting the model with afunction family F that characterizes the preprocessing power, makes fora more realistic computational model and allows to obtain much tighterspace-time tradeo�s for various natural settings of F. The extreme set-tings of our model reduce to the classical cell probe and generalizeddecision tree complexities.We use graph properties for the purpose of illustrating various aspects ofour model across this broad spectrum. In doing so, we develop new lowerbound techniques and strengthen some existing results. In particular, weobtain near-optimal space-time tradeo�s for various natural choices ofF; strengthen the Rivest-Vuillemin proof of the famous AKR conjectureto show that no non-trivial monotone graph property can be expressedas a polynomial of sub-quadratic degree; and obtain new results on thegeneralized decision tree complexity w.r.t. various families F.1 IntroductionIt is well known that preprocessing of static data often signi�cantly speeds upthe time it takes to answer dynamic queries about it. A data structure withappropriate auxiliary information about the static data can facilitate e�cientanswering of dynamic queries. Naturally, the more space is available for build-ing such a data structure, the more auxiliary information one can precomputeand the faster the queries can be answered. A natural and important questionin this context is to characterize the tradeo� between the amount of availablepreprocessing space and the time it takes to answer the queries.1.1 The Classical Cell Probe ModelA widely used computational model for studying such tradeo�s is the cell probemodel introduced by Yao [17]. The static data structure problem in the cell probemodel is as follows. We are given a function f : Y �Q 7! f0; 1g, where the �rstinput y 2 Y (jyj = m) is static, and the second input q 2 Q (jqj = n) isthe dynamic query (typically n � m, we assume so from now). We are also



given a parameter s which indicates the amount of space available for storinga data structure D = fc1; c2; : : : ; csg containing information about y, whereci : Y 7! f0; 1g. Each ci is called a cell and the process of generating D giveny is called preprocessing. It is done only once, after which a given query q isanswered by (adaptively) probing (the values of the) cells of D, and the time tspent in answering q is the number of probes made in order to compute f(y; q).The objective is to build D so as to be able to compute f(y; q) (for any yand q) by probing as few cells in D as possible, and the goal is to study thisoptimal worst-case time t = Ts(f) as a function of s, m and n. We emphasizethat the time is not the running time of the \probing scheme" but only thenumber of accesses to D. This models the situation when the local computationis cheap/fast but the database access is expensive/slow. Moreover, this measureof time is indicative of a fundamental combinatorial limitation on how fast thequeries can be answered for any natural notion of time.The static data structure problem has been extensively studied in the liter-ature ([1{4, 10{12, 16]). Yet, no explicitly de�ned function f is known for whicht = !(n) is proven when space s = poly(n). Moreover, a simple argument demon-strates that showing such a super linear bound for an NP function f would un-conditionally separate NP from the class of read-twice branching programs [13];a long-standing question in complexity theory [15]. This situation is to be con-trasted with an existential result of Miltersen [10] which states that for a randomfunction f : Y � Q 7! f0; 1g we have (w.h.p.) Ts(f) = 
(m) � n even whens = 2n�1. In other words, one has to read essentially the whole static inputeven when exponential preprocessing space is given. The result is not surprisingsince one cannot hope to \e�ciently share" limited information to answer queriesabout completely unrelated values. Still, constructing an explicit function thatwould close this large gap (O(n) vs. 
