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Abstract

We construct thefirst public-key encryption scheme in theBounded-Retrieval Model(BRM), providing security
against various forms of adversarial “key leakage” attacks. In this model, the adversary is allowed to learn arbitrary
information about the decryption key, subject only to the constraint that the overall amount of “leakage” is bounded
by at mostℓ bits. The goal of the BRM is to design cryptographic schemes that can flexibly tolerate arbitrarily leakage
boundsℓ (few bits or many Gigabytes), byonly increasing the size of secret key proportionally, but keeping all the
other parameters— including the size of the public key, ciphertext, encryption/decryption time, and the number of
secret-key bits accessed during decryption —small and independent ofℓ.

As our main technical tool, we introduce the concept of anIdentity-Based Hash Proof System(IB-HPS), which
generalizes the notion of hash proof systems of Cramer and Shoup [CS02] to the identity-based setting. We give three
different constructions of this primitive based on: (1) bilinear groups, (2) lattices, and (3) quadratic residuosity.As
a result of independent interest, we show that anIB-HPS almost immediately yields an Identity-Based Encryption
(IBE) scheme which is secure against (small) partial leakage of the target identity’s decryption key. As our main
result, we useIB-HPS to construct public-key encryption (andIBE) schemes in the Bounded-Retrieval Model.

1 Introduction

Traditionally, the security of cryptographic schemes has been analyzed inan idealized setting, where an adversary only
sees the specified “input/output behavior” of a scheme, but has no otheraccess to its internal secret state. Unfortunately,
in the real world, an adversary may often learn some partial information about secret state via variouskey leakage
attacks. Such attacks come in a large variety and includeside-channel attacks[Koc96, BDL97, BS97, KJJ99, QS01,
GMO01], where the physical realization of a cryptographic primitive can leak additional information, such as the
computation-time, power-consumption, radiation/noise/heat emission etc. The cold-boot attack of Halderman et al.
[HSH+08] is another example of a key-leakage attack, where an adversary can learn (imperfect) information about
memory contents of a machine, even after the machine is powered down. Lastly, and especially relevant to this work,
we will also consider key-leakage attacks where a remote adversary hacks into a target computer, or infects it with some
malware, allowing her to download large amounts of secret-key information from the system. Schemes that are proven
secure in an idealized setting, without key leakage, may become completely insecure if the adversary learns even a
small amount of information about the secret key. Indeed, even very limitedleakage attacks have been shown to have
devastating consequences for the security of many natural schemes.

Unfortunately, it is unrealistic to assume that we can foresee, let alone block, all of the possible means through
which key leakage can occur in real-world implementations of cryptographicschemes. Therefore, the cryptographic
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community has recently initiated the investigation of increasingly general (formally modeled) classes of leakage attacks,
with the aim of constructingleakage-resilientcryptographic schemes that remain provably secure even in the presence
of such attacks. Of course, if an adversary can get unrestricted information about the secret key (say, of an encryption
scheme), then she can learn the key in its entirety and the security of the system is necessarily compromised. Therefore,
we must first place some “upper bound” on the type or amount of informationthat the adversary can learn. The nature
of such bounds varies in the literature, as we survey later. For this work,we only restrict theamount, but not thetype,
of information that an adversary can learn through a key-leakage attack. In particular, we will assume that the attacker
can learnany efficiently computable function of the secret key, subject only to the constraint that the total amount
of information learned (i.e. the output size of the leakage function) is bounded byℓ bits, whereℓ is some arbitrary
“leakage parameter” of the system. Clearly, at this level of generality, the secret-key sizes must be strictly greater than
the leakage-parameterℓ. In the literature, there seems to be a distinction between two related models of leakage, which
differ in how they treat the leakage-parameterℓ in relation to the secret-key sizes.

RELATIVE -LEAKAGE MODEL. In the model ofrelative leakage[AGV09, NS09, DKL09, KV09], the key-sizes is
chosen in the same way as in standard (non leakage-resilient) cryptographic schemes: it is based on a security parameter,
and is usually made assmallas possible (e.g.1024 bits) to give the system some sufficient level of security. Once the
key-sizes is determined, the allowed leakageℓ should berelatively large in proportion tos so that e.g. up to50% of
the key can be leaked without compromising security. Therefore, the relative-leakage model implicitly assumes that, no
matter what the key-size is, a leakage attack can reveal at most somerelatively small fractionof the key. This assumption
is very reasonable for some attacks, such as the cold-boot attack, where all memory contents decay uniformly over time.

