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Abstract

We construct thdirst public-key encryption scheme in tiBounded-Retrieval ModéBRM), providing security
against various forms of adversarial “key leakage” attatkgshis model, the adversary is allowed to learn arbitrary
information about the decryption key, subject only to thasteaint that the overall amount of “leakage” is bounded
by at most bits. The goal of the BRM is to design cryptographic scheratdan flexibly tolerate arbitrarily leakage
bounds? (few bits or many Gigabytes), bynly increasing the size of secret key proportionally, but kegpil the
other parameters— including the size of the public key, ciphertext, encrgptdecryption time, and the number of
secret-key bits accessed during decryptiosmall and independent éf

As our main technical tool, we introduce the concept ofdantity-Based Hash Proof SystéiB-HPS), which
generalizes the notion of hash proof systems of Cramer aodSiCS02] to the identity-based setting. We give three
different constructions of this primitive based on: (1)rd@lar groups, (2) lattices, and (3) quadratic residuogisy.

a result of independent interest, we show thatButPS almost immediately yields an Identity-Based Encryption
(IBE) scheme which is secure against (small) partial leakagbeotdrget identity’s decryption key. As our main
result, we uséB-HPS to construct public-key encryption (atBE) schemes in the Bounded-Retrieval Model.

1 Introduction

Traditionally, the security of cryptographic schemes has been analyzeddealized setting, where an adversary only
sees the specified “input/output behavior” of a scheme, but has noambess to its internal secret state. Unfortunately,
in the real world, an adversary may often learn some partial informationtaamret state via variodgey leakage
attacks. Such attacks come in a large variety and inchigke-channel attackgKoc96, BDL97, BS97, KJJ99, QSD1,
GMOO01], where the physical realization of a cryptographic primitive cak ladditional information, such as the
computation-time, power-consumption, radiation/noise/heat emission etc. oldvbant attack of Halderman et al.
[HSH™08] is another example of a key-leakage attack, where an adversatgara (imperfect) information about
memory contents of a machine, even after the machine is powered down., bastlgspecially relevant to this work,
we will also consider key-leakage attacks where a remote adversdyinée a target computer, or infects it with some
malware, allowing her to download large amounts of secret-key informatiom the system. Schemes that are proven
secure in an idealized setting, without key leakage, may become completetyrimskthe adversary learns even a
small amount of information about the secret key. Indeed, even very lineitdcge attacks have been shown to have
devastating consequences for the security of many natural schemes.

Unfortunately, it is unrealistic to assume that we can foresee, let alonk, ldbof the possible means through
which key leakage can occur in real-world implementations of cryptogragatiemes. Therefore, the cryptographic
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community has recently initiated the investigation of increasingly general (firmadeled) classes of leakage attacks,
with the aim of constructingeakage-resilientryptographic schemes that remain provably secure even in the peesenc
of such attacks. Of course, if an adversary can get unrestrictehiafmn about the secret key (say, of an encryption
scheme), then she can learn the key in its entirety and the security of the systecessarily compromised. Therefore,
we must first place some “upper bound” on the type or amount of informétatrthe adversary can learn. The nature
of such bounds varies in the literature, as we survey later. For this werknly restrict theamount but not thetype

of information that an adversary can learn through a key-leakage attaplrticular, we will assume that the attacker
can learnany efficiently computable function of the secret, Isaybject only to the constraint that the total amount
of information learned (i.e. the output size of the leakage function) is bexlibg ¢ bits, wherel is some arbitrary
“leakage parameter” of the system. Clearly, at this level of generalityeitreskey size must be strictly greater than
the leakage-parametérin the literature, there seems to be a distinction between two related modelkagdeavhich
differ in how they treat the leakage-parametan relation to the secret-key size

RELATIVE-LEAKAGE MODEL. In the model ofrelative leakagdAGV09, INS09,/ DKL09, KV09], the key-siza is
chosen in the same way as in standard (non leakage-resilient) crygiagsapemes: it is based on a security parameter,
and is usually made asnallas possible (e.gl024 bits) to give the system some sufficient level of security. Once the
key-sizes is determined, the allowed leakagshould berelatively large in proportion tos so that e.g. up t60% of

the key can be leaked without compromising security. Therefore, theveelatikage model implicitly assumes that, no
matter what the key-size is, a leakage attack can reveal at mostslatieely small fractiorof the key. This assumption

is very reasonable for some attacks, such as the cold-boot attacle athexemory contents decay uniformly over time.

BOUNDED-RETRIEVAL MODEL (BRM). The Bounded-Retrieval Model (BRMDzi06, [CLWO06&, CDD"07,DP07,
ADWO09] is a generalization of the relative-leakage model. In this model, thedgaparametef is an arbitrary and
independent parameter of the system, which is based on practical catiside about how much leakage the system
needs to tolerate on absolute scaleThe secret-key sizeis then chosen flexibly, depending on the security parameter
and the leakage parametér so as to simultaneously provide a sufficient level of security while allowmgpu bits

of leakage. Therefore, we can tolerate settings where the leakagght be small (several bits) or huge (several
Gigabytes) by flexibly increasing the secret-key siziepending on (and necessarily exceeding) the leakage parameter
£ Of course, the key-size should be as small as possible otherwise, so that the allowed le&kagdargerelative
portion of s as well.

With the additional flexibility in secret-key size, the BRM imposes an addedesffig requirement: thpublic-key
size, ciphertext size, encryption-time and decryption-timst remain small, only depending on the security parameter,
and essentially independent of the leakage-paramétemn other words,/ could potentially grow to the order of
Gigabytes, and still result in a usable system, where the secret key isbuidbe public-key size, ciphertext size and
encryption/decryption times are not much different from those of stancigptosystems. This also means that the
number of secret-key bits accessed during decryption (chdtedity from now on) must remain small and essentially
independent of the flexibly growing secret-key size.

The flexibility of the BRM seems necessary to protect against large clabkeg-leakage attacks. For example, if
the key size is (only) proportional to the security parameter, severakcative side-channel readings of a handful of
bits might already leak the entire secret key. Therefore, for naturalcidnnel attacks (such as radiation/heat/noise
emission) it might already make sense to mékaoderately large (say on the order of Megabytes) to get security.
The main intention of the BRM in prior works, which we also focus on here, ¢ffer a novel method for protecting
systems against hacking/malware attacks, where an adversary cafoddvarge amounts of information from an
attacked system. It is clear that no security can be achieved using stasizied (e.g. 1,024 bit) secret keys, as the
adversary can download such keys in their entirety. However, it maybeetvable that the adversary still cannot
downloadtoo much(e.g. many Gigabytes) worth of information because: (1) the bandwidthelketthe attacker and
the system may be too slow to allows this, (2) the operating-system security etest duch large levels of leakage,
or (3) such attacks would simply not be cost-effective. Therefore aveconceivably protect against such attacks
by just making the leakage-parametelarge enough (e.g. potentially many Gigabytes), and using a proportionally
larger secret-key-size. Having a large secret key may, by itself, not be a major concern due fodreasing size

Historically, the BRM setting envisionetias being necessarily huge. Here we take a more general view of the iBBibting only that the
key size can be set flexibly based on the leakage



and affordability of local storage. On the other hand, it is crucial thabther efficiency measures of the system —
ciphertext and public-key sizes, encryption and decryption times — musiegoade with the growth at

1.1 Our Results

As our main contribution, we construct the first leakage-resilient Puldigncryption (PKE) scheme in the BRM.
Along the way, we develop new notions and get results of independergshtén particular, we:

e Develop a new notion of an Identity-Based Hash Proof SystBaHPS), which naturally yields Identity-Based
Encryption (IBE) schemes.

e Give three constructions dB-HPS based on the ideas behind three prior IBE schemes: [Gén06, BGHO7,
GPVO08]. In particular, we show that the notionlBfHPS unifies these seemingly unrelated constructions under
a single framework. As a result, we get construction®eflPS under (1) a bilinear Diffie-Hellman type assump-
tion (2) the quadratic-residuosity assumption (3) the Learning With Ert&¥E] assumption. The first scheme
is secure in the standard model, while the latter two rely on Random Oracla#teynatively, non-standard
interactive assumptions.

e Show that an IBE based dB-HPS can easily be made leakage-resilient, in the relative-leakage model.

e Show how to usdB-HPS to construct public-key encryption (PKE) schemes in the BRM, allowingafbi-
trary large leakage-bounds, while preserving efficiency. Our tedesiglso naturally extend to allow for the
construction of IBE schemes in the BRM.

¢ Develop new information-theoretic tools to analyze our construction of PKEGrBRM. Namely, we define a
new notion ofapproximatehash functions (where only elements that are far in Hamming distance arelyméik
collide) and generalize the Leftover-Hash Lemma to approximate hashing.

e Show how to achieve CCA security for our leakage-resilient IBE and PKERM constructions.

Before describing our construction of PKE in the BRM, it is instructive tdarstand why this problem is non-trivial,
and therefore we begin with someiwaapproaches, which we improve in several steps.

NAIVE APPROACH INFLATING THE SECURITY PARAMETER. As the first step of getting a PKE in the BRM, we
would like to simply design a leakage-resilient PKE scheme that allows foranibittarge leakage-bounds without
necessarily meeting the additional efficiency requirements of the BRM.ilyuthere are several recent PKE schemes
in the relative-leakage mode[AGV09, INS09] where the leakage-boudh) is a large portion of the key-sizg \)
which, in turn, depends on a security parametefTherefore, one simple solution is to simply artificially inflate the
security parametex sufficiently, untils(\) and, correspondingly\) reach the desired level of leakage we would like
to tolerate. Unfortunately, it is clear that this approach gets extremely iiegfficery fast — e.g. to allow for Gigabytes
worth of leakage, we may need to perform exponentiations on group efemigh Gigabyte-long description sizes.

BETTERAPPROACH LEAKAGE-AMPLIFICATION VIA PARALLEL REPETITION. As animprovement over the previ-
ous suggestion, we propose an alternative which wepeadlllel-repetition Assume we have a leakage-resilient PKE
scheme in the relative-leakage model, toleratirtgits of leakage, for some small We can create a new “parallel-
repetition scheme”, by taking independent copies of the above PKE with key-péjis, , ski), ..., (pk,,, sk,) and
setting the secret-key of the new scheme tgloe- (ski, ..., sk,) and the public key to bgk = (pky, ..., pk,). To
encrypt under the repetition scheme, a user weutilit-of-n secret-share the message and, encrypt each shane;
under the public kepk,. One may hope to argue that, if an adversary learns fewenthaits about the secret-keg

of the repetition scheme, then there is at least one secrakkapout which the adversary learns fewer tliidoits, thus
maintaining security. Therefore, the hope is that parallel-repetitioplifies leakage-resiliendeom ¢ bits to n/¢ bits,
and thus lets us meet any leakage-bound just by increassudficiently. In terms of efficiency, the parallel-repetition
approach will usually be more efficient than artificially inflating the securityapeeter, but it is still far from the re-
quirements of the BRM: the public-key size, ciphertext size, and encryggégaryption times are all proportional 1o
and therefore must grow as we strive to tolerate more and more leakage.

SECURITY OF PARALLEL-REPETITION?  Surprisingly, we do not know how to formalize the hope that parallel-
repetition amplifies leakage-resilience generically via a reduction. Suatuatien would need to use an attacker that
expects a public key and/ bits of leakage on its secret key in the repetition scheme, to break the osghehe with



¢ bits of leakage. Unfortunately, it does not seem like there is any way todmballenge public kepk; into pk,

and faithfully simulate the output of an arbitrary leakage-funciigsk) with n¢-bit output, by only learning(sk;) for
someyg(-) with ¢ bit output. In fact, as a subject of future work, we believe that there lackibox separation showing
that no such reduction can succeedeneral Luckily, we show that (a variant of) parallel-repetition amplifies leakage
for schemes of a special form, which we will discuss later. For now, lgetiback to the issue of efficiency, which we
still need to resolve.

IMPROVEMENT |: IMPROVED EFFICIENCY VIA RANDOM SELECTION. To decrease ciphertext size and encryp-
tion/decryption times, the encryptor selects some random s{ibget ., } C {1...n} of ¢t indices, and targets the
ciphertext to the corresponding public keys. , ..., pk,, (e.g. t-out-of+ secret-shares the messageand encrypts
each sharen; under the public keyk,,). Intuitively, if an adversary learns much less thaibits of leakage abouk,
then there should bmanycomponent-keysk; for which the adversary learns less thapits. Therefore the encryptor
should select at least one index corresponding to such a key with leobalplity, whent is made proportional to the
security parameter, and potentially much smaller thaAlthough the ciphertext size and encryption/decryption times
(and locality) are now only proportional to the security parameter, the $ittee@ublic key still grows withe, and so
this scheme is still not appropriate for the BRM in terms of efficiency.

IMPROVEMENT II: SMALL PuBLIC-KEY SIZE VIA IBE. A natural solution to having a short public key is to use
identity-based encryptioiBE) instead of standard PKE. This way, the public key of the repetititierse is simply

a shortmaster public kepf an IBE scheme, while the secret keky= (sky, ..., sk,) consists of secret-keys for some
fixed “identities” ID4, ..., ID,,. Together, the above two improvements yield a scheme which meets the efficienc
requirements of the BRM: the public-key size, ciphertext size, encryjpigonyption times are now only proportional

to the security parameter and independent,afhich can grow flexibly.

SECURITY OF THEIBE-BASED PKE IN BRM CONSTRUCTION? In order to show that the resulting scheme, utilizing
the two proposed improvements, is a PKE in the BRM we need to show the follolfimg start with a leakage-resilient
IBE that allows for¢-bits of leakage, then the construction amplifies this to any desired amiqust by increasing the
number of secret keys sufficiently. Unfortunately, it turns out that this is not the case in geraerd) i Appendix A,
we construct a counterexaple. Thatis, we can construct an artidfted¢theme which is leakage-resilient in the relative
leakage model, with leakadebut the above construction does not amplify leakage-resilience bé&yend, no matter
how largen is. The problem is that, conceivably, after obsenatign secret keys fon identities, it might be possible
to come up with a very short “compressed” key (e.g. whose size is indepenfn) which allows one to decrypt
ciphertexts foreach oneof the givenn identities. Our main result is to show that (a variant of) the construction is
secure, if the leakage-resilient IBE has some additional underlyingtstejavhich we call an Identity-Based Hash
Proof SystemIB-HPS).

HASH PROOF SYSTEMS AND IDENTITY-BASED HASH PROOFSYSTEMS. Recently, Naor and Segev [NS09] showed
how to use ehash proof system (HP$) construct leakage-resilient PKE in the relative-leakage model. Following
[KPSY09,[NSQ9], we view an HPS askay-encapsulation mechanism (KEMith special structur@. A KEM con-
sists of a key-generation proceduyek, sk) < KeyGen(1*), an encapsulation proceduie k) « Encap(pk) which
produces ciphertext/randomness pairst), and a decapsulation procedure= Decap(c, sk), which uses the secret
key sk to recover the randomnegsfrom a ciphertext. A KEM allows a sender that knowsk, to securely agree on
randomnesg with a receiver that possess#s by sending an encapsulation-ciphertextA hash proof systeris a
KEM with the following two properties:
e There exists aimvalid-encapsulation procedure — Encap*(pk), so that ciphertexts generated Bycap* (pk)
are computationally indistinguishable from those generateehlayp(pk), even given the secret kel.
e For a fixedpk andinvalid ciphertextc generated b¥ncap*(pk), the output oDecap(c, sk) is statisticallyuni-
form, over the randomness K. This property can only hold if a fixegk leaves statistical entropy k.
Notice the difference between valid and invalid ciphertexts. For a fiked valid ¢, produced by(¢, k) < Encap(pk),
always decapsulated to the same vatu@o matter which secret kesk is used to decapsulate it. On other hand, an
invalid ¢ produced by: «+ Encap*(pk), decapsulated to a statistically random value based on the randomnskss of

2 Our informal description and definition of HPS here, which will also be sisbaf our formal definition ofB-HPS in[Section 3.1, is a
simplified version of the standard one. Although the tworasetechnically equivalent, the standard definition implies ours, which is in-turn
sufficient for leakage-resilience and captures the main essenceof HP
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The above two properties are sufficient to prove KEM security, shotiagfor (¢, k) < Encap(pk), an attacker
givenc cannot distinguist from uniform. The proof proceeds in two steps:

1. We replace the honestly generatedk) < Encap(pk) with ¢/ < Encap*(pk) andk’ < Decap(c/, sk).
2. The valuei’ = Decap(c/, sk) is statistically uniform over the choice si, which is unknown to the adversary.