(m)) is a major open question in the cellprobe model.While the strength of the cell probe model lies in the clean framework thatit provides for studying space-time tradeo�s, the model is unrealistic in at leasttwo respects. Firstly, the probing scheme is all-powerful: it may compute anyarbitrary function with the t bits that it reads. So for example, any (even un-decidable) function f can be computed with m probes by storing y directly andreading it completely for any query q (so s = t = m). Secondly, the preprocessingstage is allowed to use arbitrarily complex functions ci in the data structure D.For example, any function f can be computed with exponential space s = 2nand unit time t = 1 by simply storing the answer to every possible query. Thesetwo aspects of the model at least partly explain the di�culty in obtaining stronglower bounds in this model.1.2 Our Model: Cell Probe Model with Restricted PreprocessingPowerThe goal of this paper is to study space-time tradeo�s in the cell probe modelwhen the preprocessing power may be restricted, making the model more realis-tic and �ne-tuned (while it is an interesting direction to also limit the power of



the probing scheme, we focus on restricting the preprocessing power). We modellimited preprocessing power by introducing a new parameter F which is usedto denote a (typically in�nite) family of (boolean) functions. Given a functionfamily F, we require that the value of each cell ci in D corresponds to an appli-cation of some g 2 F to a subset of y's input bits. We call such data structure DF-restricted. Thus, while space constraint s limits the amount of precomputedinformation, the function family F limits the complexity of precomputed infor-mation. The time t in this new parameterized model is denoted by t = TF;s(f),referred to as the cell probe complexity of f w.r.t. F. Since the extremal case ofunrestricted F is simply the standard static data structure problem, our modelis a proper extension of the classical cell probe model.Another extreme of our model is when the space s is unrestricted but F isrestricted. Then, the cell probe complexity of f w.r.t. F is simply the generalizeddecision tree complexity of evaluating f over a worst-case query; we denote thismeasure by TF(f). Indeed, unrestricted space implies that we have \precom-puted" all possible applications of every g 2 F to every appropriate subset of y'sinput bits. So the question is no longer the one of creating a space-e�cient datastructure but that of \adaptive expressibility" of a function f on a given queryusing functions from F. This is precisely the generalized decision tree complexityw.r.t. F. When F consists merely of the identity function (which we call trivialF), this is just the (simple) decision tree complexity measure. Unlike the classicaldata structure problem, it is often possible to tightly characterize the decisiontree complexity of a given function (e.g. [5]). Thus, our general model elegantlyuni�es the issue of space-e�cient data structures with that of adaptive express-ibility, bridging together the cell probe complexity and the generalized decisiontree complexity.1.3 Our Function f : Graph PropertiesThe objective of our study is to illustrative di�erent aspects of our new modelacross a broad spectrum of possible settings of F and s (in particular, to illustratehow much tighter space-time tradeo�s can be obtained once we put reasonablerestrictions on F, but we do not limit ourselves to this). For this purpose, we usea problem related to veri�cation of graph properties. Aside from combinatorialinterest, an important motivation for this choice comes from the fact that graphproperties form a rich class of functions having decision tree complexity. In fact,the famous Aandrea-Karp-Rosenberg (AKR) conjecture states that every non-trivial monotone graph property P on n-vertex graphs is evasive, i.e. its decisiontree complexity D(P ) = �n2�1. The conjecture is proven up to a constant factorby Rivest and Vuillemin [14], i.e. D(P ) = 
(n2) = 
(m). As we will see later,this result in fact forms a \base case" in our study (corresponding to trivial F).Our Setup: Fix a graph property P . Given an n-vertex graph G = (V;E) as astatic input, our goal is to preprocess it to answer dynamic queries of the form:1 As we will see, n will be the size of our query, which is consistent with its usagebefore. Also, m = �n2�, i.e. the size of the adjacency matrix of our graph.