BOUNDED-RETRIEVAL MODEL (BRM). The Bounded-Retrieval Model (BRM)[Dzi06, CLW06, CDD+07, DP07,
ADW09] is a generalization of the relative-leakage model. In this model, the leakage-parameterℓ is an arbitrary and
independent parameter of the system, which is based on practical considerations about how much leakage the system
needs to tolerate on anabsolute scale. The secret-key sizes is then chosen flexibly, depending on the security parameter
and the leakage parameterℓ, so as to simultaneously provide a sufficient level of security while allowing up to ℓ bits
of leakage. Therefore, we can tolerate settings where the leakageℓ might be small (several bits) or huge (several
Gigabytes) by flexibly increasing the secret-key sizes depending on (and necessarily exceeding) the leakage parameter
ℓ.1 Of course, the key-sizes should be as small as possible otherwise, so that the allowed leakageℓ is a largerelative
portionof s as well.

With the additional flexibility in secret-key size, the BRM imposes an added efficiency requirement: thepublic-key
size, ciphertext size, encryption-time and decryption-timemust remain small, only depending on the security parameter,
and essentially independent of the leakage-parameterℓ. In other words,ℓ could potentially grow to the order of
Gigabytes, and still result in a usable system, where the secret key is huge, but the public-key size, ciphertext size and
encryption/decryption times are not much different from those of standard cryptosystems. This also means that the
number of secret-key bits accessed during decryption (calledlocality from now on) must remain small and essentially
independent of the flexibly growing secret-key size.

The flexibility of the BRM seems necessary to protect against large classesof key-leakage attacks. For example, if
the key size is (only) proportional to the security parameter, several consecutive side-channel readings of a handful of
bits might already leak the entire secret key. Therefore, for natural side-channel attacks (such as radiation/heat/noise
emission) it might already make sense to makeℓ moderately large (say on the order of Megabytes) to get security.
The main intention of the BRM in prior works, which we also focus on here, is tooffer a novel method for protecting
systems against hacking/malware attacks, where an adversary can download large amounts of information from an
attacked system. It is clear that no security can be achieved using standard-sized (e.g. 1,024 bit) secret keys, as the
adversary can download such keys in their entirety. However, it may be conceivable that the adversary still cannot
downloadtoo much(e.g. many Gigabytes) worth of information because: (1) the bandwidth between the attacker and
the system may be too slow to allows this, (2) the operating-system security may detect such large levels of leakage,
or (3) such attacks would simply not be cost-effective. Therefore we can conceivably protect against such attacks
by just making the leakage-parameterℓ large enough (e.g. potentially many Gigabytes), and using a proportionally
larger secret-key-sizes. Having a large secret key may, by itself, not be a major concern due to theincreasing size

1Historically, the BRM setting envisionedℓ as being necessarily huge. Here we take a more general view of the BRM, insisting only that the
key size can be set flexibly based on the leakageℓ.
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and affordability of local storage. On the other hand, it is crucial that theother efficiency measures of the system —
ciphertext and public-key sizes, encryption and decryption times — must not degrade with the growth ofℓ.

1.1 Our Results

As our main contribution, we construct the first leakage-resilient Public-Key Encryption (PKE) scheme in the BRM.
Along the way, we develop new notions and get results of independent interest. In particular, we:

• Develop a new notion of an Identity-Based Hash Proof System (IB-HPS), which naturally yields Identity-Based
Encryption (IBE) schemes.
• Give three constructions ofIB-HPS based on the ideas behind three prior IBE schemes: [Gen06, BGH07,

GPV08]. In particular, we show that the notion ofIB-HPS unifies these seemingly unrelated constructions under
a single framework. As a result, we get constructions ofIB-HPS under (1) a bilinear Diffie-Hellman type assump-
tion (2) the quadratic-residuosity assumption (3) the Learning With Errors (LWE) assumption. The first scheme
is secure in the standard model, while the latter two rely on Random Oracles or,alternatively, non-standard
interactive assumptions.
• Show that an IBE based onIB-HPS can easily be made leakage-resilient, in the relative-leakage model.
• Show how to useIB-HPS to construct public-key encryption (PKE) schemes in the BRM, allowing forarbi-

trary large leakage-bounds, while preserving efficiency. Our techniques also naturally extend to allow for the
construction of IBE schemes in the BRM.
• Develop new information-theoretic tools to analyze our construction of PKE inthe BRM. Namely, we define a

new notion ofapproximatehash functions (where only elements that are far in Hamming distance are unlikely to
collide) and generalize the Leftover-Hash Lemma to approximate hashing.
• Show how to achieve CCA security for our leakage-resilient IBE and PKEin BRM constructions.

Before describing our construction of PKE in the BRM, it is instructive to understand why this problem is non-trivial,
and therefore we begin with some naı̈ve approaches, which we improve in several steps.