As Naor and Segev noticed in [NS09], this proof also works in the poesehleakage since step (1) holds even if
the adversary sawall of sk, and step (2) is information-theoretic, so we can argue#lwts of leakage abouk will
only reduce the statistical entropy bf by at most/ bits. To agree on a uniform valuein the presence of leakage,
we just compose the KEM with a randomness extractor. The main benefit grtdusstrategy is that, after switching
valid/invalid ciphertexts in the first step, we can argue about leakage agingely information-theoretic analysis.

We observe that it is therefore relatively easy to show that (a varignpashllel repetition amplifies leakage-
resilience, since it amplifies the statistical entropy of the secretkey (ski,...,sk,). In[Secfion 8, we generalize
the notion of HPS to the identity-based setting by defining Identity-Based Piasif SystemIB8-HPS) in a natural
way. Then, i Sectionl4, we show how to construct leakage-resilientriBiie relative-leakage model usitig-HPS.
In[Section b, we show that a variant of our parallel-repetition idea, amtbra-subset selection ideas, indeed amplify
leakage-resilience dB-HPS-based constructions. Finally,[in Sectidn 6, show how this leads to cotistrsiof PKE
(and IBE) schemes in the BRM.

1.2 Related Work

RESTRICTEDMODELS OFLEAKAGE-RESILIENCE. Several other models of leakage-resilience have appeared in the
literature. They differ from the model we described in the that they restwidype as well asamount of information

that the adversary can learn. For example, the worlexposure resilient cryptograpH€DH™00, [DSS01L| KZ03]
studies the case where an adversary can only learn somessraét of the physical bits of the secret.kBimilarly,
[ISW03] studies how to implement arbitrary computation in the setting where@wrsaty can observe a smallbset

of the physical wires of a circuityUnfortunately, these models fail to capture many meaningful side-chatiaeks,

such as learning the hamming-weight of the bits or their parity.

In their seminal work, Micali and Reyzih [MR044a] initiated the formal modelifigide-channel attacks under the
axiom that‘only computation leaks information"where each invocation of a cryptographic primitive leaks a function
of only the bits accessed during that invocation. Several primitives have bestructed in this setting including
stream cipherd [DP08, Pi€09] and signatures [FKPR09]. On the positle, this model only imposes a bound on
the amount of information learned during each invocation of a primitive, bubn the overall amount of information
that the attacker can get throughout the lifetime of the system. On the negadtyehis model fails to capture many
leakage-attacks, such as the cold-boot attack of [H3], whereall memory contents leak information, even if they
were never accessed.

Certainly, all of the restricted models fail to capture hacking/malware attadiere it is very conceivable that an
attacker can computven complicated functiorms all information stored on the system.

RELATIVE-LEAKAGE MODEL. Several constructions of primitives in the relative-leakage model hapeaaed re-
cently. The works of[[AGV0B, NS09] construct public-key encryptsmiemes in this model, and [KV09] constructs
signatures. The work of [DKL09] considers a yet-stronger modelakdge-resilience, called tlagixiliary input model
where the leakage-function need only be one-way (and not neitgésagth-bounded), and constructs symmetric-key
encryption in this model.

BRM. The Bounded-Retrieval Model was (concurrently) proposeDikCrescenzo et. al [CLW06] and Dziembowski
[Dzi06], and later studied by| [CDD0O7,[DPO7 ADW09]. The name serves as an analogy to the Boundedy&tora
Model (BSM) of [Mau92| AR99, ADROZ, Lu02, VadD4], which restache amount of data that an adversary stame
after observing a huge public random strimgther than the amount of data an adversaryreaireve from a huge secret
key. With the exception of [ADWOQ9], all of the work on the BRM is in the symmetrig-ketting, where two parties
share a huge secret key. The recent work of Alwen et.[al [ADWf2®E the first public-key results in the BRM,
by constructing identification schemes, (variants of) signatures, andrdigifited-key-agreement protocols. However,
these primitives cannot be used to encrypt a message non-interactisgl/,done in the current work. Moreover,



the authenticated-key agreement protocols_of [ADWO09] required th@fuRandom Oracles, while we offer (some)
constructions in the standard model. We note that many of the prior schemes BR¥ and BSM employ ideas
similar to the “parallel repetition” and “random-subset selection” that werised in the introduction. However, the
proof-techniques in this paper differ significantly from previous works

2 Preliminaries

NOTATION. For an integer, we use the notatiofn] to denote the sdt] £ {1,...,n}. For a randomized functiof,
we write f(x; r) to denote the unique output gfon inputz with random coing-. We write f(z) to denote a random
variable for the output of (x; r), over the random coins For a setS, we letUg denote the uniform distribution over
S. For an integen € N, we letU, denote the uniform distribution ovdp, 1}, the bit-strings of lengthv. For a
distribution or random variabl& we write z < X to denote the operation of sampling a randeraccording toX .

For a setS, we writes < S as shorthand fog < Ug.

ENTROPY. Themin-entropyof a random variablél is Ho.(X) £ — log(max, Pr[X = z]). This is a standard notion

of entropy used in cryptography, since it measures the worst-cadietatglity of X. We also review a generalization
from [DORSO08], callecaverage conditional min-entromefined by

Hoo(X|2) & —log (E%Z [ max Pr[X = 2|7 = 2] D — —log (E%Z [THOO(X‘Z”)D .

This measures the worst-case predictabilitykobby an adversary that may observe a correlated varidb\e will use
the following lemmas to reason about entropy.

Lemma 2.1 ([DORSO08]) Let X, Y, Z be random variables wher# takes on values in a set of size at m#st Then
Ho(X|(Y,Z)) > Hoo((X,Y)|Z) — ¢ > Hoo(X|Z) — ¢ and, in particularHo (X ]Y) > Hoo(X) — £.

STATISTICAL DISTANCE AND EXTRACTORS. Thestatistical distancéetween two random variablés, Y is defined
by SD(X,Y) = 1> |Pr[X = z] — Pr[Y = 2]|. We write X ~. Y to denoteSD(X,Y) < ¢, andX ~ Y to denote
that the statistical distance is negligible. An extractor [NZ96] can be usesttace uniform randomness out of a
weakly-random value which is only assumed to have sufficient min-entfpydefinition follows that of [DORS08],

which is defined in terms of conditional min-entropy.

Definition 2.1 (Extractors) We say that an efficient randomized functiéxt : {0,1}* — {0,1}" is an (m,¢)-
extractorif for all X, Z such thatX is distributed over0, 1}" and H (X |Z) > m, we get(Z, R, Ext(X; R)) ~.
(Z,R,U,) whereR is a random variable for the coins &kt.

We now recall the definition of universal-hashing and the leftover-teama, which states that universal hash functions
are also good extractors.

Definition 2.2 (p-Universal Hashing) A familyH, consisting of (deterministic) functiohs: {0,1}* — {0,1}",isa
p-universal hash familyf for any m; # mgo € {0, 1}* we havePr,_y[h(m1) = h(m1)] < p.

Lemma 2.2 (Leftover-Hash Lemma[[NZ96]) Assume that the famityt of functionsh : {0,1}* — {0,1}", is a
p-universal hash family. Then the randomized extra&wet(z; h) = h(x), whereh is uniform overH, is an(m,¢)-
extractor as long asn > v + 2log (1/e) — 1andp < o (1 +£2).

3 Identity-Based Hash Proof SystemIB-HPS)

3.1 Definition

An Identity-Based Hash Proof Syst¢iB-HPS) consists of PPT algorithmg$Setup, KeyGen, Encap, Encap*, Decap).
The algorithms have the following syntax.



(mpk, msk) « Setup(1*) : The setup algorithm takes as input a security parametand produces thmaster public key
mpk and themaster secret keyisk. The master public key defines @tentity setZD, and anencapsulated-key skt
All other algorithmsKeyGen, Encap, Decap, Encap™ implicitly include mpk as an input.

skip «— KeyGen(ID, msk) : For any identitylD € ZID, the KeyGen algorithm uses the master secret kesk to sample an
identity secret kegkp.

(¢, k) < Encap(ID) : Thevalid encapsulation algorithm creates pdiesk) wherec is a valid ciphertext, and € K is the
encapsulated-key.

¢ «— Encap®(ID) : The alternativeénvalid encapsulation algorithm which samples an invalid cipk¢ite

k <« Decap(c,skip) : The decapsulation algorithm is deterministic, and takeslantity secret kegkp and a ciphertext
and outputs the encapsulated key

We require that an Identity-Based Hash Proof System satisfies the folj@raperties.
|. CORRECTNESS OFDECAPSULATION. For any values ofnpk, msk produced bysetup(1*), anyID € ZD we have:

skip < KeyGen(ID, msk)

<
(¢,k) < Encap(ID) , k' = Decap(c,skip) | — negl(})

Pr {k # K

Il. VALID/INVALID CIPHERTEXTINDISTINGUISHABILITY. The valid ciphertexts generated Bycap and the invalid
ciphertexts generated ncap™ should be indistinguishablkeven given the identity secret kég particular, we define
the following distinguishability game between an adversdmgnd a challenger.

VI-IND())

Setup: The challenger computéspk, msk) « Setup(1*) and givesmpk to the adversany.
Test Stage 1: The adversaryl adaptively queries the challenger with € 7D and the challenger responds withp.
Challenge Stage: The adversary selects arbitrary challenge identityD* € ZD.

The challenger choosés— {0,1}.

If b = 0 the challenger computés, k) < Encap(ID*).

If b = 1 the challenger computes— Encap*(ID™).

The challenger givesto the adversaryl.
Test Stage 2: The adversaryl adaptively queries the challenger with € 7D and the challenger responds withp.
Output: The adversary outputs a bit’ € {0, 1} which is the output of the game. We say thhtvinsthe game i’ = b.

Note: In test stages 1,2 the challenger computgs < KeyGen(ID, msk) the first time thatD is queried and responds to all
future queries on the sanhi@ with the samekp.

Note that, during the challenge phase, the adversary can chogseéentity ID*, and possibly even one for which it
has seen the secret kelyip+- in Test Stage 1 (or the adversary can simply gigt+ in Test Stage 2). We define the
advantage of4 in distinguishing valid/invalid ciphertexts to bedvii 1\ ,(\) £ | PrlA wins] — §|. We require that
Advig ez 4(A) = negl(X).

[1l. UNIVERSALITY/SMOOTHNESYLEAKAGE-SMOOTHNESS Other than properties | and I, we will need one ad-
ditional information theoretic property. Essentially, we want to ensure tleat thre many possibilities for the decap-

sulation of aninvalid ciphertext, which are left undetermined by the public parameters of thensygte define three
flavors of this property as follows.

Definition 3.1 (Universal IB-HPS) We say that aiB-HPS is (m, p)-universal if, for any fixed values ompk, msk
produced bysetup(1*), and any fixedD < ZD the following two properties hold:

1. LetSK be a random variable for the output BeyGen(ID, msk). ThenH,(SK) > m.
2. For any fixed distinct valuesp # skjp in the support o6K, we have

Pr [Decap(c, skip) = Decap(c, skip)] < p.
c—Encap*(ID)



Notice the significant difference between valid and invalid ciphertexts. vRld ciphertextse, the correctness of
decapsulation ensures that there is a single vialaelC such thaDecap(c, skip) = & for (virtually) all choices ofk|p
(of which there are many by (1)). On the other hand, for invalid ciph&steX2) ensures that it is highly unlikely that
any two distinct secret-keyk p will decapsulate: to the same valug.

Definition 3.2 (Smooth/Leakage-SmoottB-HPS) We say that ariB-HPS is smooth if, for any fixed valuesof
mpk, msk produced bysetup(1*), anyID € ZD, we have:

SD( (¢, k) , (c, kl) ) < negl())

wherec «— Encap*(ID), ¥' «— Ux and k is sampled by choosingkp < KeyGen(ID, msk) and computingc =
Decap(c, skip). We say that amB-HPS is /-leakage-smoothif, for any (possibly randomized) functigf-) with ¢-bit
output, we have:

SD( (¢, f(skip), k) , (¢, f(skip), k") ) < negl(\)

wherec, k, skip, k' are sampled as above. Note, for this propeftyieed not be efficient.

3.2 Relations Between Universality, Smoothness and Leaka@moothness.

We show two simple observations about the relationships between utiiyersaoothness and leakage-smoothness.
First, we show that a universi-HPS is leakage smooth for appropriate parameters.

Theorem 3.1 Assume that aiB-HPS, with key sefC = {0,1}", is (m, p)-universal. Then it is alsé-leakage smooth
aslong ag < m — v — w(log(A)) andp < 5= (1 + negl(\)).

Proof. Follows by the leftover-hash lemnia (Lemmal?2.2). O

We now also show how to convertsanoothlB-HPS (Setup, KeyGen, Encap, Encap®, Decap) into aleakage-smooth
IB-HPS using an extractoExt : K — {0, 1}". We define:

- Encapy(ID): Choos€(c, k) < Encap(ID), k' « Ext(k;r). Outputd’ = (¢, 1), k.
- Encap}(ID) : Choose a random seedndc < Encap*(ID). Outputc’ = (¢, r).
- Decap,(c/, msk): Parse’’ = (¢, r). Computek = Decap(c, msk), k' = Ext(k;r). Outputk’.

We show that the transformed systéBetup, KeyGen, Encapy, Encapj, Decap,) is leakage-smooth for appropriate
parameters in the next theorem.

Theorem 3.2 Assume that alB-HPS is smoothand that|C| = 2™. LetExt : £ — {0, 1}" be an(m —¢, ¢)-extractor
for somes = negl()\). Then the above transformation produces/deakage-smootiB-HPS.

Proof. The correctness and valid/invalid ciphertext indistinguishability properfidseomodified scheme follow from
those of the original. For leakage-smoothness, let umfik, msk, ID. Let f be any function with¢ bit output. We
define the following (correlated) random variabl8&p is distributed according t&eyGen(ID, msk), C'is distributed
according tcEncap*(ID), K is distributed according tBecap(C, SK|p) and R is a random and independent extractor
seed. Also, we define a (probabilistic, and possibly inefficient) functida k) which sampleskp from the condi-
tional distribution(SKp | C = ¢, K = k) and outputsf (sk;p). Then:

(C"=(C,R), f(SKip), K’ =Ext(K;R)) = (C'=(C,R),f(C,K),K'=Ext(K;R))
~ (C'=(C,R),f(C,Ux), K' = Ext(Ux; R)) (1)
~ (C'=(C,R),[(C,Uk),Uy) 2
(C"=(C,R), ['(C,K), Uy ) (3)
{

C/ = (Ca R)a f(SKlD)u Uv >
Equation[(1) follows by the definition of smoothness. For equalibn (2), exthiat
H.. (Ux|C, f'(C,Ux)) > Hoo(Ux|C) — £ > m — £

by[Lemma 2.1, and the fact th@t U are independent. Thell (2) follows from the definition of an extractogredi,
is independent of the other variables. Lastly, equafibn (3) follows bthenapplication of smoothness. O



3.3 Constructions

We show that the idea of dB-HPS implicitly forms the backbone of the recent IBE constructions of [Gen0&1B%
GPV08]. This gives us three constructionsIBfHPS, which are explicitly described and proven in the appendices.
Here we, just give a short note on each construction and explain itmptaes. We will be interested in the following:

1. Theactual identity-key sizé:: the number of bits needed to efficiently represent an identity secrakkgy
2. Theencapsulated-key size this isv = log(|K|), whereK is the encapsulated-key set.
3. The min-entropyn and the universality. These are the values for which the schemerisp)-universal.

An important parameter is the rat{p, which determines the amount&fiative leakagehat our IBE and PKE in BRM
constructions can handle. We note taktof the schemes satisfy the definitionssmhoothness

A SCHEME BASED ON BILINEAR GROUPS In[Appendix B, we show that the IBE scheme of Geniry [Gen06],
implicitly contains anlB-HPS construction. The scheme and the proof are essentially the same as t{iGen@6],
and rely on the “truncated augmented bilinear Diffie-Hellman expon@&BDHE ) assumption. It doesot require
the use of Random Oracles. The scheme is extremely efficient, requiripg@onstant (2 or 3) number of group
elements in the master public key, master secret key, identity secret kegipaedexts. The parameters of interest are:

m 1

m =2log(p) +O(1) , m=log(p) |, PN v=log(p) , p=0.

wherep is the (prime) order of an appropriate bilinear-grdgp

A SCHEME BASED ON QUADRATIC REsIDUOSITY. In[Appendix ¢, we show that the IBE scheme of Boneh, Gen-
try and Hamburg [BGHQ7] containsIB-HPS. The construction and proof essentially follow [BGHO07] (with a minor
modification in how identity secret keys are chosen, to get universalitiie Stheme is secure under the Quadratic
Residuosity assumption in the Random Oracle model, or under a non-stan@aactive quadratic residuosity as-
sumption(seq Appendix ) in the standard model. The parameters of interest are:

m 1
m  log(N) ~’

m=1log(N) , m=1 |, v=1 , p=0.

whereN is an appropriately sized RSA modulus. Unfortunately, it is not clear how keritee scheme leakage-smooth
for any? > 0, since the secret-key entropyis too small to extract even a single bit. This problem can be fixed, as will
be done in the BRM, by using parallel-repetition to amplify the entropy. Still, ttative leakage of the scheme will be

poor because of the poor ratio of the entrepyo actual-key-sizen.