\Given X � V , does the subgraph GX of G induced by X satisfy P ?"We refer to this problem as the induced subgraph problem. Thus, fP (G;X) =P (GX ), m = �n2� = �(n2) and a good lower bound would be of the form t =
(n2=polylog(s)). For notational convenience, we will write TF;s(P ) in place ofTF;s(fP ). Note that every query evaluates the property P on some (sub)graph.The hope is that the distribution of P over induced subgraphs of G is verynon-trivial, so that it is hard to reuse space when computing fP .2 Overview of Our ResultsAs we pointed, the induced subgraph problem will be an example problemdemonstrating the richness of our model as well as di�erent techniques to showspace-time tradeo�s in various settings, ranging from the classical cell probe com-plexity to the generalized decision tree complexity. In what follows, we describemore precisely some of our results, leaving others out due to space limitations. Inparticular, we will not talk about oblivious and non-deterministic computationin our model. In the next section we will prove a representative result.2.1 Restricted Space, Unrestricted Function FamiliesWe start with the extremal case of unrestricted preprocessing. As remarked byMiltersen et al. [13], essentially all known lower bound results for the classicaldata structure problem can be viewed as applications of the following connectionbetween the cell probe and the communication complexity model [10]. In thismodel, introduced by Yao [18], Alice is given y 2 Y , Bob is given q 2 Q andthey wish to compute f(y; q) by exchanging the minimum number of bits. Thisnumber is the deterministic communication complexity of f . We describe theconnection of [10] more generally using the notion of asymmetric communica-tion complexity introduced in [13]. Here, instead of measuring simply the totalnumber of bits exchanged, we measure the number of bits sent by Alice andBob individually. An [A;B]-protocol is a protocol where Alice sends at most Abits and Bob sends at most B bits. A lower bound of [A;B] means that in theworst case, either Alice must send 
(A) bits or Bob must send 
(B) bits inorder to compute f . To obtain the most general result, we consider a variantof the cell probe model where a cell size is an additional parameter b. In otherwords, rather than storing boolean functions in the data structure, we store b-bitfunctions ci : Y 7! f0; 1gb and read all b bits per probe.Lemma 1. [10] Any cell probe scheme with space s, cell size b and time t forcomputing f yields a [tb; t log s]-protocol for computing f . Hence, a lower boundof [A;B] implies that Ts(f) � 
(min(A=b;B= log s)).Since B � n (Bob can always send his entire input), the best possible lowerbound obtainable this way is t = 
( nlog s ) implying that the current proof tech-niques cannot cross the 
(n= log s) barrier (but they can possibly give this bound



for large values of b). We show that such a lower bound can indeed be establishedfor the induced subgraph problem using Lemma 1, for any non-trivial monotonegraph property as well as for the property parity: \Does G have an odd numberof edges?". The �rst result is shown using the fooling set method (see [9]) andthe second uses the richness technique of [13].Theorem 1. � Ts(P ) � 
( nlog s ), for any non-trivial monotone property P .� Ts(parity) � 
( nlog s ) even when the cell size b = n.This is as far as we can get in the classical setting using current techniques.2.2 Restricted Space, Restricted Function FamiliesWe now turn our attention to the core of our study where we restrict the pre-processing power by means of a function family F. Our goal here is to developtechniques to beat 
(n= log s) illustrating how restricted preprocessing allowsto obtain tighter bounds on query time. In fact, for many natural families F weobtain nearly optimal lower bounds of the form 
(n2=polylog(s)). The extremecase where F is trivial (i.e. we are allowed to store just the edges of the graph)reduces to the AKR set-up. An 
(n2) lower bound can thus be obtained for anynon-trivial monotone graph property (even on a �xed query set). However, oncewe allow F to contain more general function families, many evasive propertiescan now be decided by reading very few cells for any �xed query. Yet, as wewill show, this e�ciency in answering speci�c queries can provably not be trans-lated into a space-e�cient data structure that allows to e�ciently answer all thequeries. As in the classical model, the main di�culty is in e�cient sharing ofinformation contained in the cells across di�erent queries. However, unlike theclassical model, explicit knowledge about the family F enables us to reason aboutthe behavior of the precomputed information.As an elementary example, consider the following evasive property P : IsG an empty graph? Let F be simply the family of OR functions. Clearly, asingle OR can express the property on a given G. In fact, this seems to be avery natural function family for computing P . However, a cell storing an ORof all the edges in the graph is of no use in determining whether an inducedsubgraph GX satis�es P . Setting any edge outside of GX to true �xes this OR to1 without a�ecting P (GX). Intuitively speaking, the cells that are sensitive to\many" edges are useful for answering only very few queries, while \short" cellscontain little information forcing us to read many of them to answer a \large"query. Indeed, we prove that if F is restricted to only AND and OR functions,TF;s(P ) = 
(n2= log2 s) for any evasive property P .We obtain similar results for more general �-CNF, �-DNF (for constant �) andsymmetric function families. We also study the following curious question: Whatis the time complexity of induced subgraph problem for a property P when thedata structure can only contain answers about whether an induced subgraph ofthe input graph has property P ? While any single query can now be answered inone probe, we show 
(n2= log2 s) bound for any non-trivial \uniform" monotoneproperty.