NAÏVE APPROACH: INFLATING THE SECURITY PARAMETER. As the first step of getting a PKE in the BRM, we
would like to simply design a leakage-resilient PKE scheme that allows for arbitrarily large leakage-boundsℓ, without
necessarily meeting the additional efficiency requirements of the BRM. Luckily, there are several recent PKE schemes
in the relative-leakage model[AGV09, NS09] where the leakage-boundℓ(λ) is a large portion of the key-sizes(λ)
which, in turn, depends on a security parameterλ. Therefore, one simple solution is to simply artificially inflate the
security parameterλ sufficiently, untils(λ) and, correspondingly,ℓ(λ) reach the desired level of leakage we would like
to tolerate. Unfortunately, it is clear that this approach gets extremely inefficient very fast – e.g. to allow for Gigabytes
worth of leakage, we may need to perform exponentiations on group elements with Gigabyte-long description sizes.

BETTER APPROACH: LEAKAGE-AMPLIFICATION VIA PARALLEL REPETITION. As an improvement over the previ-
ous suggestion, we propose an alternative which we callparallel-repetition. Assume we have a leakage-resilient PKE
scheme in the relative-leakage model, toleratingℓ-bits of leakage, for some smallℓ. We can create a new “parallel-
repetition scheme”, by takingn independent copies of the above PKE with key-pairs(pk1, sk1), . . . , (pkn, skn) and
setting the secret-key of the new scheme to besk = (sk1, . . . , skn) and the public key to bepk = (pk1, . . . , pkn). To
encrypt under the repetition scheme, a user wouldn-out-of-n secret-share the messagem, and, encrypt each sharemi

under the public keypki. One may hope to argue that, if an adversary learns fewer thannℓ bits about the secret-keysk
of the repetition scheme, then there is at least one secret keyski about which the adversary learns fewer thanℓ bits, thus
maintaining security. Therefore, the hope is that parallel-repetitionamplifies leakage-resiliencefrom ℓ bits tonℓ bits,
and thus lets us meet any leakage-bound just by increasingn sufficiently. In terms of efficiency, the parallel-repetition
approach will usually be more efficient than artificially inflating the security parameter, but it is still far from the re-
quirements of the BRM: the public-key size, ciphertext size, and encryption/decryption times are all proportional ton,
and therefore must grow as we strive to tolerate more and more leakage.

SECURITY OF PARALLEL -REPETITION? Surprisingly, we do not know how to formalize the hope that parallel-
repetition amplifies leakage-resilience generically via a reduction. Such a reduction would need to use an attacker that
expects a public key andnℓ bits of leakage on its secret key in the repetition scheme, to break the originalscheme with
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ℓ bits of leakage. Unfortunately, it does not seem like there is any way to embed a challenge public keypki into pk,
and faithfully simulate the output of an arbitrary leakage-functionf(sk) with nℓ-bit output, by only learningg(ski) for
someg(·) with ℓ bit output. In fact, as a subject of future work, we believe that there is a black-box separation showing
that no such reduction can succeedin general. Luckily, we show that (a variant of) parallel-repetition amplifies leakage
for schemes of a special form, which we will discuss later. For now, let usget back to the issue of efficiency, which we
still need to resolve.

IMPROVEMENT I: I MPROVED EFFICIENCY VIA RANDOM SELECTION. To decrease ciphertext size and encryp-
tion/decryption times, the encryptor selects some random subset{r1, . . . , rt} ⊆ {1 . . . n} of t indices, and targets the
ciphertext to the corresponding public keyspkr1

, . . . , pkrt
(e.g. t-out-of-t secret-shares the messagem and encrypts

each sharemi under the public keypkri
). Intuitively, if an adversary learns much less thannℓ bits of leakage aboutsk,

then there should bemanycomponent-keysski for which the adversary learns less thanℓ bits. Therefore the encryptor
should select at least one index corresponding to such a key with large probability, whent is made proportional to the
security parameter, and potentially much smaller thann. Although the ciphertext size and encryption/decryption times
(and locality) are now only proportional to the security parameter, the size of the public key still grows withn, and so
this scheme is still not appropriate for the BRM in terms of efficiency.

IMPROVEMENT II: SMALL PUBLIC-KEY SIZE VIA IBE. A natural solution to having a short public key is to use
identity-based encryption(IBE) instead of standard PKE. This way, the public key of the repetition scheme is simply
a shortmaster public keyof an IBE scheme, while the secret keysk = (sk1, . . . , skn) consists of secret-keys for some
fixed “identities” ID1, . . . , IDn. Together, the above two improvements yield a scheme which meets the efficiency
requirements of the BRM: the public-key size, ciphertext size, encryption/decryption times are now only proportional
to the security parameter and independent ofn, which can grow flexibly.