A SCHEME BASED ON LATTICES. In[Appendix D, we show how to get a constructionIBEHPS using the IBE
scheme of Gentry, Peikert and Vaikuntanathan [GPV08]. Note that tlisctistruction was already observed to be
leakage-resilient by [AGV09], but this does not imply that it isIBAHPS. In fact, we need to make some simple
modifications so that the scheme satisfies our definition. The security oftbmeds based on a (decisional) Learning
With Errors (LWE) assumption, in the random oracle model. Note that thisrgst#n can be reduced to the GapSVP
problem for lattices, using the techniques|of [Red05, F’@Oﬁﬂa show that, for any constant> 0, there exists some
setting of the actual-key-siz& so that:

m=(1—-em Q:(l—a) , v=1 pzl(l—i—negl(/\)).

m 2

Note that, by Theorem 3.2, this construction is therefdready/-leakage smooth, for any< m — w(log())), without
any need to apply an extractor.

4 Leakage-ResilientiBE

We define what it means for an Identity-Based Encryptl&f] scheme to be resistant to key leakage attacks and show
how to use anB-HPS to construct such alBE scheme. Our notion of leakage-resilience only allows leakage-attacks

3 We note that our construction requires that we use some (slightly) saberemial modulus; in the LWE problem, which means that we
need to assume GapSVP is hard against some (slightly) super-polytiomeiadversaries.



against the secret keys of the various identities,rfmitthe master secret key. Also, we only allow the adversary to
perform leakage attacks before seing the challenge ciphertext. Asinpj&&V09,INS09| ADWO09], this limitation is
inherent to (non-interactive) encryption schemes since otherwise tkeglefunction can simply decrypt the challenge
ciphertext and output its first bit.

4.1 Definition

Recall anlBE scheme consists of PPT algorith$etup, KeyGen, Encrypt, Decrypt), an identity seZ’D and a message
spaceM. The syntax obetup, KeyGen is the same as that IB-HPS, andEncrypt, Decrypt have the following syntax:

¢ < Encrypt(ID, m) : The encryption algorithm encrypts € M, and produces a ciphertext
m « Decrypt(c,skip) : The decryption algorithm decrypts a ciphertextsing the identity secret ke p.

|. CORRECTNESS OFDECRYPTION. For any(mpk, msk) produced bySetup(1*), anyID € ZD, anym € M, we
have
skip < KeyGen(ID, msk)

<
¢  Encrypt(ID.m) . m' « Decrypt(c.skp) | = "'V

Pr [m’;ﬁ m

Il. SEMANTIC SECURITY WITH LEAKAGE. We define thesemantic security gamparametrized by a security param-
eter\ and a leakage parameteas the following game between an adversdrgind a challenger.

IBE-SS(A, £)

Setup: The challenger computéspk, msk) « Setup(1*) and givesmpk to the adversany.
Test Stage 1: The adversaryd can adaptively ask the challenger for the following queries

Secret-Key Queries: On inputlD € ZD, the challenger replies witkp.
Leakage Queries: On inputlD € ZD, a PPT functiorf : {0,1}* — {0, 1}, the challenger replies witfi(skip).

Challenge Stage: The adversary selects two messaggsm; € M and a challenge identityD* € ZD which never ap-
pearedin a secret-key query and appeare@immost¢ leakage queries. The challenger chodses {0, 1} uniformly
at random and computes— Encrypt(ID*, m;) and gives: to the adversary.

Test Stage 2: The adversary gets to makecret-key querigfor arbitrarylD # ID*. The challenger replies wittkp.

Output: The adversaryd outputs a bit’ € {0,1}. We say that the adversaninsthe game i’ = b.

=

Note: In test stages 1,2 the challenger computgs «— KeyGen(ID, msk) the first time thatD is queried (in a secret-key ¢
leakage query) and responds to all future queries on the Hamvih the samekp.

Theadvantageof an adversaryt in thesemantic security game with leakagis AdvjSE S° (X, £) = |Pr[A wins] — 1.

Definition 4.1 (Leakage-Resilient IBE) An IBE scheme ig¢-leakage-resilientf (1) it satisfies the correctness of de-
cryption property, and (2) the advantage of any any PPT advergairy the semantic security game with leakdgés
AdVIEESE (X, £) = negl()). We define theelative leakagef the scheme to be = ¢/1n, whereri is the number of bits
needed to efficiently store identity secret keys.

Remark on Stateful vs. Stateless Key Authority. In the semantic-security game with leakage, we assume that
skip < KeyGen(ID, msk) is computed only once per identit{ and reused subsequently. In reality, this requires that
the key-authority that issues identity secret keys is stateful, and caahesdhtet keys that it computes. As noted in
[Gen06, BGHO7| GPV(8], this requirement can be overcome easily anerigally to get a stateless key-authority.
We simply add a pseudo-random functipne  F, from a PRF familyF, to the master secret keysk and always

run KeyGen(ID, msk) using random coins derived froif(ID). That way the output is consistent each tiKmyGen is
called.
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4.2 Construction of Leakage-ResilientBE

The construction of a leakage-resilient IBE from a leakage-smi@tiPS is almost immediate, by simply using the
encapsulated key as a one-time-pad to encrypt a message. In pargiugdaraniB-HPS where the encapsulated key
set/C has some group structut&, +) (e.g. bit-strings withd), we construct aftBE scheme with the same identity set
ID and message sg! = K. TheSetup, KeyGen algorithms are the same for both primitives dfetrypt, Decrypt
are defined by:

Encrypt(ID, m): Choos€(cy, k) < Encap(ID) and letca = k + m. Outpute = (cy, ¢2).
Decrypt(c,skp): Parsec = (c1, ¢o) and computé: = Decap(cy, skip). Outputm = ¢ — k.

Note that theEncap™ algorithm of thelB-HPS is not used in the construction, but will be used to argue security.

Theorem 4.1 Assume that we start with aftleakage-smoothB-HPS. Then the above construction yields é&n
leakage-resilientBE.

Proof. The correctness of decryption, follows by the correctness of datamn. For the security analysis, we us a
series of games argument:

Game 0: Define Game 0 to be the semantic security game with leaka§etice that, in the challenge stage of Game
0, the challenger computes— Encrypt(ID*, m;) which we expand as= (c;, c2) where

(c1,k) < Encap(ID*),co = my @ k.

Game 1: We modify the challenge stage, so that the challenger uses the secr,kdp compute the ciphertext
c=(c1,c2) by:H
(c1,k1) < Encap(ID*), ko < Decap(cy, skip*), ca = mp @ ko

The difference between Game 0 and Game 1 is only the usgwarsusks. But, by the correctness of decapsu-
lation, k1 = ko with all but negligible probability so Games 0 and 1 are (statistically) indistinghlsha

Game 2: In Game 2, we modify the challenge stage still further by having the challersgeainvalid encapsulation
procedure to compute the ciphertext (¢, c2):

¢1 < Encap*(ID*), ko < Decap(cy,skip*), ca = my @ ka.

We claim that Games 1 and 2 are computationally indistinguishable by the valid/inigtliertext indistinguisha-
bility of IB-HPS. Notice that, although the valid/invalid ciphertext indistinguishability game doekaweleak-
age queriesit allows the adversary to learn all secret-keys, including the segyekke: of the challenge identity
ID*. Therefore indistinguishability between Games 1,2 heldif the adversary sees tlfigll challenge identity
secret-keyk p+=, and hence certainly given just some bounded leak@slgp- ).

Game 3: In Game 3, the challenge ciphertext (c1, c2) is computed by:

¢1 < Encap*(ID*), co «— Ug.

We claim that Games 2 and 3 are statistically indistinguishable by-thakage-smoothness B-HPS. In-
deed, for fixed values ahpk, msk the only values in Game 2 which are correlatedkg+ are the outputs of
the ¢ leakage-queries, ankh < Decap(ci,skip=). But, by ¢-leakage smoothness, (thinking of théeakage
queries together as a single randomized funcfitisky)), this is (statistically) indistinguishable from choosing
a completely independeht — Uy, which is equivalent to Game 3.

Therefore Game 0 and Game 3 are indistinguishable by a PPT adverdaoy.itAs clear that the advantage of any
adversary in Game 3 is exactly(since Game 3 is independent of the bithosen by the challenger). Therefore the
advantage of any PPT adversary in Game 0 is at most negligibly diffentthat of Game 3, and hence negligible in
A, as we wanted to show. O

“The valueskp- is either already defined iD* was part of a leakage/secret-key query, or chosen freshifrerGen(ID*, msk) and used to
respond to future queries otherwise
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5 Leakage Amplification of IB-HPS

We now show how to construct @rdleakage-smootkB-HPS, for arbitrarily large values of, meeting the efficiency
requirements of the BRM. This will be the main step towards building PKE (aB) #8hemes in the BRM. We start
with aIB-HPS schemdI; = (Setup, KeyGen,, Encap;, Encap], Decap;) and compile it into a neuB-HPS scheme

IIo = (Setup, KeyGen,, Encap,, Encaps, Decap, ), where the identity secret keys can be made arbitrarily large, so as
to achieve/-leakage-smoothness for a largéVe will assume there is a one-to-one functidn: ZDy x [n] — ID;
whereZD,, 7D, are the identity sets dii;, I, respectively. In the constructed scheme, the identity secret key of each
ID € ID, consists ofn componentsk;p = (skip[1],...,skp[n]), where each componeskp[i] is an independently
sampled identity secret key for an identf#(1D, i) € ZD; of the original scheme. Here,will be a key-size parameter,
which gives us flexibility in the size of the identity secret key in the construstbdme, and will depend on the desired
leakage-parametet The encapsulation proceduBEacap,(ID) will target only a small subset afout-of-n of the
identitiesH (1D, i), and decapsulatioDecap, will only need to read the valuegp[i] associated with thegadentities.
Heret will be alocality-parametemwhich can be much smaller than (and independent.of\ formal description of

the construction appears[in Figuije 1. It is described abstractly in termbittbay parameters, ¢, v. In the theorem

that follows, we show how to instantiate these appropriately based on theysetfin.

LetTI; = (Setup, KeyGen,, Encap,, Encap], Decap,) be alB-HPS with encapsulated-key-s&t and identity-seZD; .
Letn,t,v € Z*. We calln akey-size parametget alocality parameterandv a output-sizeparameter.

Let H : IDy x [n] — ID; be a one-to-one function for some §&P,

Let G be a5 -universal hash function family of functions: £* — {0, 1}.

Definell, = (Setup, KeyGen,, Encap,, Encap}, Decap,) as follows:
Setup(1*): The setup procedure is the same as that of
KeyGen, (ID, msk): Fori € [n], samplesk,p[i] < KeyGen, (H(ID, ), msk). Outputskip = (skip[1],...,skip[n]).

Encap,(ID): Choose random indice® = (r1,...,7;) < [n]’. Choosgy « G.
Fori € {1,...,t}, compute:(c;, k;) < Encap,(H(ID,r;)). Let¢ = (cq,...,ct).
Output:C = (7,¢,9), k = g(k1, ..., k).
Encap;(ID): Choose random indice§ = (rq,...,7;) < [n]t. Choosgy — G.
Fori € {1,...,t}, computeic; — Encapi(H(ID,r;)). Lete = (cy,...,c). Output:C' = (7, ¢, g).

Decap,(C, skip): ParseC = (7, ¢, g). Computek; = Decap, (¢, skip[r;]) fori € {1,...,t}. Outputk = g(k1,..., k).

2A collision-resistant hash function (CRHF) would suffice here as well.

Figure 1: Leakage-Amplification of dB-HPS: Construction oflI; from I1;.

For the analysis of the construction, we need to define a new parameter thadleffective key size:’. This is
the minimal value such that, for any fixeapk, msk, ID, the number of values thakp < KeyGen(ID) can take on
is bounded by2™' . If the actual key size is: and the key entropy is:, thensi > m’ > m. Note that in all of our
constructionsin/m’ is a constant (even when/m is not, as is the case for our QR-based construction).

Theorem 5.1 Assumdl; is an (m, p)-universallB-HPS with effective key sizer’, wherep < 1 andm/m’ > 0 are
constants. Then, for any constant> 0 and any polynomiab(\), there is some setting of= O(v + \) so that,
for any polynomialn(\), the above construction di, with parametersn, ¢, v is an /-leakage-smoothB-HPS for
l(A) = (1 —e)nm — v — A\. The encapsulated-key-setldf is £ = {0, 1}".

It is easy to see thdil, satisfies correctness. Also, the valid/invalid ciphertext indistinguishabilitypenty of I1,
follows by a simple hybrid argument. Therefore, we only need to shi@akage smoothness, for thgiven by the
theorem statement. For a fixetpk, msk, ID in IIy, the entropy of the random variabd;p ~ KeyGeny(ID, msk),

is amplified toH ., (SK|p) > nm, since it consists of. independently sampled secret keydhf If we could show
that the scheme is als@-universal, for some smalf’ < (5 + negl(})), then we could rely ofi Theorem 3.1 to
show leakage-smoothness. Unfortunately, this is not the case. Thiemprabthat, if two valueskp # skjp in the
constructed scheme differ in only one positigrthenDecap,(C, skip) = Decap(C, skip) as long as the ciphertegt
does not “select’j, which happens with large probability. We analyze the leakage smoothhtkss apnstruction in
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[Appendix E. First, we define a new notion calkgbroximately universal hashir{@efinition E.3), where we only insist
that values which are far from each other in Hamming distance (over soimabetp) are unlikely to collide. We then
show a variant of the leftover-hash lemrha_ (Lemma 2.2), callechipeoximate leftover-hash lemnf@heorem E.R)
holds for approximate hashing. Lastly,[in Appendix|E.3, we show that thapdelation procedur®@ecap,(C, skip)

is approximately universal, for appropriate parameters, when Encap*(ID)E Combining these results, we get the
parameters of the theorem.

6 Public-Key Encryption and IBE in the BRM

A public-key encryptionPKE) scheme in the BRM consists of the algorith(feyGen, Encrypt, Decrypt), which are

all parameterized by a security parameteaind a leakage parametér The syntax and the correctness property of
an encryption scheme follow the standard notion of public-key encrypidadefine the followingsemantic-security
game with leakagé between an adversayy and a challenger.

SemS(\, ¢)

Key Generation: The challenger computépk, sk) < KeyGen(1*,1¢) and givesk to the adversanyl.

Leakage: The adversaryd selects a PPT functiofi : {0,1}* — {0,1}¢ and getsf(sk) from the challenger.

Challenge: The adversaryd selects two messages,, m;. The challenger choosés— {0, 1} uniformly at random and
givesc — Encrypt(m,, pk) to the adversary.

Output: The adversaryd outputs a bit’ € {0,1}. We say thatd wins the game it/ = b.

For any adversaryl, theadvantage of4 in the above game is defined ASvgi'E’SA()\, I |Pr[Awins] — %]

Definition 6.1 (Leakage-Resilient PKE) A public-key encryption schen®E is leakage-resilient, if for any polyno-
mial /(\) and any PPT adversam, we haveAdvge> (A, £())) = negl(A).

Definition 6.2 (PKE in the BRM) We say that a leakage-resilient PKE scheme&< in the BRM if the public-key
size, ciphertext size, encryption-time and decryption-time (and the eruofilsecret-key bits read by decryption) are
independent of the leakage-boufidMore formally,there exist polynomialspksize, ctsize, encT, decT, such thatfor
any polynomial¢ and any(pk, sk) < KeyGen(1*,1“Y), m € M, ¢ — Encrypt(m, pk), the scheme satisfies:

1. Public-key size ifpk| < O(pksize())), ciphertext size igc| < O(ctsize(A, [m|)).
2. Run-time oEncrypt(m, pk) is < O(encT (A, |m|)).
3. Run-time oDecrypt(c, sk), and the number of bits ek accessed, i< O(decT (A, |m|)).

Therelative-leakagef the scheme ia < ¢/|sk|.