Basic Idea: The central technique used for the induced subgraph problem isa probabilistic argument which shows that for any data structuring strategy,there exists an input graph G s.t. (a) it \stabilizes" the value of any cell that issensitive to many variables (where \many" will depend on space s), and (b) stillleaves a large subset X \untouched" such that one can reveal the edges of GX viaan evasive strategy2. Since the evasive game on X is now only sensitive to cellswith small number of edge variables, we get our desired bounds (same resultswill apply to monotone graph properties as well by the AKR). We illustaratethis \stabilization technique" on �-CNF/�-DNF formulas in Section 3.2.3 Unrestricted Space, Restricted Function FamiliesWe now turn our attention to the extreme where the space s is unrestrictedand only the family F is restricted. In case of the induced subgraph problem,TF(P ) reduces to the decision tree complexity w.r.t. F of computing P on theentire vertex set V . In other words, how many functions from F one needs toevaluate (adaptively in the worst-case) in order to verify if a given graph Gsatis�es P ? When F contains merely the identity function, it is the setting of theAKR and 
(n2) lower bound is known for any non-trivial monotone P [14, 8].We examine what happens when we allow more powerful functions in F such asAND, OR (more generally, threshold functions), and XOR (more generally, smalldegree polynomials). Since space is not an issue, even these seemingly simplefunction families e�ciently capture many evasive properties, e.g., Tand(clique) =1, Tor(connectivity) = �(n logn) [5], Txor(parity) = 1. Yet we will show thatfor large classes of evasive properties, these families are no more powerful thanthe trivial identity function.Small Degree Polynomials: We study the family Fdeg�k of all multivariatepolynomials over Z2 of degree at most k; the case k = 1 gives the XOR family. Letdeg(f) denote the degree of the (unique) multi-linear polynomial q computing aboolean function f over Z2. Extending the ideas from Rivest and Vuillemin [14],we establish the following theorem:Theorem 2. For any non-trivial monotone graph property P , deg(P ) = 
(n2).Since deg(P ) � D(P ) (any decision tree of depth d yields a polynomial of degreeat most d), the theorem implies the AKR conjecture (up to a constant factor)and shows that the degree of a monotone graph property over Z2 essentiallymatches its decision tree complexity. We note that for a general (even evasiveand monotone!) function f , much larger gaps are possible. Moreover, any multi-linear polynomial over Z2, invariant under relabeling of vertices, computes somevalid graph property (e.g. parity has degree 1), but this property can never bemonotone unless the degree is large. Using the easy observation that deg(P ) �kTFdeg�k(P ), we get a tight (e.g., achieved by clique) general bound:Corollary 1. For any non-trivial monotone P , TFdeg�k (P ) = 
(n2k ). In partic-ular, Txor(P ) = 
(n2).2 A strategy that forces one to probe all edges of the graph.