SECURITY OF THE IBE-BASED PKE IN BRM CONSTRUCTION? In order to show that the resulting scheme, utilizing
the two proposed improvements, is a PKE in the BRM we need to show the following.If we start with a leakage-resilient
IBE that allows forℓ-bits of leakage, then the construction amplifies this to any desired amountℓ′ just by increasing the
number of secret keysn sufficiently. Unfortunately, it turns out that this is not the case in generaland, in Appendix A,
we construct a counterexaple. That is, we can construct an artificial IBE scheme which is leakage-resilient in the relative
leakage model, with leakageℓ, but the above construction does not amplify leakage-resilience beyondℓ′ = ℓ, no matter
how largen is. The problem is that, conceivably, after observingall n secret keys forn identities, it might be possible
to come up with a very short “compressed” key (e.g. whose size is independent ofn) which allows one to decrypt
ciphertexts foreach oneof the givenn identities. Our main result is to show that (a variant of) the construction is
secure, if the leakage-resilient IBE has some additional underlying structure, which we call an Identity-Based Hash
Proof System (IB-HPS).

HASH PROOFSYSTEMS AND IDENTITY-BASED HASH PROOFSYSTEMS. Recently, Naor and Segev [NS09] showed
how to use ahash proof system (HPS)to construct leakage-resilient PKE in the relative-leakage model. Following,
[KPSY09, NS09], we view an HPS as akey-encapsulation mechanism (KEM)with special structure.2 A KEM con-
sists of a key-generation procedure(pk, sk) ← KeyGen(1λ), an encapsulation procedure(c, k) ← Encap(pk) which
produces ciphertext/randomness pairs(c, k), and a decapsulation procedurek = Decap(c, sk), which uses the secret
key sk to recover the randomnessk from a ciphertextc. A KEM allows a sender that knowspk, to securely agree on
randomnessk with a receiver that possessessk, by sending an encapsulation-ciphertextc. A hash proof systemis a
KEM with the following two properties:

• There exists aninvalid-encapsulation procedurec ← Encap∗(pk), so that ciphertexts generated byEncap∗(pk)
are computationally indistinguishable from those generated byEncap(pk), even given the secret keysk.
• For a fixedpk and invalid ciphertextc generated byEncap∗(pk), the output ofDecap(c, sk) is statisticallyuni-

form, over the randomness ofsk. This property can only hold if a fixedpk leaves statistical entropy insk.

Notice the difference between valid and invalid ciphertexts. For a fixedpk, avalid c, produced by(c, k)← Encap(pk),
always decapsulated to the same valuek, no matter which secret keysk is used to decapsulate it. On other hand, an
invalid c produced byc← Encap∗(pk), decapsulated to a statistically random value based on the randomness ofsk.

2 Our informal description and definition of HPS here, which will also be a basis of our formal definition ofIB-HPS in Section 3.1, is a
simplified version of the standard one. Although the two arenot technically equivalent, the standard definition implies ours, which is in-turn
sufficient for leakage-resilience and captures the main essence of HPS.
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The above two properties are sufficient to prove KEM security, showingthat for (c, k) ← Encap(pk), an attacker
givenc cannot distinguishk from uniform. The proof proceeds in two steps:

1. We replace the honestly generated(c, k)← Encap(pk) with c′ ← Encap∗(pk) andk′ ← Decap(c′, sk).
2. The valuek′ = Decap(c′, sk) is statistically uniform over the choice ofsk, which is unknown to the adversary.

As Naor and Segev noticed in [NS09], this proof also works in the presence of leakage since step (1) holds even if
the adversary sawall of sk, and step (2) is information-theoretic, so we can argue thatℓ bits of leakage aboutsk will
only reduce the statistical entropy ofk′ by at mostℓ bits. To agree on a uniform valuek in the presence of leakage,
we just compose the KEM with a randomness extractor. The main benefit of thisproof strategy is that, after switching
valid/invalid ciphertexts in the first step, we can argue about leakage usinga purely information-theoretic analysis.

We observe that it is therefore relatively easy to show that (a variant of) parallel repetition amplifies leakage-
resilience, since it amplifies the statistical entropy of the secret keysk = (sk1, . . . , skn). In Section 3, we generalize
the notion of HPS to the identity-based setting by defining Identity-Based HashProof System (IB-HPS) in a natural
way. Then, in Section 4, we show how to construct leakage-resilient IBEin the relative-leakage model usingIB-HPS.
In Section 5, we show that a variant of our parallel-repetition idea, and random-subset selection ideas, indeed amplify
leakage-resilience ofIB-HPS-based constructions. Finally, in Section 6, show how this leads to constructions of PKE
(and IBE) schemes in the BRM.

1.2 Related Work

RESTRICTEDMODELS OFLEAKAGE-RESILIENCE. Several other models of leakage-resilience have appeared in the
literature. They differ from the model we described in the that they restrictthe type, as well asamount, of information
that the adversary can learn. For example, the work onexposure resilient cryptography[CDH+00, DSS01, KZ03]
studies the case where an adversary can only learn some smallsubset of the physical bits of the secret key. Similarly,
[ISW03] studies how to implement arbitrary computation in the setting where an adversary can observe a smallsubset
of the physical wires of a circuity. Unfortunately, these models fail to capture many meaningful side-channel attacks,
such as learning the hamming-weight of the bits or their parity.