We can generalize the above definition to IBE schemes, and say that gdeasdient IBE is arlBE in the BRM
if the master-public-key size, master-secret-key size, ciphertext sizeraryption/decryption times are bounded by
polynomials independent &f

Theorem 6.1 (PKE and IBE in BRM) Assume that we have &m, p)-universallB-HPS satisfying the conditions of
[Theorem 511 and having actual key size Then, for any constaat> 0 and any polynomial, we get PKE (resp. IBE)
schemes in the BRM with message sp&te= {0, 1}" and:

1. Public-key size (resp. master public/secret key size) is the samat & the underlyindB-HPS.

2. The locality-parameter is= O(v + \). The # of secret-key bits accessed during decryptiomis

3. Ciphertext-size/encryption-time/decryption-time differ by a factarfodm those of the underlyin@-HPS.

4. Relative leakage is > % (1 — ¢), for sufficiently large values of the leakage-paraméter

In particular, for large enouglt, the secret-key size (resp. identity-secret-key sizg)lri;té(l + e)l.

SFor approximate universality, we think siip as consisting of, symbols of an alphabét, with one symbol for each component ke [4].
For the size; = |X|, we can consider an abstract (not necessarily efficient) repréisentfithe keysskip[i], sog < om’
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Proof. Follows directly from leakage-amplification (Theorem|5.1). For any leekzarametef, the key-size parameter

n in the construction ofl; in is made just large enough so that (1 — ¢)nm — v — A. Therefore 1, is
(-leakage smooth. By Theorem ¥.1, this yields/daakage resilient IBE. The efficiency parameters are obvious from
the construction, so it is easy to see that we get an IBE in the BRM. By ignatindentities except for a single one,
we naturally get a PKE in the BRM. The relative leakage is % ~ & (1 —¢), for £ large enough in relation to, A.

U

7 Extensions

CCA SecuURITY. In AppendixXF we show that the main ideas underlying our approacheaxtended to deal with
chosen-ciphertext attacks. We present constructions of encryptimmes that are resilient to leakage even under
chosen-ciphertext attacks. That is, these schemes are semanticatly eemu against an adversary that is allowed to
submit both leakage queries and decryption queries. We first consiglgtitydbased encryption, and show that the
CCA-secure variant of Gentry’s scheme [Gen06] can be generabziehl with leakage. We then consider public-key
encryption in the BRM, and observe that the generic transformation fhasen-plaintext security to chosen-ciphertext
security, using the Naor-Yung paradigm [NY90], also applies in the BRM.

SHORTER CIPHERTEXTS VIA ANONYMOUS ENCAPSULATION. We notice that two of outB-HPS constructions,
based on lattices and quadratic residuosity, have additional structuidy altows for a more efficient version of our
leakage-amplification construction. In the construction shovn in FidureelgigihertexiC' of the constructed scheme
I1, containg ciphertexts:, . . ., ¢, of the underlying schemié;, wheret = O(\+v). We show how to reduce this to a
single ciphertext if we start with aiB-HPS constructionl]; that has an additional property, which we aallonymous
encapsulationSuch a scheme has two additional procedures:

e (c,s) < EncapC(), which samples a ciphertextogether with a trapdoor withoutknowing the targelD.
e k = EcnapK(e, s, D), which (deterministically) computdsfor any|D, givenc and a trapdoos.

Note that the procedurésicapC, EcnapK (like Encap) are implicitly parameterized by the master public keyk.

Definition 7.1 (Anonymous Encapsulation) An IB-HPS hasanonymous encapsulatidinthere exist efficient proce-
duresEncapC, EcnapK as above, such that, for any fixetpk, msk, ID, sampling(c, k) < Encap(ID) is equivalent to
sampling(c, s) < EncapC() and computing: = EcnapK(c, s, ID).

For our lattice-based and quadratic-residuosity based constructiengrdbedure&ncapC, EcnapK are already im-
plicitly defined byEncap, which first samples anonymously (independently td) and then computéesfor a givenlD
using the randomnesshat was used to generate

There are several advantagesIBsHPS schemes that have the anonymous-encapsulation property. Firstly, it's
easy to see that the IBE constructed from such schemeanoaymity in that the ciphertext does not reveal the target
identity. Perhaps more importantly, anonymous encapsulation can be usetao ignproved leakage-amplification
scheme with shorter cipherteﬁsl.n particular, we modify the procedugncap,(ID) of the constructedI, scheme,
so that it samples aingle ciphertext/trapdoor paifc, s) < EncapC;() of the underlying schemH;, and computes
k; = EcnapK;(c, s, H(ID, r;)) for each of of the random indices; € [n]. The ciphertexts of the constructed scheme
therefore consist o = (7, ¢, g), and contain only a single ciphertextof the underlying scheme. To reduce the
ciphertext size still further, we can employ the following optimizations:

1. Instead of sampling the indicés— [n]* uniformly at random, and communicating this choice in the ciphertext,
we use use aitting sampler or hitter (see Definifion E2) to sample € [n]* efficiently. This choice can then
be communicated using a seed of description Bigén) + O(\ + v), rather than the previous sizéog(n) =
O((A + v)log(n)) needed to communicateexplicitly.

2. Use ay-universal, instead of fully universal, hash functipgnwherey = 2%(1 + negl(A)). As observed in
[SZ99], such hash functions can have description gix@s+ \), only proportional to the output size, and not the
somewhat larger input size.

6 A similar technique is implicitly used to get shorter ciphertexts relative to thesageslength in the IBE constructions lof [BGHD7, GPVO08].
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In[Appendix E.4, we show that leakage-amplification still holds for the moddfetbtructions, by showing that
Decap,(C, -) is an approximately-universal hash function with appropriate parametbenC' — Encap*(ID). Un-
fortunately, the setting of the parameters requires ghst 2% in the original scheme, which is only the case for our
QR-based scheme babt the lattice-based scheme.

8 Comparison of PKE (and IBE) in BRM Constructions

In [Table1, we compare the efficiency and relative-leakage of ourusiiBE and PKE in BRM constructions. We
assume that the plaintext sizevis= O()\)E In all of the schemes, the leakage-paramétean be arbitrarily large and
the relative leakage column indicates the ratio of leakage to secret-keyT$iegoublic-key size of all schemes is the
same as the master-public-key size of the correspori@istgPS and the encryption/decryption times (and the number
of bits accessed) differ by a multiplicative factoriof= O(\). The “CT expansion” column indicates the ratio of the
ciphertext size in the BRM to that of the underlyilgtHPS. The “CT size in BRM” column measures the size of the
ciphertext in the BRM on an absolute sdilEhe values > 0 can be an arbitrary constant.

_ Scheme Assumption Relative Leakage| CT Sizein BRM | CT Expansion| Locality
B|I|rEéaerr—](SEr;§)ups TABDHE (L—¢) 0(\2) O\ o)
Quadr[aBtgcl_llQoe?s]iduosity oR' o o) o(1) O(X)
[éa;t\‘/ccif] LWE/GapSVPi (1-¢) O o o

= Random Oracle Model/Interactive Assumption

Table 1: Comparison of Our PKE in BRM Constructions

9 Acknowledgements

We would like to thank Vinod Vaikuntanathan for many enlightening discuss@amsespecially for his invaluable help
in answering our technical questions about his recent lattice-relateltisted/e would also like to thank Craig Gentry
for his helpful discussion and for pointing us to the IBE scheme of [BGHO07

References

[ADRO2]

[ADWO09]

[AGV09]

[Ajt99]

[APO9]

[AR99]

Yonatan Aumann, Yan Zong Ding, and Michael O. Ralfiverlasting security in the bounded storage motieEE
Transactions on Information Theqr§8(6):1668—1680, 2002.

Joel Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilipublic-key cryptography in the bounded-retrieval
model. INCRYPTQpages 36-54, 2009.

A. Akavia, S. Goldwasser, and V. Vaikuntanathan.m8ltaneous hardcore bits and cryptography against memory
attacks. In Omer Reingold, editdrheory of Cryptography — TCC 200@lume 5444 ot ecture Notes in Computer
ScienceSpringer-Verlag, 2009.

Mikl 6s Ajtai. Generating hard instances of the short basis pnoblin Jii Wiedermann, Peter van Emde Boas, and
Mogens Nielsen, editoréCALP, volume 1644 of ecture Notes in Computer Scienpages 1-9. Springer, 1999.

Ja&l Alwen and Chris Peikert. Generating shorter bases fod kandom lattices. In Susanne Albers and Jean-
Yves Marion, editors STACS volume 09001 ofDagstuhl Seminar Proceedingpages 75—86. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany Internatio@slBegegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2009.

Yonatan Aumann and Michael O. Rabin. Informationdiegically secure communication in the limited storagecepa
model. In Wiener[Wie99], pages 65-79.

"To encrypt larger messages, it is sufficient to encrypt a ShoX) sized key for a symmetric-key encryption scheme.
®Note that, to make a fair comparison, we assume that RSA moduli and bitineap elements have description siz#6\). For our LWE
based construction, the modulgseeds to be (slightly) super-polynomial, and we are pessimistic by jusdirogits description size b§(\).

15



[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipto®n the importance of checking cryptographic protocols for
faults (extended abstract). EJROCRYPJTpages 37-51, 1997.

[BGHO7] Dan Boneh, Craig Gentry, and Michael Hamburg. Speftieient identity based encryption without pairingsHOCS
pages 647—657, 2007.

[BS97] Eli Biham and Adi Shamir. Differential fault analgsof secret key cryptosystems. In Burton S. Kaliski Jr.,adit
CRYPTQvolume 1294 ot ecture Notes in Computer Scienpages 513-525. Springer, 1997.

[CDD*07] David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee haid J. Lipton, and Shabsi Walfish. Intrusion-resilient
key exchange in the bounded retrieval model. In Salil P. ¥adleditor, TCC, volume 4392 ofLecture Notes in
Computer Sciencgages 479-498. Springer, 2007.

[CDHT00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushiievand Amit Sahai. Exposure-resilient functions andoadl-
nothing transforms. IEUROCRYPTpages 453-469, 2000.

[CLWO06] Giovanni Di Crescenzo, Richard J. Lipton, and ShaWalfish. Perfectly secure password protocols in the bounded
retrieval model. In Halevi and Rabin [HRO6], pages 225-244.

[CS02] Ronald Cramer and Victor Shoup. Universal hash graafl a paradigm for adaptive chosen ciphertext securecpubli
key encryption. In Lars R. Knudsen, editetl JROCRYPTvolume 2332 of_ecture Notes in Computer Scienpgages
45-64. Springer, 2002.

[DDNOO] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-rresdble cryptographysIAM Journal on Computing0(2):391-
437, 2000.

[DKLO9] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lihv®n cryptography with auxiliary input. ISTOG 2009.

[DORSO08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzimd Adam Smith. Fuzzy extractors: How to generate strong key
from biometrics and other noisy datalAM J. Comput.38(1):97-139, 2008.

[DPO7] Stefan Dziembowski and Krzysztof Pietrzak. Intamsiesilient secret sharing. IROCS pages 227-237. IEEE
Computer Society, 2007.

[DPO08] Stefan Dziembowski and Krzysztof Pietrzak. Leakeggdlient cryptography. IFOCS pages 293-302. IEEE Com-
puter Society, 2008.

[DSSO01]  Yevgeniy Dodis, Amit Sahai, and Adam Smith. On petréend adaptive security in exposure-resilient cryptolgyap
In EUROCRYPTpages 301-324, 2001.

[Dzi06] Stefan Dziembowski. Intrusion-resilience via theunded-storage model. In Halevi and Rabin [HRO6], pag&s-20
224,

[FKPRO0O9] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzakd Guy Rothblum. Leakage-resilient signatures. CrygtpkPrint
Archive, Report 2009/282, 2008ttp://eprint.iacr.org/

[Gen06]  Craig Gentry. Practical identity-based encryptidthout random oracles. In Serge Vaudenay, edE&tfROCRYPT
volume 4004 ol ecture Notes in Computer Scienpages 445-464. Springer, 2006.

[GMOO01] Karine Gandolfi, Christophe Mourtel, and Francisvier. Electromagnetic analysis: Concrete results. InirCe
Kaya Kog, David Naccache, and Christof Paar, editGdES volume 2162 oflecture Notes in Computer Science
pages 251-261. Springer, 2001.

[Gol97] Oded Goldreich. A sample of samplers - a computatiperspective on sampling (survey). volume 4, 1997.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntdraat. Trapdoors for hard lattices and new cryptographictcots
tions. INnSTOC '08: Proceedings of the 40th annual ACM symposium onryhe computingpages 197-206, New
York, NY, USA, 2008. ACM.

[HRO6] Shai Halevi and Tal Rabin, editor§heory of Cryptography, Third Theory of Cryptography Cosifiee, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedingdume 3876 of_ecture Notes in Computer Scien&pringer,
2006.

[HSHT08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, ®¥lliClarkson, William Paul, Joseph A. Calandrino, Ariel J.
Feldman, Jacob Appelbaum, and Edward W. Felten. Lest wemnd@ie Cold boot attacks on encryption keys. In
Paul C. van Oorschot, editddSENIX Security Symposiypages 45-60. USENIX Association, 2008.

[ISWO03] Yuval Ishai, Amit Sahai, and David Wagner. Privatesaits: Securing hardware against probing attack CRYPTQ
pages 463—-481, 2003.

16


http://eprint.iacr.org/

[KJJ99]
[Koc96]

[KPSYO09]

[KVO9]

[KZ03]

[Lin06]

[Lu02]

[Mau92]

[MRO4a]

[MRO4b]

[INS09]

[NY90]

[NZ96]
[Pei09]

[Pie09]
[PRO6]

[QS01]

[Reg05]

[Sah99]

[Sho05]

[SZ99]

[Vado4]

[Vaiog]
[Wie99]

Paul C. Kocher, Joshua Jaffe, and Benjamin Junef®ifitial power analysis. In Wienér [Wi€99], pages 388-397.

Paul C. Kocher. Timing attacks on implementatiofigliffie-hellman, rsa, dss, and other systems. In Neal Koplit
editor, CRYPTQvolume 1109 of ecture Notes in Computer Scienpages 104—-113. Springer, 1996.

Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, arMoti Yung. A new randomness extraction paradigm for hybrid
encryption. In Antoine Joux, editoEUROCRYPTvolume 5479 ol ecture Notes in Computer Scienpages 590—
609. Springer, 2009.

Jonathan Katz and Vinod Vaikuntanathan. Signatwteesnes with bounded leakage resilience, 2009. To Appear in
Asiacrypt '09/http://www.mit.edu/"vinodv/papers/asiacrypt09/KV-Si gs.pdf

Jesse Kamp and David Zuckerman. Deterministic &t for bit-fixing sources and exposure-resilient crgpaphy.
In FOCS pages 92-101, 2003.

Yehuda Lindell. A simpler construction of CCA2-see public-key encryption under general assumptialwirnal
of Cryptology 19(3):359-377, 2006.

Chi-Jen Lu. Hyper-encryption against space-bodratdversaries from on-line strong extractors. In Moti Yugdjtor,
CRYPTQvolume 2442 otf_ecture Notes in Computer Scienpages 257-271. Springer, 2002.

Ueli M. Maurer. Conditionally-perfect secrecy aagrovably-secure randomized ciphér.Cryptology 5(1):53-66,
1992,

Silvio Micali and Leonid Reyzin. Physically obsable cryptography (extended abstract). In Moni Naor, editGC,
volume 2951 of_ecture Notes in Computer Scienpages 278-296. Springer, 2004,

Daniele Micciancio and Oded Regev. Worst-case &vaye-case reductions based on gaussian measur€3CIB '04:
Proceedings of the 45th Annual IEEE Symposium on Foundatib@omputer Sciencpages 372-381, Washington,
DC, USA, 2004. IEEE Computer Society.

Moni Naor and Gil Segev. Public-key cryptosystensilient to key leakage. ICRYPTQpages 18-35, 2009.

Moni Naor and Moti Yung. Public-key cryptosystemspably secure against chosen ciphertext attack®rdeeed-
ings of the 22nd Annual ACM Symposium on Theory of Computages 427—-437, 1990.

Noam Nisan and David Zuckerman. Randomness is limegpace.J. Comput. Syst. S¢b2(1):43-52, 1996.

Chris Peikert. Public-key cryptosystems from tr@rst-case shortest vector problem: extended abstracsTOG
pages 333-342, 2009.

Krzysztof Pietrzak. A leakage-resilient mode oérgtion. InEurocrypt 2009, Cologne, Germar009.

Chris Peikert and Alon Rosen. Efficient collisiosistant hashing from worst-case assumptions on cyclicéstt In
Halevi and Rabin [HRQ6], pages 145-166.

Jean-Jacques Quisquater and David Samyde. Elegraatic analysis (ema): Measures and counter-measures for
smart cards. In Isabelle Attali and Thomas P. Jensen, sdiesmart volume 2140 of_ecture Notes in Computer
Sciencepages 200-210. Springer, 2001.

Oded Regev. On lattices, learning with errors, oaméinear codes, and cryptography.3hOGC pages 84-93, 2005.