This corollary still implies the AKR result as the identity is a trivial XOR func-tion. Thus, having access to 2m possible XORs is no more powerful than beingable to query only an edge at a time!AND/OR Families: On the other hand, this approach does not work for twomost natural extensions of the AKR setup, namely the AND and OR functionfamilies, since the degree of these functions can be as large as 
(n2) (in fact,a general bound of 
(n2) does not hold for these families). We develop generaltechniques for studying these families by essentially reducing their decision treecomplexity to a certain measure on simple decision trees. Intuitively, if (simple)decision tree complexity of a property P corresponds to looking at as few edgesof G as possible, a good bound on Tand(P ) (Tor(P )) corresponds to looking at asfew missing (present) edges of G as possible. We then develop several techniquesto lower bound this measure and obtain 
(n2) bound for many properties. Ourtechniques are based on examining the combinatorial structure of graph cer-ti�cates and design of general \edge-revealing" strategies for monotone graphproperties. One of the strategies we examined in detail is to answer \no" (\yes")unless forced to say \yes" (\no"). Our study of these strategies might be of in-dependent interest. We remark that our techiniques for AND/OR families applyto arbitrary functions and not only to graph properties. We defer the details tothe full version.3 Stabilization TechniqueIn order to explain the technique, we need two de�nitions.De�nition 1 (Gadget Graph). An hn; q(n)i-gadget graphH(V;E) is a labeledclique on n vertices such that: (a) each edge is labeled 0 (missing), 1 (present),or � (unspeci�ed), and (b) there exists a subset Q � V with jQj = q(n), suchthat Q induces a clique where each edge of the clique is labeled �. We refer toQ as the query set of H .De�nition 2 (Stabilizing Graph). Given an F-restricted data structure D ofsize s, a graph H is called an hn; q(n); g(s)i-stabilizing graph for D if: (a) H is ahn; q(n)i-gadget graph, and (b) every cell in D reduces to being a function of atmost g(s) edge variables on the partial assignment speci�ed by H .Now suppose for a function family F we want to show that TF;s(P ) =
(q2(n)=g(s)) for every evasive property P . We start by showing existence ofa hn; q(n); g(s)i-stabilizing graph GD for every F-restricted data structure D.Thus when GD is presented as the static input, every cell in D reduces to bea function of at most g(s) edge variables. At the same time, we have access toa query set Q whose every edge is unspeci�ed as yet. We present this set Qas the dynamic input to the scheme and play the evasive game for property Pon the subgraph induced by Q. Since each cell probe can reveal at most g(s)edge variables, we obtain the desired 
(q2(n)=g(s)) lower bound. The followingtheorem summarizes this argument.



Theorem 3. If every F-restricted data structure of size s has a hn; q(n); g(s)i-stabilizing graph, then for any evasive property P , TF;s(P ) = 
(q2(n)=g(s)).Thus the heart of our approach is to show the existence of a hn; q(n); g(s)i-stabilizing graph with suitable parameters. We show existence of such graph us-ing the probabilistic method. Typically, we pick a random hn; q(n)i-gadget graphs.t. for any h 2 F, the probability that hjH does not reduce to a function of atmost g(s) variables is less than 1=s. Applying the union bound to the s cells ofD, we conclude that hn; q(n); g(s)i-stabilizing graph exists for any D.As a simple example, let us construct an hn; n=2; log2 si-stabilizing graphfor the family of OR functions, implying that Tor;s(P ) = 
(n2= log2 s) for anyevasive P . CreateH by picking a random subset Q � V of size n=2 and setting alledges outsideQ's induced subgraph to true. Take any OR function c = e1_: : :_epand assume that edges ei touch k vertices of V . The only way that c is notstabilized to 1 by H , is when all k vertices fall inside Q, i.e. with probability� n�kn=2�k�=� nn=2� � 1=2k < 1=s if k > log s. So any c that has a reasonable (> 1=s)chance of \surviving" must have k � log s, i.e. depends on at most log2 s edges.In the remainder of this section, we construct stabilizing graphs for �-CNFand �-DNF formulas (for constant �), deferring other results to the full version.Theorem 4. For any evasive property P and constant �,T��CNF=DNF;s(P ) = 
(n2=(log��1 n log2� s)).First, it su�ces to show the claimed lower bound for �-DNF formulas (storeany �-CNF by storing its complement �-DNF formula). By Theorem 3, it isenough to show the existence of a hn; n=2; O(log��1 n log2� s)i-stabilizing graphfor every �-DNF - restricted data structure D. We will proceed similarly tothe case of OR formulas above, but slightly change our random experiment tomake the analysis simpler. Let us say that a formula f is stabilized by a partialassignment if it �xes the value of f . We will show that, if S is a random subset,constructed by choosing each vertex of V with probability 1=2, then setting eachedge variable in S � V to 0=1 uniformly at random (we refer to this experimentas A) either stabilizes any �-DNF formula or reduces it to be a function ofO(log��1 n log2� s) edge variables, with probability 1�o(1=s). Setting then Q =V nS, and noticing that jQj � n=2 with probability at least 1=2, we get that theclaimed stabilizing graph exists.The claim is shown by induction on �. The base case of � = 1 is just slighlymore technical than the case of OR functions. Picking appropriate constants, if1-DNF formula f has more than 
(log2s) edges, its edges touch 
(log s) verticesof V , so w.h.p. S contains 
(log s) vertices touched by f . Thus, at least 
(log s)edges will be set to 0=1 at random in A. Since each such setting stabilizes 1-DNFw/pr. 1=2, w.h.p. f will be stabilized during experiment A.Our inductive step relies on two technical Lemmas, whose proofs we omit dueto the space limitations. The �rst Lemma says that any �-DNF f either has acertain \compact" decomposition into (�� 1)-DNF's or it has a \large" numberof pairwise disjoint terms. The next Lemma shows that experiment A stabilizes�-DNF formulas with large number of pairwise disjoint terms.