In their seminal work, Micali and Reyzin [MR04a] initiated the formal modeling of side-channel attacks under the
axiom that“only computation leaks information”, where each invocation of a cryptographic primitive leaks a function
of only the bits accessed during that invocation. Several primitives have been constructed in this setting including
stream ciphers [DP08, Pie09] and signatures [FKPR09]. On the positive side, this model only imposes a bound on
the amount of information learned during each invocation of a primitive, but not on the overall amount of information
that the attacker can get throughout the lifetime of the system. On the negativeside, this model fails to capture many
leakage-attacks, such as the cold-boot attack of [HSH+08], whereall memory contents leak information, even if they
were never accessed.

Certainly, all of the restricted models fail to capture hacking/malware attacks, where it is very conceivable that an
attacker can computeeven complicated functionsof all information stored on the system.

RELATIVE -LEAKAGE MODEL. Several constructions of primitives in the relative-leakage model have appeared re-
cently. The works of [AGV09, NS09] construct public-key encryptionschemes in this model, and [KV09] constructs
signatures. The work of [DKL09] considers a yet-stronger model of leakage-resilience, called theauxiliary input model,
where the leakage-function need only be one-way (and not necessarily length-bounded), and constructs symmetric-key
encryption in this model.

BRM. The Bounded-Retrieval Model was (concurrently) proposed by Di Crescenzo et. al [CLW06] and Dziembowski
[Dzi06], and later studied by [CDD+07, DP07, ADW09]. The name serves as an analogy to the Bounded Storage
Model (BSM) of [Mau92, AR99, ADR02, Lu02, Vad04], which restricts the amount of data that an adversary canstore
after observing a huge public random string, rather than the amount of data an adversary canretrieve from a huge secret
key. With the exception of [ADW09], all of the work on the BRM is in the symmetric-key setting, where two parties
share a huge secret key. The recent work of Alwen et. al [ADW09]gave the first public-key results in the BRM,
by constructing identification schemes, (variants of) signatures, and authenticated-key-agreement protocols. However,
these primitives cannot be used to encrypt a message non-interactively,as is done in the current work. Moreover,
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the authenticated-key agreement protocols of [ADW09] required the useof Random Oracles, while we offer (some)
constructions in the standard model. We note that many of the prior schemes in the BRM and BSM employ ideas
similar to the “parallel repetition” and “random-subset selection” that we described in the introduction. However, the
proof-techniques in this paper differ significantly from previous works.

2 Preliminaries

NOTATION. For an integern, we use the notation[n] to denote the set[n]
def
= {1, . . . , n}. For a randomized functionf ,

we writef(x; r) to denote the unique output off on inputx with random coinsr. We writef(x) to denote a random
variable for the output off(x; r), over the random coinsr. For a setS, we letUS denote the uniform distribution over
S. For an integerv ∈ N, we letUv denote the uniform distribution over{0, 1}v, the bit-strings of lengthv. For a
distribution or random variableX we writex ← X to denote the operation of sampling a randomx according toX.
For a setS, we writes← S as shorthand fors← US .

ENTROPY. Themin-entropyof a random variableX is H∞(X)
def
= − log(maxx Pr[X = x]). This is a standard notion

of entropy used in cryptography, since it measures the worst-case predictability ofX. We also review a generalization
from [DORS08], calledaverage conditional min-entropydefined by

H̃∞(X|Z)
def
= − log

(
Ez←Z

[
max

x
Pr[X = x|Z = z]

])
= − log

(
Ez←Z

[
2−H∞(X|Z=z)

])
.

This measures the worst-case predictability ofX by an adversary that may observe a correlated variableZ. We will use
the following lemmas to reason about entropy.

Lemma 2.1 ([DORS08]) LetX,Y, Z be random variables whereZ takes on values in a set of size at most2ℓ. Then
H̃∞(X|(Y, Z)) ≥ H̃∞((X,Y )|Z)− ℓ ≥ H̃∞(X|Z)− ℓ and, in particular,H̃∞(X|Y ) ≥ H∞(X)− ℓ.

STATISTICAL DISTANCE AND EXTRACTORS. Thestatistical distancebetween two random variablesX,Y is defined
by SD(X,Y ) = 1

2

∑
x |Pr[X = x]− Pr[Y = x]| . We writeX ≈ε Y to denoteSD(X,Y ) ≤ ε, andX ≈ Y to denote

that the statistical distance is negligible. An extractor [NZ96] can be used to extract uniform randomness out of a
weakly-random value which is only assumed to have sufficient min-entropy. Our definition follows that of [DORS08],
which is defined in terms of conditional min-entropy.