Amit Sahai. Non-malleable non-interactive zerowedge and adaptive chosen-ciphertext securityPrbteedings
of the 40th Annual IEEE Symposium on Foundations of Com@dencepages 543-553, 1999.

Victor Shoup A computational introduction to number theory and algeb@ambridge University Press, New York,
NY, USA, 2005.

Aravind Srinivasan and David Zuckerman. Compultirigpwery weak random sourceSIAM J. Compuf.28(4):1433—
1459, 1999.

Salil P. Vadhan. Constructing locally computabktra&ctors and cryptosystems in the bounded-storage maodiel.
Cryptology 17(1):43-77, 2004.

Vinod Vaikuntanathan. Personal CommunicatiorQ20

Michael J. Wiener, editorAdvances in Cryptology - CRYPTO '99, 19th Annual InternalcCryptology Confer-
ence, Santa Barbara, California, USA, August 15-19, 1998¢&edingsvolume 1666 of ecture Notes in Computer
ScienceSpringer, 1999.

17


http://www.mit.edu/~vinodv/papers/asiacrypt09/KV-Sigs.pdf

A Counterexample to PKE in BRM Construction
from General Leakage-Resilient IBE

We give a counterexample showing that a generic construction of PKE BRI from a leakage-resilient IBE, via
parallel repetition, does not work. More specifically we construct &b WBth leakage/, such that parallel-repetition
does not amplify leakage-resilience beyond some small value, no matter hoy'rapetitions™n are taken.

As a start, assume thdtis any IBE scheme. We first construct an IBEwhere the set of identities is exactly
[n] (which is only polynomial). The scheme is the samd agherwise, except that the identity-secret-key generation
procedure also gives a shase of the master secret keyisk to each identityi € [n], along with its identity secret
key. We assume the share is computed using-ant-of-: secret sharing scheme. The resulting schéhie still and
IBE (albeit with a small, polynomially size identity set) since, after observing taetity secret key of up ta — 1
identities, the master secret key is still perfectly hidden. Moreover, thensehs leakage-resilient, at least for some
small (logarithmic in the security parameter) leakdgghis must be the case famy IBE/PKE since a logarithmic
number of bits of leakage can be efficiently guessed with polynomial pilagatiNevertheless, the PKE construction
that results frorm-wise parallel-repetition is not leakage-resilient for @myeater than the size of the master secret key
of I, no matter how large is. Indeed a valid leakage attack can look at all sha&fes. ., S,,, and output the master
secret key.

One objection to the counterexample, is that the IBE sch&nealy has a polynomial number of identities, and
so it is not a legitimate IBE. We can get around this by defining a schéméhich runs one copy of’ for identities
{1,...,n} and an independent copy of the original schenfier all other (exponentially many) identities. Théhis a
proper IBE, but leakage-amplification still fails.

B A Construction of IB-HPS Based on Bilinear Groups

B.1 Review of Bilinear Groups and Assumptions

Let G, Gy be two (multiplicative) groups of prime orderand letg be a generator df. Lete : G x G — Gy be a
map fromG to thetarget groupGr. We say that the grou@ is bilinear if we have

1. Bilinearity: For allu,v € G anda, b € Z, we havee(u®,v®) = e(u, v)®.
2. Non-degeneracy: For the generagj@f G, we gete(g, g) # 1.
3. Efficiency: Operations (multiplication, exponentiation)AnG and the mag can be computed efficiently.

We assume the existence of a group-generation algogitfiny which, on inputl*, outputs a tupléG, G, g, e(-, ), p)
whereG is a bilinear group of prime orde.

We will rely on thetruncated augmented bilinear Diffie-Hellman exponent assumfidABDHE ) from [Gen06].
We define the two distributions

Dg\o,z)g = <97ga7 g(a2), .. ,g(aq), g’,g’(‘lq”)7 e (g(qul),g’))

and , , s
e e «@ ad
D§y = (gag GO Y C N )7Z>

where (G, Gr, g,e(,+),p) — G(1*), ¢ «— G, a « Z,, andZ « Gr. For any algorithm3, the distinguishing
advantage of3 in the ¢-TABDHE problemis Adv;*BPHE(\ ¢) £ |Pr [B (D&OD = 0} —Pr [B (D&lz) — ()] ’ .
Definition B.1 We say that thg-TABDHE assumption holds if, for any PPJ, Adv*BPHE(\ ¢) = negl()\). We say
that theTABDHE assumption holds if-TABDHE holds for all polynomial;.
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B.2 Construction of IB-HPS based on Gentry’s IBE [Gen06].
We now present the constructionl®&-HPS which is based directly on GentrdBE [Gen06].

Setup(1*): Let(G,Gr,g,e,p) « G(11). Leth «— G, a + Z, andg; := g“.
Setmpk = (G, Gr, g,e, p, g1, h) and seimsk = a.
The identity set i€D = Z, \ {a} and the encapsulated-key sekis= Gr.H

KeyGen(ID,msk) : ForID € ZD, chooser|p « Z, and computéup = (hg~"°)"/(*~1P), Outputskip = (rip, hip)-
Encap(ID) : Choose random € Z, and compute: = g;g~*'°, v = (g, g)* and output = (u,v), k = e(g, h)*.

Encap®(ID) : Choose a random pais, s’) € Z,, subject to the constraist#£ s'. Letu = g;g~*°, v = e(g, g)s' and output
¢ = (u,v).

Decap(c,skip) : Parsec = (u,v) and outputc = e(u, hip)v™™.

¥The setZD is defined in terms of the secret GivenID € Z,, one can efficiently check ID € ZD by checking ifg'® Z gi.

Essentially, various parts of Gentry’s proof already show that thenselsatisfies the properties ii-HPS. For com-
pleteness, we include the proof tailored to our presentation and termincéday. b

Theorem B.1 Under theTABDHE assumption, the above construction isIBAHPS which is simultaneouslymooth
and (m, p)-universalfor p = 0. More precisely, the valid/invalid ciphertext indistinguishability property aleader
theq-TABDHE assumption for any adversary making at mgpgueries in test stages 1,2. Moreover:

1. The identity-key entropy i8 = log(p).

2. The actual identity-key sizeris = 2log(p) + O(1)8

3. The effective-key size (logarithm of the number of values thatkanygan take on) isn’ = log(p).
4. The encapsulated-key sizevis- log(p).

Proof. Let us writeh = ¢° for someg € Z,, so thathp = ¢(#~—70)/(2=ID) for eachlD € Z,.
I. For correctnesave see that, for aniD € Z,, any correctly generatedpk, msk, skip, if a pair (¢ = (u,v),k) is

generated bfncap(ID) thenu = g5g*I° = ¢*(@~1P) 4y = ¢(g, g)° for somes € Z, andk = e(g, h)*. Correctness
follows since:

Decap(c,skip) = e(u, up)v"™®
= e <gs(a—|D)7g(ﬁ—ﬁD)/(a—lD)) e(g,g)ST'D

= e(g,g)sﬁ =e(g,h)’ =k.

I1. For valid/invalid ciphertext indistinguishabilityve show how to use an adversatywhich distinguishes valid and
invalid ciphertexts using queries, to create an adversd@ywhich is a distinguisher for thg-TABDHE problem. In
particular, the algorithnB8 receives as inpuly, g1, - - -, 94, ', 9542, Z) Whereg; = g(al), g; = g’(az) for an unknown
a, and Z is eithere(gy+1,¢’) or a random element dbr. The algorithmB simulates the valid/invalid ciphertext
distinguishability game ford as follows:

Setup: The algorithm3 chooses a polynomidl(x) € Z,[x] of degreey uniformly at random, and computés= gf(@
usinggs, - . . , g, (and without knowledge af)). The valuempk = (g, g1 = g%, h = g/(®)) is given to A.

Test Stage 1: Wheneverd makes a query for a new valuel@f € Z,, the algorithm3 computes'p = f(ID) and sets
hip = ¢gfe(® whereFip(z) = (f(z) — f(ID))/(x — ID) is a polynomial of degree — 1 and thushp can be
efficiently computed using, . . ., g,—1 without knowinga. B givesskip = (p, lup) to the attackerA.

®We use the fact that many elliptic-curves with pairings have source giohpse representation size is not much larger than its order.
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Challenge Stage:The attacket4 chooses an identithD*. Letskp+ = (rp*, hp+) be computed as in the Test Stage.
Let Hip(z) = (2972 —1D9"2) /(z — ID) be the polynomial of degreg+ 1, in which thez¢*! term has coefficient
1. LetH5(z) = Hip(x) — 297! be the polynomial of degreg ThenZ sets:

/
u = % _ g/(aq+2—(|D*)q+2)”U _ 7. (g’,ngE*(O‘)>
g

whereg!io- (@) is computed using, . . ., g,, and gives: = (u, v) to A.
Test Stage 2: The algorithm3 responds to ID queries the same way as in Test Stage 1.

Output: If the adversary4 outputst’ = 0 (indicating a valid ciphertext), the algorithi® outputs0 (indicating that
Z = e(gq+1,4")) and if A outputs 1 therB also outputs 1.

We show that the view ofd is statistically close to a run of the valid/invalid ciphertext indistinguishability game.
Firstly, sincef is random degree polynomial,and is evaluated at at m@st- 1 values (the ID queries off and at
«) all of the outputs are mutually independent and uniform &er In particular, lettingd = f(«), this means that
mpk = (9,91 = g% h = ¢°) and the identity secret key&p = (rp, hip = g\#~"0)/(@=I1D)) seen during the Test
Stages are (mutually) chosen from the same distribution as in the valid/invalerghindistinguishability game.

Now let us look at the challenge key-ciphertext. We wgite= g7 for arandom (unknowny. WhenZ = e(gq+1,9’)
then the challenge ciphertextis= ¢*(*~'®") for s = yH,p+ (a), which is uniformly random for a random Also,

v=e(g,g)H0" @ = e(g, 9)*/7 = e(g,9)*.

Therefore this (perfectly) corresponds to the distribution seenl lwhen the challenger choosés= 0 (i.e. a valid
key-ciphertext). On the other hand, wh&ris uniformly random, them = e(g,g)s' for a randoms’, independent of

so that(u, v) are uniform ovelG x Gr. This is1/p statistically close to the distribution of invalid ciphertexts output
by Encap*(ID*) and thus the case where the challenger chobsedl (i.e. an invalid key-ciphertext). Therefore the
advantage oB in theq-TABDHE game is negligibly close to the advantagein the valid/invalid indistinguishability
game.

I1l. To show smoothnesand p-universality fix any mpk, msk, ID. Let ¢ be some output oEncap™(ID), so thatc =
(u,v) for u = ¢*@~'D) andv = e(g, g)* wheres # s'. Then, for any secret keskp = (rip, hip = g(#—"10)/(a=ID))
we get:

Decap(c,skip) = e(u, up)v"™®

— . (gsmflo), gw—nD>/(a4D))) "D

= e(g,9)*P0)e(g, g)*mO
— 6(g,g)sﬂ+(s —8)TID

Therefore:

1. Forany fixed output byEncap*(ID), the distribution oDecap(c, skip) (over a uniformsk p < KeyGen(ID, msk))
is uniform overkC = Gp. This impliessmoothness

2. If Decap(c, skip) = Decap(c, skjp) andskip, sk, are outputs oKeyGen(ID, msk) thenskjp = sk|p. This implies
0-universality

0

C A Construction of IB-HPS Based on Quadratic-Residuosity

C.1 Review of Terminology, the QR Assumption, Background

For a positive integeN, let 7 (V) denote the sef (N) £ {z € Zy : (&) = 1} where(£) denotes the Jacobi symbol
of zin Zy. LetQR(V) C J(N) denote the set of quadratic residues moduilo
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Let PrimeGen(1*) be an algorithm which, given security parametgoutputs two primesp, ¢) of length which is
exponential il\. We define the distributions:

DQR, : Choosg(p, q) « PrimeGen(1*), N = pq, S + QR(N). Output(N, S).
DNQR, : Choos€p,q) « PrimeGen(1*), N = pq, S «— J(N) \ QR(N). Output(N, S).

The quadratic residuosity assumptions states that no PPT adversaigtocaguish the distributionBQR, andDNQR,,.

Definition C.1 (QR Assumption) The quadratic residuosity assumptions states that for any PPT algosithm
[Pr[A(DQR,) = 1] — Pr[A(DNQR,) = 1]| < negl().

Recall the following elementary property of the Jacobi symbol.

Lemma C.1 Foranyz,y € Zy, (%) (%) = (5¢). Therefore, ity € J(N). Then(%) = (%).

We will also rely on the following two lemmas shown [n [BGHO7].

Lemma C.2 ((BGHO7]) Let N be a product of two primes, Ie&f € QR(N), andS € J(N). Letzy, zy € Z,, be any
two square roots oK. Let f be a polynomial such that(z) f(—z)S is a quadratic residue for all four square roats
of X. Then:

e WhenS ¢ QR(N), the Jacobi symbols af;, zo are diﬁerent(%) %+ (%) iff 21 # —xo.
e WhenS € QR(NV), the Jacobi symbols of;, 22 are always the samé%) = (%)

Lemma C.3 ((BGHO7]) There exists arfficient and deterministielgorithm Q which takes as inputV, u, R, S),
whereN € Z*, u, R, S € Zy, and outputs polynomialg, f, g, 7 € Zx|z] satisfying the following conditions:

1. IfR,S € QR(N), thenf(r)g(s) € QR(N) for all square roots- of R ands of S.

IfuR, S € QR(N), thenf(7)g(s)7(s) € QR(N) for all square roots* of uR ands of S.

If R € QR(N), thenf(r)f(—r)S € QR(N) for all square roots- of R.

IfuR € QR(N), thenf(7) f(—7)S € QR(N) for all square roots* of uR.

If S € QR(V), thent(s)7(—s)u € QR(N) for all square rootss of S.

For any fixed values a¥, u, S, the polynomial- output byQ(N, u, R, S) is the same for all choices @i.

o gk wN

Lastly, we review thénteractive QR (IQRassumption of [BGHQ7]. Le®rimeGen be as before, and l1éfy : {0,1}* —
J(N). We define two IQR oracle@§2R andOTQR which work as follows:

The oracle select, q) < PrimeGen (1) and outputsV = pq.

The oracle selects — J(N) \ QR(N) and outputs:.

The oracIeO(fR selectsS — QR(NV) while OTQR selectsS — J(N)/QR(N). The oracle outputs.

On each inputr € {0, 1}*, the oracle computeR = Hx(z) and outputs a random square-root of eitfeor
uR, depending on which one is a residue.

Definition C.2 (IQR Assumption of [BGHO7]) The IQR assumption for a pa{PrimeGen, Hy ) states that no PPT
adversaryA can distinguish oracle access @2 from that toO **. That s,

NQR
Oy

(Pr [AOAQR(P) - 1} ~Pr [,4 (1Y) = 1” < negl()).

It is easy to see (as was shownlin [BGHO7]) that the IQR assumption foffowsthe standard QR assumption when
the hash-functior{ y is modeled as a Random Oracle.
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C.2 Construction of IB-HPS Based on the IBE of Boneh Gentry and Hamburg/[BGHOY]

We now present the constructionl&-HPS which is based on an IBE scheme of Boneh Gentry and Hamburg [Gen06],
with some small modifications. In the descriptiaB,is the algorithm defined by Lemma C.3 aRédmeGen is the
prime-generation of Definition G.1.

Setup(1*): Choos€(p, q) « PrimeGen(1*) and setN = pq. Sampleu < J(N) \ QR(N). LetH : {0,1}* — J(N).
Outputmpk = (N, u, H) andmsk = (p, ¢). The identity seti€D = {0, 1}*. The encapsulate-key setis= {+1}.

KeyGen(ID, msk) : Let R = H(ID). Leta € {0,1} be the unique choice for whick R € QR(N). Let{ry,rs,rs, 4}
be a labeling of the four square-roots«wfR so thatr; < ry < r3 < r4 (in Z) andry = —ry, ro = —r3. Choose
r — {ry,r2}, outputskp = r.

Encap(ID) : Chooses « Zy and setS = s2. RunQ(N, u, 1, S) to obtainT and computé = (%) Setc = (S,b).
Let R = H(ID). RunQ(N,u, R, s) to obtain a polynomia4, setk = (%) Output(c, k).

Encap*(ID) : ChooseS — J(N) \ QR(N), b «— {£1}. Outputsc = (5, b).

Decap(c,skip) : Letr = skip, R = H(ID). Parsec = (S,b). If 2 = R, outputk = (fJ(VT)) else output: = b (ﬂ@),
wheref, f are the polynomials output b®(N, u, R, S).

Theorem C.1 Under the IQR assumption on the p@&RrimeGen, H ), the above construction {3n, p)-Universal and
smoothIB-HPS with p = 0. In particular, this is also the case under the QR assumption, when the fanftis
modeled as a Random Oracle. Moreover:

1. The identity-key entropy is = 1.

2. The actual identity-key sizeris = log(N).

3. The effective-key size (logarithm of the number of values thatkgngan take on) isn’ = 1.
4. The encapsulated-key sizevis- 1.