Lemma 2. Let f be an �-DNF formula on N variables and let 0 < r < 1 be apositive real. Then either� f has a decomposition of the form l0f0+ l1f1+ :::+ lp�1fp�1 where li's areliterals, fi's are (� � 1)-DNF formulas, and p � ln(�2�N�)=r, or� f has at least (1=2�r) pairwise disjoint (i.e. no common variables) terms.Lemma 3. Let f be an �-DNF formula with �224�+2 log2 s pairwise disjointterms. Then experiment A stabilizes f with probability at least 1� 1=s2.We can now complete the proof. Consider any �-DNF formula f . Let r =1=(�324�+3 log2 s). By Lemma 2, either f has �224�+2 log2 s pairwise disjointterms or it has a representation of the form l0f0 + l1f1 + : : :+ lp�1fp�1, wherep � pmax = ln(�n2�)=r = O(log n log2 s). In case of the �rst scenario, we knowby Lemma 3 that f will be stabilized \almost certainly". Otherwise, we arguethat almost certainly f will have no more than h(�) = O(log��1 n log2� s) vari-ables. We sketched that h(1) = O(log2 s). Using the compact decomposition off and applying induction to each fi in the decomposition, we must satisfy therecurrence: h(�) � pmaxh(�� 1)+ pmax � (pmax)��1h(1)+P��1i=1 (pmax)i. Usingh(1) = O(log2 s), we get h(�) = O(log��1 n log2� s).To analyze the probability of failure, denote by R(�) the probability thata given �-DNF formula does not reduce to a function of at most h(�) distinctvariables. Using Lemma 3, we have R(�) � pmaxR(�� 1) + 1s2 . Scaling h(1) bya suitably large constant, it is easy to see that R(�) can be bounded by o(1=s)for any constant �. This completes the proof of Theorem 4.Remark: The stabilization technique also works for the randomized complexity.Using the best known bound of 
(n4=3) [6] for randomized decision tree com-plexity of monotone graph properties, we get a bound 
(n4=3=polylog(s)) foreach of the families we considered.4 Conclusions and Open ProblemsWe showed that our model provides a uniform framework to study lower boundsacross a spectrum of computational models. Using as an example the inducedsubgraph problem, we showed some techniques for breaking the 
(n= log s) bar-rier for various natural settings of F. In the process, we also obtained a strength-ening of the Rivest-Vuillemin result, showing that monotone graph propertiescannot be expressed by polynomials of sub-quadratic degree. Finally, we ob-tained new results and techniques on the generalized decision tree complexitywith respect to some natural families like the AND/OR family.We introduced a parameterized cell probe model in an e�ort to examinespace-time tradeo�s in computationally realistic preprocessing scenarios. How-ever, for the sake of getting unconditional results and in order to illustrate ournew model more cleanly, we only considered syntactic restrictions on the prepro-cessing function family. It is perhaps more interesting to examine computationalrestrictions. For example, to examine the measure Tpoly (where POLY is the set
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