Definition 2.1 (Extractors) We say that an efficient randomized functionExt : {0, 1}u → {0, 1}v is an (m, ε)-
extractorif for all X,Z such thatX is distributed over{0, 1}u and H̃∞(X|Z) ≥ m, we get(Z,R,Ext(X;R)) ≈ε

(Z,R,Uv) whereR is a random variable for the coins ofExt.

We now recall the definition of universal-hashing and the leftover-hashlemma, which states that universal hash functions
are also good extractors.

Definition 2.2 (ρ-Universal Hashing) A familyH, consisting of (deterministic) functionsh : {0, 1}u → {0, 1}v, is a
ρ-universal hash familyif for anym1 6= m2 ∈ {0, 1}u we havePrh←H[h(m1) = h(m1)] ≤ ρ.

Lemma 2.2 (Leftover-Hash Lemma [NZ96]) Assume that the familyH of functionsh : {0, 1}u → {0, 1}v, is a
ρ-universal hash family. Then the randomized extractorExt(x;h) = h(x), whereh is uniform overH, is an(m, ε)-
extractor as long asm ≥ v + 2 log (1/ε)− 1 andρ ≤ 1

2v (1 + ε2).

3 Identity-Based Hash Proof System (IB-HPS)

3.1 Definition

An Identity-Based Hash Proof System(IB-HPS) consists of PPT algorithms:(Setup,KeyGen,Encap,Encap∗,Decap).
The algorithms have the following syntax.
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(mpk,msk)← Setup(1λ) : The setup algorithm takes as input a security parameterλ and produces themaster public key
mpk and themaster secret keymsk. The master public key defines anidentity setID, and anencapsulated-key setK.
All other algorithmsKeyGen,Encap,Decap,Encap∗ implicitly includempk as an input.

skID ← KeyGen(ID,msk) : For any identityID ∈ ID, theKeyGen algorithm uses the master secret keymsk to sample an
identity secret keyskID.

(c, k)← Encap(ID) : Thevalid encapsulation algorithm creates pairs(c, k) wherec is a valid ciphertext, andk ∈ K is the
encapsulated-key.

c← Encap∗(ID) : The alternativeinvalid encapsulation algorithm which samples an invalid ciphertext c.

k ← Decap(c, skID) : The decapsulation algorithm is deterministic, and takes anidentity secret keyskID and a ciphertextc
and outputs the encapsulated keyk.

We require that an Identity-Based Hash Proof System satisfies the following properties.

I. CORRECTNESS OFDECAPSULATION. For any values ofmpk,msk produced bySetup(1λ), anyID ∈ ID we have:

Pr

[
k 6= k′

∣∣∣∣
skID ← KeyGen(ID,msk)

(c, k)← Encap(ID) , k′ = Decap(c, skID)

]
≤ negl(λ)

II. VALID /INVALID CIPHERTEXT INDISTINGUISHABILITY. The valid ciphertexts generated byEncap and the invalid
ciphertexts generated byEncap∗ should be indistinguishableeven given the identity secret key. In particular, we define
the following distinguishability game between an adversaryA and a challenger.

VI-IND(λ)

Setup: The challenger computes(mpk,msk)← Setup(1λ) and givesmpk to the adversaryA.
Test Stage 1: The adversaryA adaptively queries the challenger withID ∈ ID and the challenger responds withskID.
Challenge Stage:The adversary selects anarbitrary challenge identityID∗ ∈ ID.

The challenger choosesb← {0, 1}.
If b = 0 the challenger computes(c, k)← Encap(ID∗).
If b = 1 the challenger computesc← Encap∗(ID∗).
The challenger givesc to the adversaryA.

Test Stage 2: The adversaryA adaptively queries the challenger withID ∈ ID and the challenger responds withskID.
Output: The adversaryA outputs a bitb′ ∈ {0, 1} which is the output of the game. We say thatA wins the game ifb′ = b.

Note: In test stages 1,2 the challenger computesskID ← KeyGen(ID,msk) the first time thatID is queried and responds to all
future queries on the sameID with the sameskID.

Note that, during the challenge phase, the adversary can chooseany identity ID∗, and possibly even one for which it
has seen the secret keyskID∗ in Test Stage 1 (or the adversary can simply getskID∗ in Test Stage 2). We define the
advantage ofA in distinguishing valid/invalid ciphertexts to beAdvVI-IND

IB-HPS,A(λ)
def
= |Pr[A wins ] − 1

2 |. We require that

AdvVI-IND
IB-HPS,A(λ) = negl(λ).

III. U NIVERSALITY /SMOOTHNESS/LEAKAGE-SMOOTHNESS. Other than properties I and II, we will need one ad-
ditional information theoretic property. Essentially, we want to ensure that there are many possibilities for the decap-
sulation of aninvalid ciphertext, which are left undetermined by the public parameters of the system. We define three
flavors of this property as follows.