Proof. We show correctness, valid/invalid ciphertext indistinguishability and usality separately.

I. CORRECTNESSLet S € QR(NN) ands be an arbitrary square-root 6f Let R € J(N). Letg, f, f, T be outputs of
Q(N,u, R, S), which results in the sameas that output by (N, u, 1, S) by property 6 ofQ. To show correctness, it
suffices to show that:

o If R € QR(N) thenk = (%V)) %) for any square-roat of R.
o If R ¢ QR(N) thenk = (ﬁj\f)) )

= ( ) (%) wherer is any square-root ai R.

For the first bullet, we get(r)g(s) € QR(N) by property 1 of the algorithr@ (Lemma C.8) and so correctness follows
by[Lemma C.Il. For the second bullet, we ¢ér)g(s)7(s) € QR(N) by property 2 of the algorithn®. Correctness
then follows by Lemma CI1.

Il. VALID/INVALID CIPHERTEXTINDISTINGUISHABILITY Assume thatthere is a PPT adversdrthat distinguishes
valid and invalid ciphertexts with non-negligible probability. We uéé¢o construct an adversaty for the IQR as-

sumption. Essentially3 gets oracle access to some ora@levhich is either(?%R or OTQR. As a first step3 receives
(N, u, S) from its oracle. ThemB simulates the valid/invalid ciphertext indistinguishability gamefoas follows:

Key Setup: Give mpk = (N, u, H) to the adversary.

Test Stage 1:For each query téD € {0, 1}*, the adversary submitsID to its oracle© and receives an output It
then outputs either or —r depending on the which one is smalleiZn

Challenge Stage:No matter what the challend® is, choosé < {+1} and give(S, b) to A.

Test Stage 2: Same as Test Stage 1.

At the endB outputs whatever does. It is easy to see the the key setup, and the test stages 1,2, are dinuriatetly.
For the challenge phase:
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e If the oracle® is O} then the ciphertext = (S, b) is uniform over(J(N) \ QR(N), {£1}), which is the
same as when the challenger samples Encap*(ID).
e If the oracleQ is O?R then the ciphertext = (S, b) is uniform over(QR(N), {£1}). We claim this is the same

as when the challenger samptes- Encap(ID), whereS «— QR(N) andb = (%) for a random square-root

s of S. This follows by property 5 o in conjunction witH Lemma Cl2 which tells us that, for a fix8db is
uniformly random ovef{+1} over a random square-roeof S.

Therefore the distinguishing advantage/fn the valid/invalid ciphertext indistinguishability game is the same as
the advantage d8 in the IQR game, which proved the theorem.

1. UNIVERSALITY For any fixedmpk = (N,u, H),msk = (p,q),ID there is a fixed? = H(ID) and there are
only two possibilities forskp = r € {r1,r2}. For anyc = (S,b) output byEncap*(ID) we claim that, ifk; =
Decap(c,r1), ko = Decap(c, ra) thenk; # ko. We do this in two cases:

CaseR € QR(N): Thenk; = (%) ko = (%) where f is output byQ(N, u, R, S). By property 3 ofQ, we

havef(r)f(—r)S € QR(N) for all square roots of R. By[Lemma C.2, sincé& ¢ QR(N), andr; # —ry, we
see thatky # ko.

CaseuR € QR(N): Thenk; =b (%) ko =b (%) wheref is output byQ(N, u, R, S). By property 4 ofQ,
we havef(7) f(—7)S € QR(N) for all square roots of uR. By[Lemma C.P, sincé ¢ QR(N), andr; # —r,
we see tha(%) % (%) and sok; # ko.

Therefore, we ge-universalityand, sincer chosen uniformly from{r;, 2}, we also gesmoothnesslLastly, we see
that the min-entropy of is exactly 1 bit. O

D A Construction of IB-HPS Based on Lattices

As this section will use lattice and LWE based tools we keep to the standards coimthese areas. In particular we
usen to denote the security parameter. We will also use the following (slight abys®tation. For selS we write

x « S to denote sampling variableuniformly from S. Finally for random variablgy and we writey ~ D to denote
thaty is distributed according t®.

D.1 Learning with Errors

Following [GPV08] we briefly review some important definitions and facteomninglearning with errors(LWE). For
fixed integers: andg = ¢(n), vectors € Zg and error distributiony = x(n) overZ, define the LWE oraclels , as
follows. At each invocatioms , samplesa < Z7 and error termr « x and outputga, al's +z). Fors « Ly the
decision variant (DLWE,, ,) is the problem of distinguishing between oracle acces4,tp and access to an oracle
which simply samplea‘;fzgxzq. The LWE, ,,, on the other hand is defined as the problem of findirghen given
oracle access td, .

Gaussian Error Distribution.  To base our construction on a concrete DLWE assumption we must speeifficular
error distribution. We writel',, to denote the Gaussian (normal) distribution with meand variance?. The error
distribution we are interested in (which we denote with) is called theone-dimensional discrete Gaussian over
for some positive integey. It can be sampled by selecting— ¥, and outputting¢ - x| mod ¢. We will also need
the standard tail inequality for the continuous Gaussian. Thatrisdif¥, and¢ > 1 then

+2

Pr[|z| > ta] < —e2" (4)

Sl B
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Reductions to Lattice Problems. The security of our scheme is based on the hardness of averagetséige Ideally

we would like use the results of [Red(05, Pei09] to further reduce to somrsd ease lattice problem such as the GapSVP
or one of it's variants. While the reduction from average-case DLWE tstacase apply directly, the reduction from
worst-case DLWE to worst-case LWE runs in time polynomial in length of the piatiers ofq (ref. [Pei09], Lemma
3.3). Yet for our construction we will requirge = 2«(°8™) to be prime. Thus we must make an exponential hardness
assumption for the worst-case LWE problem which in turn implies a similar assumipticGapSVP. Note that for

q > 2"/2? such a hardness assumption then suffices for a classic reduction tortiardt&apSVP problem while for
smallerq [Pei09] shows a classic probabilistic poly-time reduction to¢the-y-GapSVP variant.

D.2 Preimage Sampleable Functions

We will use the preimage sampleable functions_of [GPV08]. That is the denhofions fa, indexed by matrixA <
Zy*™, which map vectok € Z;' to fa(x) = Ax € Zy. Further the trapdoor sampling algorithms|of [Ajt99, AP09]
efficiently generate an (almost) uniforA € Zj ™ together with a trapdodF which is used to inverfa.

Of particular interest to us is the preimage distribuégor D,, , (overZ™) which the authors of [GPV08] describe
in detail. For the purpose of our construction we will require a speci@ cha Lemma 4.4 of [MRO4b] which bounds
the length ofe < D,, , for large enough together with Lemma 5.3 of [GPV08] which describes a concrete bound on
r for our choice of lattices (i.e. ones defined as the null space of left multijplichy a matrixA as defined above).

LemmaD.1 Letm > 2nlogq, r > w(v/logm) ande > 0. Then we have:

1+4¢
P v/ < .
eNDfn,'r [He” > " m] - 1 - £

2—m

We will also need their efficient probabilistic algorithBamplelSIS which uses trapdodrI’ to sample from the
preimage off;l(e) such that for random variables~ Dy, , andy ~ Uzp

SD [(e, fa(e)), (SamplelSIS (y) ,y)] < negl(n).

Finally we will need a lower bound on the min-entropy the outpuofiplelSIS. For general lattices, Lemma 2.11
of [PRQO6] provides such a bound but we will use the refined versigia09]. For our case it is summarized in the
following lemma:

Lemma D.2 For constant > 0, fixedA andT as generated b§etup and fixedu € Zj lete < SamplelSIS(u). The
H(e) > m(log(r) — log(m*)).

D.3 The Construction

We now describe a Universal Identity-Based Hash Proof Systendlmaséhe DLWE which is a slight variant of the
IBE scheme in[[GPV08] which is in turn based on a variant of the encrygtbeme of [Reg05].

Let'm andn be positive integers; be a prime. Further let be an LWE error distribution. Finally It : {0,1}* — Zy be
a hash function mapping identities to integer vectors.

Setup() : Run the trapdoor sampling algorithm of [Ajt99, AR09] to geate A € Z;*™ together with a trapdodF. If the
columns ofA do not generaté; repeat. Otherwise setpk = A andmsk = T.

KeyGen(ID,msk) : Setu = H(ID). Usemsk = T to runSamplelSIS samplinge € f,'(u). Outputskp = e.

Encap(ID) : Setu = H(ID). Samples « Z7, error vectorx < x™ and integew « Z,. Computep = ATs+x € 7y
If [v — u”s| < 47 then set = 1 else sek = 0. Output ciphertext = (p,v) and keyk.

Encap®(ID) : Samplep « Z;* andv «— Z,. Output ciphertext = (p, v).

Decap(c,skip) : Parsec = (p,v) and see = skpp. If \v — eTp| < %1 then outputc = 1. Otherwise outpuk = 0.
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The construction is parametrized by are (0,1). The reason being that later we will use #BeHPS to create a
leakage resilient IBE which supports leakage of up to-a fraction of the secret key. Thus most of the settings of our
parameters will depend on this

The remainder of this section focuses on proving the following theorem.

Theorem D.1 Lete € (0, 1) be a constant and be the security parameter. Let prime= ow(logn) 1y > 2n1og g and
letr > mt. Leta < r\/zlm. Then, under the DLWQ%Q assumption, the following holds in the Random Oracle model
for the above construction:

1_52mlog(m) and forp = 1 +

£

1. Itis an(m*, p)-UniversallB-HPS for m* =

2. The actual key size (number of bits needed to repraggyitis /i = ==mlog(m).
3. Asaconsequencg- > 1 —e.

Proof. The non-trivial part of the theorem is the first statement. It's proof le@nlbroken up into three lemmata; one
for each of the three following three properties of a UnivelBaHPS: correctness, indistinguishability and universality.

Lemma D.3 (Correctness) For the choice of parameters above, the constructiaoisect

Proof. The crux of showing correctness is captured by the following claim. Inahtiit tells us that the distance
betweenu”'s which is used to compute the value ofduring encapsulation is very close to the valuesbp which
is used to guesk during decapsulation. Indeed, using this claim we can then argue thatrthiethes discrepancy
introduces is small enough to only have a negligible probability of causingpdetation to fail at guessirigcorrectly.

Claim D.1 For honestly generated parameters, secret key and encapsulatioa abthve scheme there exists a poly-
nomialp such thae” p — u”'s| > p(n) with at most negligible probability.

Proof. Essentially we follow the proof of Lemma 8.2 in [GPV08] however for a défdgrchoice of parameters which
results in a distance negligible in We first note thae”’p — u’s = e’ (A”s 4+ x) — u’s = e’x. Thus we are
interested in bounding the length efx.

By definition x = ¥, and soz; = [¢-y;] mod q wherey, — ¥, independently of aly; for j # i. Thus
[x — yI| < v/m/2 and we get

le'x| = [{e,x)|

e,y +(x—-y))l
e,y)|+(e;x —y)|
e, y)|+vm/2-rv/m
e,y)|+ (rm)/2

where the 4-th line follows from Cauchy-Schwarz inequality.
It remains to estimate the sizé€y. The components of are independently normally distributed therefef'e) ~

U|jello- ByLemmaD.1 we havfle||a < ry/m - a < \/% with overwhelming probability over the choice efand

for our constraint orv. Then the standard tail inequality (equatidn 4) witk: v/2n implies thatPr [|le”y|| > 1] <
negl(n). O

For correctness it remains to show that with at most negligible probabiityp will output a bad guess fdt. This
happens if and only if exactly one of the valugsp andu’s is further then’* from v. Letd = |e”p — u”'s|, then
for fixed e, p, u ands there are2d values ofv such thaDecap produces a bad guess flor By[Claim D.1 we have that
d is a polynomial inn and so since = 2¢(°8") the probability2d/q that an independent— Z, takes on one of those
values in a negligible function in. O

{
{
{
{
{

Lemma D.4 (Indistinguishability) For our choice of parameters, the construction satisfiakd/invalid ciphertext
indistinguishability
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Proof. We need to show that for fixeelthe ciphertexts output bigncap andEncap® have indistinguishable distribu-
tions. We do this by reducing to the DLWE , assumption. That is we give a black-box construction of an efficient
DLWE adversarys from any distinguishability adversar¢ such that3’s advantage in the DLWE game is negligibly
close toA’s advantage at distinguishing outputskafcap from those ofEncap*.

DLWE attacker is given access tal (which expects to play the indistinguishability attack game) and to an oracle
O which returns element&, b) € Z;* x Z,. B's goal is to decide whethé&? is an LWE oracle or not. We now describe
B’s behavior during each of the steps of the indistinguishability attack game.

Setup: B makesm queries taO receiving{(a;, b;) }ic|m)- It sets thei-th column of matrixA € Zy*™ to a; and gives
mpk = A to A.

Test Stage 1: B initializes an empty table of triples of the for(fD, u,e) € {0,1}* x Zy x Z;*. For each extraction
query|D made by.A, B first checks whether a triple of the foriD, -, -) is already in the table. If so then it
returnsskip = u for the corresponding value of in the triple. If not then3 selects a freske «— Dz ,., stores
(ID, Ae,e) and returnskp = e to B.

Random Oracle Calls: Upon receiving call (ID), B checks if it has already stored a triple 1@r. If so it returns the
correspondingr. Otherwise it samples a fregh— Dz ., storegID, Ae, e) and returnsAe as a response td.

Challenge Stage: B returns the string = b1b5 - - - b, as a challenge ciphertext.
Test Stage 2: B answers key extraction and random oracle queries as in Test Stage 1.

Output: B receives’ from A and forwards it the the DLWE challenger.

It remains to argue the correctness/®f First we point out that the view aofl is identical to that of the real
indistinguishability attack game. This follows from the fact that the distributioA ah the real game is statistically
close to uniform while both types of oraclésoutput truly uniformA.. Further the joint distributions dfH, ID, e) are
indistinguishable by the correctness of BemplelSIS algorithn@.

Next we analyze the distribution of challenge ciphertartthe game run bfs. WhenO = A, , thencis distributed
exactly like the output oEncap(ID*). On the other hand, whef samplesﬂzgxzq, thenc is distributed exactly like
the output ofEncap*(ID*). Therefor the game run by essentially imitates the gam4 expects to play and the hit
output byB depends on which type of orackkhas access to. O

Lemma D.5 (Universality) For the choice of parameters above the constructiomis, p)-universal for
* _ 1-£? _1 1

m* = ~—=mlog(m)andp = 5 + TR

Proof. To show(m*, p)-universality we need two properties. First, for fixad A andu = H(ID) we need to show

that the min-entropy oé as output byKeyGen(ID, A) is at leastn* > 1;—E2mlog(m). Setc = ¢ andr > m* then the

result follows directly froni Lemma D12.

To show the second property fiR ande # €’ with H(ID) = Ae = Ae’. We wish to compute

= P D == D !
p ceEncal;*(lD)[ ecap(c, e) ecap(c, €’)]

This is done in two steps. Recall that= (p, v). For random variable define variableD = }eTp — eTp|. First we
show thatD ~ Uz,. Then we use that fact to explicitly calculate the collision probabjliof Decap.
Leti € [m] be the index of a component wharende’ differ. Fix all p; with j # ¢ and let

a= Z(ej — e;-)pj

J#i

19In particular the upper-bound dir'|| from [AP09] implies that our choice of is enough to satisfy the conditions 8amplelSIS.
Note that for the proof of Universality we do not need to maHehs a Random Oracle.
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Now asg is prime addition (of:) in Z, is a bijection and multiplication by the non-zero valeg— €}) is also a bijection
in Z,. Thus there is a bijection between values takepjoy Uz, andD implying D ~ Uz, .
We are now ready to calculate the valuepofA collision occurs if and only if exactly one of the two quantities
e’'p ande/’p is more then% from v. Let p,; be the collision probability for a given distande = d, then for
d € [(g—1)/2] we havep; = 1 — (2d)/q because — Z, is independent o, ¢’ andp. Then we can have:

q—1 1 (g—1)/2 9 (g—1)/2

p = Y pa-PrD=d = 6+2 > pa-PriD=d = ;+q > pd
d=0 d=1 d=1
(¢-1)/2 (¢-1)/2
RS 1+2<ql2 d)
¢ 9 = q ¢ q\ 2 1 =1
11
— 54_2712

O

Taken together the previous three lemmata conclude the proof of the fieshstat of Theorem Dl 1.

The second statement follows directly fadrm LemmalD.1. If the normisfbounded by-\/m (with overwhelming
probability) then so too of course, are it's components. Thgg-) + log(m) bits suffice to represent each component
of which there aren. In particular forr > m= no more theni = 11€m log(m) bits are needed.

Finally the third statement of the theorem follows from the calculation:

2
« _ lsé;mlog(m) _ (I1-e)(1+¢) 1
m HEEmlog(m) l+e

E Approximate Hashing and Approximate Leftover-Hash Lemma

E.1 Background.
First, we review several standard notions which we will need in the renrairfidiee section.
Definition E.1 Theg-ary Shannon entropy function is definediag ) oy log,(q—1)—zlog,(z)—(1—z)log,(1-x).

Lemma E.1 (Volume of Hamming Ball) Letx € X" be an arbitrary value, wherZ is some alphabet of sizE| = ¢,
and leté be an arbitrary value in the rangé/n < § < 1 — 1/q. DefineVy(n, d, x) = Hz' € " : dy(x,2’) < dn}|
to be the volume of the hamming ball of radiuscentered at:. Then there is a functiol,(n, §) such thatl/;(n,d) =
Vy(n,d,z) forall z € ¥, andV,(n, §) < ¢,

See e.g. [[Sho05] for the following Lemma.

Lemma E.2 (Collision Probability and Statistical Distance) SupposeX is a random variable that takes values from
a setll of size|lI| = p. We define theollision probability 5 £ Pr[z = 2'] wherex, 2’ are independently sampled
according toX. ThenSD(X, Un) < 3/pB — 1.

Definition E.2 (Hitter) LetHit : {0,1}* — [n]' be a function and interpret the outptiit(e) as a sample of
elements irin]. We say thaHit(e) hits S C [n] if it includes at least one member 8f A functionHit is a (¢, ¢)-hitter
if for every subse$ C [n] of size|S| > dn, Pr._y,, [Hit(e) hits S] > (1 — ).

A simple hitter construction involves choosinginiformly random and independent elementsgrdf This results
in a (6, v)-hitter with ) = (§) for any0 < § < 1. Alternatively, for any0 < § < 1,0 < 1 we get a(d, )-hitter
with sample complexity = O(log(1/v)/d) andrandomness complexity = ¢log(n). Interestingly, the randomness
complexity can be reduced significantly by using a more clever construdtideed, the survey of Goldreich [G0l97]
shows how to achieve the following parameters using a construction basegbander graphs.
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Theorem E.1 ([Gal97]) There exists an efficient ensemble of hittdis : {0,1}* — [n]* such that, for any integer
n and anyd, ¢ with0 < 6 < 1, 0 < ¢, we get sample complexity= O(log(1/v)/) and randomness complexity
w = log(n) + 3log(1/%).

E.2 Definition and Results.

We define a new notion of universal hashing, which relaxesiversality, byonly insisting that values which are far
from each other (over the Hamming metric) are unlikely to collide.

Definition E.3 (Approximately Universal Hashing) A function-familyX, consisting of functiong : X" — II, is
called (8, 7)-approximatelyuniversal if for allz, ' € X" with dg (x, 2') > én we havePr,._y[h(z) = h(z')] < 7.

Now we are ready to prove a generalized version of the leftover-hawhaefor approximate universal hashing.

Theorem E.2 (Approximate Leftover-Hash Lemma) Assume that a family= of functionsf : ¥ — IIis (4, 7)-

approximately universal. Defing='|3|, v = log(|1I|). Letd be in the rangd /n < § < (1-1). LetX, Z be arbitrary

random variables wheré is distributed ove:™ andm = H.,(X|Z). Let F be uniform ovetF. Then

SD((F,Z,F(X)), (F,Z,Un)) < %\/2Hq<6>"10g<q>+v—m + 720 — 1

whereH, is g-ary Shannon entropy function. In particular, the statistical distance ab®at most as long as:

1

m > Hy(0)nlog(q) +v+2log(l/e)—1 and 2

(1+¢e).

Proof. For each value in the support ofZ, define the random variabl¥, = (X | Z = z). We start by computing
def

the collision probabilitys = Pr[(f, f(z)) = (', f'(«"))] wheref, f’ are independently sampled fromandz, 2’ are
independently sampled accordingXg. Then

3= P = () = Prlf = FIPrif ) = S0
< ]H\ (Pr(dp(z,2") < on] +7)
1 ([ Vy(n,5) 1 gHaOm
< (v ) <7 <2me>+) ©
1

<

2H (6)nlog(q)+v—Hoo (X2) Qv
[H|2 ( ' T )

where [(b) follows by Lemma El.1. We now apply LemmalE.2 to the random vari@blg(X,)), which gives us:

SD( (F,F(X.)), (F,Un) ) < %\/QHq(CS)ﬂlOg(q)-i-v—Hao(Xz) P

Now, by averaging over «— Z, we get:

SD( (F7Z7F(X))a (F7Z7UH)) = Ez[ SD( (FaF(Xz))v (FaUH) )]

< Ez |:;\/2Hq(5)nlog(q)+v—Hoo(Xz)+72v_1

< %\/ E. [2Ha(0)no8(0)tv—Hoe (X2)] 4 r2v — 1

— ;\/QHq(é)nlog(q)Jrvﬁoo(Xw) +rov 1

= %\/QHq(é)nlog(q)Jrvfm + v —1
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which proves the first part of theorem. For the second part of theghe®D( (F, Z, (X)), (F,Z,Un) ) < e if

e > %\/2 max (2Ha@nlog(@+v-m | 9v 1)

which is satisfied by the conditions of the second part of the theorem. O

E.3 Analysis of a Concrete Approximately Universal Function

We now explore a concrete example of gproximately universal hash functievith locality, which will be used in
our construction PKE in the BRM. Let, ¥ be some alphabets, and [Etbe a family ofp-universal hash functions
[+ X — V. Forintegers:, t,v > 0 we define the family,, , ., of hash functiom: : %" — {0,1}" as follows:

e EachhinH,, ) is uniquely described by:
1. Avectorr = (rq,...,r) of (not necessarily distinct) indices € [n].
2. Avectorf of functions(fi, ..., f;) wheref; € F.
3. Afunctiong € G, whereg is some(1/2V)-universal-hash function family of functions: ¥* — {0, 1}°.

In particular, a random from # consists of a uniformly random choice @f, f, ) €r ([n], Ft, G).

e Forz € ¥, we defineh(z) = g( (fi(z[r]),..., filz[r])) ).

The family H, ; ., will be useful as it will form the backbone of our construction of PKE in BRM. Note that,
although the above definition ¢f might appear overly complicated and unnatural, it arises from our needrio w
with an existinglB-HPS (which, in turn, is delicately designed based on some underlying compufadsswamptions)
and thus we do not, in general, have the freedom to choose all the compaf{. In particular, the alphabets, ¥
and the function family* will be a part of the underlyingB-HPS and thus not in our control, while we will have the
freedom to choose, ¢, v.

Lemma E.3 Let X, U be alphabets, and lefF be a family ofp-universal hash functiong : ¥ — W. For integers
n,t,v > 0letH, . be the family of functiond : X" — {0,1}" as defined above. Then the fanttyis (4, 7)-
approximately universal for any > 0 with 7 < (1 — §(1 — p))* + 1/2°.

Proof. For anyx,z’ € X" wheredy (x,z') > dn, we have

L h(z) = h(@)] < Pr[(filzlnd),. o fulalrd ) = (@), fula'fn] ) ]+ 1/27

< Z (Pr[dg( ( oexlry]), (@[], .2 ) = z]pl) +1/2°

3 [(Z)al( — o)t ipi] +1/2

< (1=6(1—p) +1/2°

IN

O

Corollary E.1 LetX:, ¥ be alphabets wher&:| = ¢ and F be ap-universal family of hash functions. Letn,t,v > 0
be integers, and/n < § < 1/2. Let H be uniform overH, , ) and X, Z be arbitrary correlated random variables
whereX is distributed ove". ThenSD( (X, H, Z, H(X)), (X, H,Z,U,) ) <2~ as long as:

t>(w+20)/6(1—p)) , He(X|Z) > Hy(6)nlog(q) + v+ 2X — 1.

In particular, for any constants > 0 andp < 1, there exists some constant 0, such that for any; > 2, v > 1,
t > c(v+ A), n > 0 the familyH,, , .., has the following property:

If Ho(X|Z)>enlog(q) +v+2X\ then SD((X,H,Z H(X)), (X,H,Z,U,)) <2

whereH is uniform overt,,, ; ..
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E.4 An Alternative Approximately Universal Function (For An onymous Encapsulation Scheme)

We also explore another example, which is used by our “short ciphegelx&€me based on “anonymous encapsulation”.
Let Y, ¥ be some alphabets, and JEtbe a family ofp-universal hash functions : ¥ — W. LetHit : {0,1}% « [n]*

be a(é, 7)-hitter andG be a family ofy-universal hash functiong : ¢ — {0,1}". For integers:,v > 0 we define
the family 7, , of hash functiorh : X" — {0,1}" as follows:

(n7

e Eachhin H} | is uniquely described by:

(n,v)
1. Aseece € {0, 1} for the hitter.
2. Afunctionf € F.
3. Afunctiong € G.

In particular, a random from H; . consists of a uniformly random choice @f, f, g) € ({0, 1}, F, G).

(n,v)

e Forx € X", we defineh(x) = g( ( f(z[ri]),..., f(z[r])) ) where(ry,...,r:) = Hit(e).

Lemma E.4 LetX:, ¥ be alphabets, and lef be a family ofp-universal hash functiong : ¥ — . LetHit be a(d, ¢)
hitter andg be ay-universal hash family. For integers v > 0 let Hz‘n ») be the family of functions : ¥" — {0,1}"

as defined above. Then the fanﬂ{yn v) is (0, 7)-approximately universal for any > 0 with 7 < ¢ + p + .

Proof. For anyx,z’ € X" wheredy (x,z') > dn, we have

Pr [h() = h@)] < Pr [(f(zln]).....f(zln]) = (f@n]) . f@Tr]) ]+

h—H
Pl (alrl,.oalr]) = (2'n 2 [n]) ]+ p

< Y+pty

IN

where(ry, ..., r) = Hit(e) andh = (e, g, f). O

Corollary E.2 For any familyF of 0-universal functions, any constant> 0, anyq > 2, any polynomials (), n(\),
there exists some some instantiation of the hitterand the familyGg so that the following holds about the resulting
family?—f(*n )" Forany X, Z

If H.(X|Z) > enlog(q) +v+Q(\) then SD((X,H, Z H(X)), (X,H,Z,U,)) <2 %W
whereH is uniform overHEkn .- Moreover, the description size bfc 7, , is O(v+\)+|f| where|f| is the description
size off € F. Lastly, the locality of. € H;, , (the number of; accessed) is = O(v + \).

F Chosen-Ciphertext Security

F.1 A Leakage-Resilient CCA-Secure IBE

Following the approach presented[in Appendjx B, we show that the CChrsevariant of Gentry’s IBE scheme
[Gen06] can used for constructing an IBE scheme that is resilient to akpde of length roughly = s/6 bits,
wheres is the length of the secret key of each identity. We begin by providing a iatefmition of a leakage-resilient
IBE, and then present our construction.

F.1.1 Definition

The following definition is a natural generalization of the definition presemt&®ction #. Given a security parameter
A and a leakage parametgwe define the following game between an adverséand a challenger:
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IBE-SS-CCA(A, ¢)
Setup: The challenger computéspk, msk) < Setup(1*) and givesmpk to the adversary.
Test Stage 1: The adversaryd can adaptively ask the challenger for the following queries

Secret-Key Queries: On inputlD € ZD, the challenger replies witkp.
Leakage Queries: On inputlD € ZD and a PPT functiorf : {0,1}* — {0, 1}, the challenger replies witfi(skip).
Decryption Queries: On inputlD € ZD and a ciphertext, the challenger replies withecrypt(c, skip ).

Challenge Stage:The adversary selects two messaggsm; € M and a challenge identityD* € ZD which never ap-
peared in a secret-key query and appeared in at fileskage queries. The challenger chodses {0, 1} uniformly
at random, computes « Encrypt(ID*, m;), and gives:* to the adversanyl.

Test Stage 2: The adversary can adaptively submit secret-key queridsamy|D # ID*, and decryption queries with any
(ID,c) # (ID*, c*).
Output: The adversaryd outputs a bit’ € {0, 1}. We say that the adversaninsthe game i’ = b.

Note: In test stage$ and2 the challenger computek;p < KeyGen(ID, msk) the first time thatD is queried (in a secret-key,
leakage, or decryption query) and responds to all futureigsien the sam with the samekp.

For any adversary, its advantage in the above game with an identity-based encryption sdBé&nig defined as

AdviBESTCA(N, £) = |Pr[A wins] — 1|. We say that an identity-based encryption schéBteis (-leakage-resilient

under a chosen-ciphertext attaifior any PPT adversary! it holds thatAdv|gg 57 A (A, ) is negligible in\.

F.1.2 The Construction

Let G andGy be cyclic groups of prime order, and lete : G x G — G be a bilinear map. Lefxt : G x {0,1}7 —
{0,1}™ be an average-ca$kg p—/, )-strong extractor for some negligibtde= £(\), wherel < log p—w(log A) —m,
andlet = {H : GxGrx{0,1}¥x{0,1}™ — Z,} be a collection of universal one-way hash functions. The following
describes an identity-based encryption sché®te= (Setup, KeyGen, Encrypt, Decrypt):

Setup: Choose random generataysh, he, hs € G, a randomx € Z,, and a sample a functiod € H. Letg; = g and
output
mpk = (9,91, h1,ha, h3, H), msk=a .

Key generation: On input an identityD € Z, \ {a} samplerp; € Z, uniformly at random fot € {1, 2, 3}, and output
the secret keykip = {(1p4, lp.i) }5_; Where

hID,i _ (higfﬁDyi)l/(Oé—lD) )

If ID = « then the algorithm aborts without producing a secret key.

Encryption: On input a message € {0,1}™ and an identityD € Z,, choose- € Z, ands € {0, 1} independently and
uniformly at random, and output the ciphertext (u,v, s, w,y), where:

u=gig"""°, v=re(g,9)", w=Ext(e(g,h1)",s) ®m, y=e(g,ha)"e(g,h3)"” ,

andg = H(u,v, s, w).

Decryption: On input a ciphertextu, v, s,w,y) and a secret keykp, if y = e(u7h|D,2h|D73ﬁ)v’"'D12+7"'D’35 wheref3 =
H(u,v,s,w), then outputw & Ext (e(u, hip,1)v"™, s), and otherwise output.

Theorem F.1 Fix any polynomialsp, ¢z, gc, and letq = ¢p + qr + 3. Assuming the hardness of theTABDHE
problem, AdvigE 5> ““*(), ) is negligible for any PPT adversaryt submitting at most;p secret-key queriesy,,
leakage queries, ang> decryption queries.

Proof. We show that any efficient adversadyfor which Advi5E 5 ““*(), ¢) is noticeable can be used to either solve

the ¢-TABDHE problem with a noticeable advantage or the break the securityeafdhection of universal one-way
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hash functions. LeD be a distinguisher for the-TABDHE problem that receives as input a challenge of the form

+2

(99129915 - - -9, Z) (recall thatg; = g, Goro = ¢, and thatZ is eithere(g,1, ¢') or a random element
of Gr), and simulates the gamBE-SS-CCA(, ¢) to the adversaryl as follows:

Setup: For: € {1,2,3} the distinguishefD generates a random polynomiglz) € Z,[z] of degreeg, and
setsh; = ¢/i(® (note thath; is efficiently computable fromg, g1, . . . ,9¢)- In addition,D samplesd € H, and
outputsmpk = (g, g1, b1, ha, h3, H).

Secret-key queries:If A ever submits a secret-key query with = o thenD solves the;-TABDHE problem.
Otherwise, wheneved submits a secret-key query with # «, for everyi € {1,2, 3} let Fip ;(z) denote the
(¢ — 1)-degree polynomialf;(z) — f;(ID))/(z — ID), andD outputsskip = {(rp s, lip.;) }3_; where

Leakage queries: If A ever submits a leakage query with = « thenD solves theg-TABDHE problem.
Otherwise, wheneved submits a leakage query wild # « thenD computessk,p as in the simulation of
secret-key queries, and outputs the value of the given leakage fumdtemapplied takp.

Decryption queries: If A ever submits a decryption quefiD, ¢) with ID = « thenD solves the;-TABDHE
problem. Otherwise, whenevet submits a decryption query withb # « thenD computessk,p as in the
simulation of secret-key queries, and outputs the result of the decrypgioritam applied tesk;p andc.