Definition 3.1 (Universal IB-HPS) We say that anIB-HPS is (m, ρ)-universal if, for any fixed values ofmpk,msk

produced bySetup(1λ), and any fixedID ∈ ID the following two properties hold:

1. LetSK be a random variable for the output ofKeyGen(ID,msk). ThenH∞(SK) ≥ m.
2. For any fixed distinct valuesskID 6= sk′ID in the support ofSK, we have

Pr
c←Encap∗(ID)

[Decap(c, skID) = Decap(c, sk′ID)] ≤ ρ.
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Notice the significant difference between valid and invalid ciphertexts. Forvalid ciphertextsc, the correctness of
decapsulation ensures that there is a single valuek ∈ K such thatDecap(c, skID) = k for (virtually) all choices ofskID

(of which there are many by (1)). On the other hand, for invalid ciphertexts c, (2) ensures that it is highly unlikely that
any two distinct secret-keysskID will decapsulatec to the same valuek.

Definition 3.2 (Smooth/Leakage-SmoothIB-HPS) We say that anIB-HPS is smooth if, for any fixed valuesof
mpk,msk produced bySetup(1λ), anyID ∈ ID, we have:

SD( (c, k) , (c, k′) ) ≤ negl(λ)

wherec ← Encap∗(ID), k′ ← UK and k is sampled by choosingskID ← KeyGen(ID,msk) and computingk =
Decap(c, skID). We say that anIB-HPS is ℓ-leakage-smoothif, for any (possibly randomized) functionf(·) with ℓ-bit
output, we have:

SD( (c, f(skID), k) , (c, f(skID), k′) ) ≤ negl(λ)

wherec, k, skID, k
′ are sampled as above. Note, for this property,f need not be efficient.

3.2 Relations Between Universality, Smoothness and Leakage-Smoothness.

We show two simple observations about the relationships between universality, smoothness and leakage-smoothness.
First, we show that a universalIB-HPS is leakage smooth for appropriate parameters.

Theorem 3.1 Assume that anIB-HPS, with key setK = {0, 1}v, is (m, ρ)-universal. Then it is alsoℓ-leakage smooth
as long asℓ ≤ m− v − ω(log(λ)) andρ ≤ 1

2v (1 + negl(λ)).

Proof. Follows by the leftover-hash lemma (Lemma 2.2). �

We now also show how to convert asmoothIB-HPS (Setup,KeyGen,Encap,Encap∗,Decap) into a leakage-smooth
IB-HPS using an extractorExt : K → {0, 1}v. We define:

- Encap2(ID): Choose(c, k)← Encap(ID), k′ ← Ext(k; r). Outputc′ = (c, r), k′.
- Encap∗2(ID) : Choose a random seedr andc← Encap∗(ID). Outputc′ = (c, r).
- Decap2(c

′,msk): Parsec′ = (c, r). Computek = Decap(c,msk), k′ = Ext(k; r). Outputk′.

We show that the transformed system(Setup,KeyGen,Encap2,Encap∗2,Decap2) is leakage-smooth for appropriate
parameters in the next theorem.

Theorem 3.2 Assume that anIB-HPS is smoothand that|K| = 2m. LetExt : K → {0, 1}v be an(m−ℓ, ε)-extractor
for someε = negl(λ). Then the above transformation produces anℓ-leakage-smoothIB-HPS.

Proof. The correctness and valid/invalid ciphertext indistinguishability properties of the modified scheme follow from
those of the original. For leakage-smoothness, let us fixmpk,msk, ID. Let f be any function withℓ bit output. We
define the following (correlated) random variables:SKID is distributed according toKeyGen(ID,msk), C is distributed
according toEncap∗(ID), K is distributed according toDecap(C,SKID) andR is a random and independent extractor
seed. Also, we define a (probabilistic, and possibly inefficient) functionf ′(c, k) which samplesskID from the condi-
tional distribution(SKID | C = c,K = k) and outputsf(skID). Then:

〈 C ′ = (C,R), f(SKID),K ′ = Ext(K;R) 〉 ≡ 〈 C ′ = (C,R), f ′(C,K),K ′ = Ext(K;R) 〉
≈ 〈 C ′ = (C,R), f ′(C,UK),K ′ = Ext(UK;R) 〉 (1)

≈ 〈 C ′ = (C,R), f ′(C,UK), Uv 〉 (2)

≈ 〈 C ′ = (C,R), f ′(C,K), Uv 〉 (3)

≡ 〈 C ′ = (C,R), f(SKID), Uv 〉
Equation (1) follows by the definition of smoothness. For equation (2), notice that

H̃∞(UK|C, f ′(C,UK)) ≥ H̃∞(UK|C)− ℓ ≥ m− ℓ
by Lemma 2.1, and the fact thatC,UK are independent. Then (2) follows from the definition of an extractor, whereUv

is independent of the other variables. Lastly, equation (3) follows by another application of smoothness. �
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3.3 Constructions

We show that the idea of anIB-HPS implicitly forms the backbone of the recent IBE constructions of [Gen06, BGH07,
GPV08]. This gives us three constructions ofIB-HPS, which are explicitly described and proven in the appendices.
Here we, just give a short note on each construction and explain its parameters. We will be interested in the following:

1. Theactual identity-key sizêm: the number of bits needed to efficiently represent an identity secret keyskID.
2. Theencapsulated-key sizev: this isv = log(|K|), whereK is the encapsulated-key set.
3. The min-entropym and the universalityρ. These are the values for which the scheme is(m, ρ)-universal.