Challenge stageif A submits(ID, mg, m;) such thatD = « thenD solves the;-TABDHE problem. Otherwise,
D choosed € {0, 1} uniformly at random, and computekp as in the simulation of secret-key queries. Let
f(z) = 29%2, Fip(z) = (f(z) — f(ID))/(z — ID). Then,D choosess € {0,1}¢ uniformly at random, and
computes

w = gf@)=F(D)

q — .
v=1"7-¢ (gCHgF'D’“"Z)

1=0
w = M, & Ext (e(u, hip,1)v""®1, s)

y= e(u’h|D>2hID,3ﬂ)UT'D72+TID,3ﬁ :

whereFip ; is the coefficient of:* in Fip(z), and3 = H (u,v, s, w). Finally, D outputs the challenge ciphertext
(u7 U? S) w7 y)'

Output: If A outputst’ such that/ = b thenD outputsl, and otherwisé> outputsD.

In the remainder of the proof we say that a cipheriext, s, w, y) is well-formedfor identity ID if it holds that
y = e(u, h|D72h|D73ﬁ)v’“'Dv2+”D,3/’, whereg = H(u,v, s, w). Note that by the definition of the decryption algorithm, it
accepts a ciphertext if and only if it is a well-formed ciphertext. In additioa,say that a cipherteXt, v, s, w, y) is
valid for identity ID if it holds thatv = e(u, g)*/(*~'P), and otherwise we say that itiisvalid.

Without loss of generality we assume that if the adversary submits more/tleakage queries with the same
identity, then in query + 1 he is given the secret key of this identity. That is, we replace gliery with a secret-key
query. This assumption is valid since such an identity cannot be choser akahlenge identity, and therefore the
adversary can might as well ask for the corresponding secret kegddition, we assume that the adversary never
submits a decryption query with an identity to which he already knows thetdesrel his assumption is valid since the
challenger in théBE-SS-CCA(\, ¢) game simply invokes the decryption algorithm, and this can be simulated internally
by the adversary.

The proof consists of two main arguments. First, we prove that# e(g,+1,4’) thenA’s view in the simulated
attack (i.e., in the interaction witP) is statistically-close tod’s view in the actual attack (i.e., in tHBE-SS-CCA(\, ¢)
game). Then, we prove that X is random thend has only a negligible advantage in outputting thebbiThese two
arguments are proved in LemmatalF.1 F.2, respectively, and conctugi®di of the theorem.
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LemmaF1l If Z = e(gqs+1,9') then A’s view in the simulated attack is statistically-close At view in the actual
attack.

Proof. Assuming that in both the simulated attack and the actual attack all decryptidesjuéth invalid ciphertexts
are rejected, the views of the adversary are identical in both casesfollbvgs from the fact that the adversary learns
the value offy, fo, and f3 on at mosty — 1 = ¢p + ¢, + 1 points (these includep secret-key queriegy, leakage
queries, the point;, and the challenge identity), and that decryption queries with valid ciphegesal no information
on the secret key that is used to decrypt the ciphertext. Thereforéadhthat the polynomialgy, fo, and f3 are of
degreeg implies that the above — 1 values are independent and uniformly distributed from the adversaout of
view (note that here it in fact suffices that these polynomials are of degr&, but we will need them to be of degree
to argue that invalid ciphertexts are rejected). In the following claim weesttyat in the simulation all invalid ciphertext
are rejected with overwhelming probability. A similar and much simpler claim holdth#actual attack as well (see
[Gen06]).

ClaimF.1 If Z = e(gq+1,4") then the decryption algorithm rejects all invalid ciphertexts, except with igiekp
probability.

Proof. ~ We bound the probability that the adversary submits a decryption query withvalid ciphertext and
this query is accepted by the decryption algorithm (i.e., the ciphertext is arelifd). We analyze this probably
by considering the joint distribution of the coefficients of the polynomjaland f3 from the adversary’s point of
view. Denote by(ID, (u, v, s, w,y)) the first decryption query submitted by with an invalid ciphertext. Denote by
skip = {(rip.i, i) };_, the secret key folD as computed b when answering this decryption query. In order for the
ciphertext(u, v, s, w, y) to be accepted by the decryption algorithm it must hold thate(u, h|D72h|D735)v’“'Da2+’"'D73ﬂ,
where3 = H(u,v,s,w). By lettinga, = log, u, a, = log,(, 4 v, @nda, = log,, , ¥, this condition can be written
as

ay = ay (log, hip2 + Blog, hip3) + ay (rip2 + frips) - (6)

In addition, from the public parameters we obtain the following equations:

logg hi = (a — |D) logg h|D71 + 7D,1 (7)
log, ha = (o —ID)log, hip2 + rip 2 (8)
log, h3 = (a—ID)log, hip3 + 1ip,3 - 9)

Combining Equationg (6).18), and (9), in order for the ciphertext todoepted the adversag has to compute such

that
Ay,

2
ay = D (logg ha + ﬂlogg h3) + <av b |D> . (T|D72 + 5T|D73) . (10)

Up to this point the view of the adversary contains the public parametersiwil@@lready took into consideration
in Equations[(7),[(8), and{9)), the result of at mggt secret-key queries ang, key-leakage queries, the result of
decryption queries with valid ciphertexts (these do not reveal any maramation onf, and f3), and possibly also the
challenge ciphertext. For the sake of this proof we can even assumeetead\tarsary actually obtains all the secret
keys for which it requested leakage information, the secret key of takecige identity, and an additionélbits of
leakage on the secret keyl@f. Ignoring thesé bits of leakage for now, this means that the adversary knows the values
of f5 and 3 at the pointx (this is fromhy andhg), and at no more thagp + g7, + 1 = g — 2 distinct identities that we
denote byry, ...,z . Letting fi(x) = > 1_, fi;@d fori € {2,3}, andz,_; = «, the knowledge of the adversary
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can be represented by the following product:

1 1 0 0
T o Tge1 o .- 0
P I 0
(foo = fog Sao 0 Fra )| g o ) (12)
0 0 I $q_1
o --- 0 xfll ng

Let f denote the vector on the left, and létdenote the matrix on the right. Note tHatcontains twalg + 1) x (¢ — 1)
Vandermonde matrices and its columns are linearly independent. Thefedoned’s view, sincel” has four more rows
than columns, the solution space fbis four-dimensional.

Letyp denote the vectafl, ID, . .., ID?), then Equation{10) can be re-written as follows:

Gy

ay = —"1 (logy ha + Blog, hs) + <av - > (£, 7ollBv0D) (12)

o — 1D

where(-, -) denotes inner-product i8,, andvp||3vip is the vector of lengt (g + 1) that consists of the concatenation
of vp andvp. Note that the vectoyp||57p is not contained in the linear span of the columns of the mé&friand
therefore even given all the above knowledge the vafuep||Svip) is still uniformly distributed irZ,. In addition, the
assumption that the ciphertext is invalid is equivalenite- a, /(o — ID) # 0, and therefore the valus, is uniformly
distributed as well. Now, assuming that the adversary obtains athhitstof leakage, then from the adversary’s view
the valuea, has average min-entropy at le&sg p — ¢, and this implies that the probability that this invalid ciphertext
is accepted (i.e., the probability that the adversary computieat passes the validity test) is at mastp.

An almost identical argument holds for all the subsequent invalid decrypfieries. The only difference is that
each time the decryption oracle rejects an invalid ciphertext the adversargute out one more value ¢f. This
shows that the decryption algorithm accepts #tk invalid ciphertext with probability at mogX'/(p — i + 1). The
claim now follows from the fact that the numbeg of decryption queries is polynomial, and from the restriction
¢ <logp—w(logn). O

O
Lemma F.2 If Z is random thenA has only a negligible advantage in outputting thethit

Proof. We denote by(u*, v*, s*, w*,y*) andID* the challenge ciphertext and challenge identity, respectively, and
denote byCollision the event in which for one ofi’s decryption queriegu, v, s, w,y) it holds that(u, v, s, w) #
(u*,v*, s*, w*) and H (u, v, s,w) = H(u*,v*, s*, w*). We prove LemmaH2 in a sequence of three claims. First,
we prove that assuming that the ev€wtlision does not occur, the decryption algorithm rejects all invalid ciphertexts
except with a negligible probability. Then, we show that if the decryptionrélgu rejects all invalid ciphertexts, then

A has only a negligible advantage in outputting thebhfive note that this is essentially the only part in the proof of
this lemma that differs from [Gen06], given our analysis from the préaeonmaE1). Finally, we prove that the event
Collision occurs with only a negligible probability.

Claim F.2 If Z is random and the everfollision does not occur, then the decryption algorithm rejects all invalid
ciphertexts except with a negligible probability.

Proof. Suppose thatl submits a decryption que(yD, (u, v, s, w, y)) with an invalid ciphertext. Le$ = H(u, v, s, w)
andg* = H(u*,v*, s*,w*). For any such query that is submitted prior to the challenge phase theiamdiZsaim[E.1
still applies, since the view of the adversary up to this point is independievtietherZ is e(g,+1, ¢") or random. For
any such query that is submitted after the challenge phase it hold3$Bhat, v, s, w, y)) # (ID*, (u*, v*, s*, w*, y*)),
and therefore there are three cases to consider:
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Case 1:(u, v, s, w) = (u*,v*, s*,w*). If ID = ID* theny # y* and therefore the cipherte¥t, v, s, w, y) is not
well-formed forID and will be rejected. HD # ID*, then the adversary has to compute ththat satisfies
Equation [(IR) in order for the ciphertext to be well-formed. Howeverclaem that the vectorp||5yp (from
Equation[(1R)) is linearly independent of the vecigy-||5vp+ (from the challenge ciphertext) and the columns
of the matrixV/, and therefore (as in the proof of ClaimIF.4)cannot generate suchyaexcept with probability
2¢/(p —i + 1), where(u, v, s, w, y) is thei-th invalid ciphertext.

To see that these vectors are indeed linearly independent, dendte, hy, V,,_» the columns of the ma-
trix V, and suppose that there exist integers. . ., az,, not all zero, such that,V; + -+ + agq—2V2—2 +
azq—1(p||ByD) + a2q(Mp*||Byip*) is the zero vector irizf)(q“). Then, eitheray, ..., aq—1,azq—1,azq OF
(ag,...,a24—2,a24—1, a2q) iS NOt all zeros. In the first case, note that the first 1 coordinates of the vec-
torsVi,...,V,—1,ID,ID* form a invertible matrix, but the first + 1 coordinates ofi; Vi + - - - + ag—1V,—1 +
azq—1(Mp|1B7p) + azq(mp+||BYp+) is the zero vector L™ and this is not possible. The second case is
similarly analyzed.

Case 2:(u, v, s, w) # (u*,v*, s*,w*) and 3 = B*. This case is not possible since we assume that the event
Collision does not occur.

Case 3:(u, v, s, w) # (u*,v*, s*,w*) and 3 # B*. In this case the adversary has to computeythieat satisfies
Equation [(IR) in order for the ciphertext to be well-formed.IDf £ ID* then the same analysis as in case 1
shows that the adversary has only a negligible probability in computing guthlD = ID*, then the vectors
Vi, ..., Vag—2, (mpl|Bvb), (mp*||3*ip+) are linearly independent and the same analysis applies.

0

Claim F.3 If Z is random and the decryption algorithm rejects all invalid ciphertexts, tdelmas only a negligible
advantage in outputting the hit

Proof. We prove the claim by analyzing the distributionf.*, hp- 1 )v*"'®*:* from the adversary’s point of view.
Ignoring any leakage information from the secret kéy- of the challenge identity for now, we argue thas ; is
uniformly distributed and independent from the adversary’s view: tiveradry’s view contains the values ff on at
mostgp + ¢¢ identities, and therefore secret-key queries and leakage queriey b gh ID* do not restrictp ;
due to the degree of the polynomigl, decryptions of valid ciphertexts do not reveal any additional informatod
all invalid ciphertexts are assumed to be rejected. The adversary may abtawst/ bits of leakage omkp+, and
therefore from the adversary’s point of view prior to the challengeeliand, in particular, before the seéds chosen)
it holds thatrp+ ; has average min-entropy at le&st p — ¢ (note that after the challenge phase the adversary obtains
no information onrip- ;).

In addition, observe that

e (u”, hipr 1) v = e (“ (g roma)t/emP )) SR

*

« ; ya—ID* v 1b*,1

and sinceZ is completely random and independent of all other parameters then withlpligb1 — 1/p it holds
thatv* # e(u*, g)*/(@~1P"). Therefore, with probability — 1/p also the value(u*, hip- 1 )v*"P*:1 has average min-
entropy at leaslog p — ¢ conditioned on the adversary’s view. Thus, the average-case srtragtor guarantees that
the challenge message is masked statistically. O

Claim F.4 The evenCollision occurs with only a negligible probability.

Proof. Given an adversaryl for which the eveniCollision occurs with a noticeable probability, we construct an
algorithm A’ that breaks the security of the collectidhof universal one-way hash functions:

1. A’ chooses: € G,v € Gr, s € {0,1}¢ andw € {0, 1}™ uniformly at random, and announc@s v, s, w).
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2. A’ is given a randomly chosen functidi € H.

3. A’ chooses random generatayshi, ho, hs € G and a randomv € Z,. Then, A" letsg; = ¢%, mpk =
(g, g1, h1, ho, hs, H), msk = «, and sendsnpk to A.

4. A’ simulates the secret-key, leakage, and decryption querig¢sgingmsk.

5. In the challenge phas#' ignores the two messages, m; € {0, 1}, computes
ﬁ = H(U, v, S, w)a y= e(ua hID*,2h|D*,3ﬂ)UTID*’2+T|D*’36 )
and sendsA the challenge ciphertext, v, s, w, y).

6. If at some pointd submits a decryption query with.',v’, s, w’) such that(v’,v', s',w') # (u,v,s,w) and
H(u' v, s, w') = H(u,v, s, w) then A’ outputs(u’, v', s’, w’). OtherwiseA’ outputs.L.

ClaimdE.2 anf F|3 guarantee that as long as the &eiition does not occur, thed cannot distinguish betweetf
andD. Specifically, both in the interaction with’ and in the interaction wit® the component in the challenge cipher-
text that depends on the biis e-close to uniform given the adversary’s view (for some negligilelrherefore, with a
non-negligible probabilityd submits a decryption query with./, v', s’, w’) such thatw/, o', s', w’) # (u,v, s,w) and
HW\ ', s w') = H(u,v, s,w), and in this casel’ finds a collision. O

0
O

F.2 A Generic Transformation in the BRM

In the setting of relative leakage Naor and Sedev [NS09] proved thatidloe-Yung “double encryption” paradigm
[DDNOQ, NY9Q,[Lin06,Sah99] can be used to construct a CCA-sepublic-key encryption scheme from any CPA-
secure one using non-interactive zero-knowledge proofs. Thedaperty of the transformation is that the size of the
secret key in the resulting CCA-secure scheme is exactly the same as irdéntyiing CPA-secure scheme, and this
in turns enables to preserve the relative amount of leakage to which temedh resilient. Moreover, we point out
that since the resulting scheme also preserves the efficiency of thdyimglesxcheme (when ignoring computations
that are independent of the amount of leakage), this implies that the sarsitnaation extends to the BRM as well.
For completeness we provide here the description of the transformatmwnef@n the reader td [NS09] for the proof of
security.

Let I, = (KeyGeny, Encrypt,, Decrypt,) be a public-key encryption scheme that is semantically secure in the
BRM against chosen-plaintext attacks with leakégand letll; = (KeyGen,, Encrypt;, Decrypt;) be any public-key
encryption scheme that is semantically secure against chosen-plaintelks éttate thafl, is not required to be resilient
to leakage). LetP, V) be a one-time simulation-sound adaptive NIZK proof system for the followiﬁganguadg:

L = {(co, c1, pko, pky) | Im, ro, 1 S.t.co = Encrypty(m, pko; 79) ande; = Encrypty (m, pky;7r1)} .

The following scheme is semantically secure against chosen-cipherteksatiehe BRM with leakagé:

Key generation: Sample(sko, pk,) < KeyGen,(1*) and(sky, pk;) < KeyGen, (1*), and a reference stringfor the NIZK
proof system. Outputk = skg andpk = (pkg, pky, o).

Encryption: On input a messagen chooserg,r; € {0,1}*, and computecy = Encrypty(m,pky;7o) and ¢; =
Encrypt, (m, pky;r1). Then, invoke the NIZK proveP to obtain a proofr for the statemenfco, c1, pky, pk;) € L
with respect to the reference string Output the ciphertexico, ¢1, 7).

Decryption: On input a ciphertexfco, ¢1, ), invoke the NIZK verifierV to verify thatr is an accepting proof with respect
to the reference string. If V accepts then outpiiecrypt (co, sko), and otherwise output.

2\We refer the reader t6_[Lin05. Saf99] for the definition of a one-time Isitimm-sound adaptive NIZK proof system.
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