An important parameter is the ratiomm̂ , which determines the amount ofrelative leakagethat our IBE and PKE in BRM
constructions can handle. We note thatall of the schemes satisfy the definition ofsmoothness.

A SCHEME BASED ON BILINEAR GROUPS. In Appendix B, we show that the IBE scheme of Gentry [Gen06],
implicitly contains anIB-HPS construction. The scheme and the proof are essentially the same as those of[Gen06],
and rely on the “truncated augmented bilinear Diffie-Hellman exponent” (TABDHE ) assumption. It doesnot require
the use of Random Oracles. The scheme is extremely efficient, requiring only a constant (2 or 3) number of group
elements in the master public key, master secret key, identity secret key, andciphertexts. The parameters of interest are:

m̂ = 2 log(p) +O(1) , m = log(p) ,
m

m̂
≈ 1

2
, v = log(p) , ρ = 0.

wherep is the (prime) order of an appropriate bilinear-groupG.

A SCHEME BASED ON QUADRATIC RESIDUOSITY. In Appendix C, we show that the IBE scheme of Boneh, Gen-
try and Hamburg [BGH07] contains aIB-HPS. The construction and proof essentially follow [BGH07] (with a minor
modification in how identity secret keys are chosen, to get universality). The scheme is secure under the Quadratic
Residuosity assumption in the Random Oracle model, or under a non-standard interactive quadratic residuosity as-
sumption(see Appendix C) in the standard model. The parameters of interest are:

m̂ = log(N) , m = 1 ,
m

m̂
=

1

log(N)
, v = 1 , ρ = 0.

whereN is an appropriately sized RSA modulus. Unfortunately, it is not clear how to make the scheme leakage-smooth
for anyℓ > 0, since the secret-key entropym is too small to extract even a single bit. This problem can be fixed, as will
be done in the BRM, by using parallel-repetition to amplify the entropy. Still, the relative leakage of the scheme will be
poor because of the poor ratio of the entropym to actual-key-sizêm.

A SCHEME BASED ON LATTICES. In Appendix D, we show how to get a construction ofIB-HPS using the IBE
scheme of Gentry, Peikert and Vaikuntanathan [GPV08]. Note that this IBE construction was already observed to be
leakage-resilient by [AGV09], but this does not imply that it is anIB-HPS. In fact, we need to make some simple
modifications so that the scheme satisfies our definition. The security of the scheme is based on a (decisional) Learning
With Errors (LWE) assumption, in the random oracle model. Note that this assumption can be reduced to the GapSVP
problem for lattices, using the techniques of [Reg05, Pei09].3 We show that, for any constantε > 0, there exists some
setting of the actual-key-sizêm so that:

m = (1− ε)m̂ ,
m

m̂
= (1− ε) , v = 1 , ρ =

1

2
(1 + negl(λ)).

Note that, by Theorem 3.2, this construction is thereforealreadyℓ-leakage smooth, for anyℓ ≤ m−ω(log(λ)), without
any need to apply an extractor.

4 Leakage-ResilientIBE

We define what it means for an Identity-Based Encryption (IBE) scheme to be resistant to key leakage attacks and show
how to use anIB-HPS to construct such anIBE scheme. Our notion of leakage-resilience only allows leakage-attacks

3 We note that our construction requires that we use some (slightly) super-polynomial modulusq in the LWE problem, which means that we
need to assume GapSVP is hard against some (slightly) super-polynomial time adversaries.
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against the secret keys of the various identities, butnot the master secret key. Also, we only allow the adversary to
perform leakage attacks before seing the challenge ciphertext. As notedby [AGV09, NS09, ADW09], this limitation is
inherent to (non-interactive) encryption schemes since otherwise the leakage function can simply decrypt the challenge
ciphertext and output its first bit.

4.1 Definition

Recall anIBE scheme consists of PPT algorithms(Setup,KeyGen,Encrypt,Decrypt), an identity setID and a message
spaceM. The syntax ofSetup,KeyGen is the same as that inIB-HPS, andEncrypt,Decrypt have the following syntax:

c← Encrypt(ID,m) : The encryption algorithm encryptsm ∈M, and produces a ciphertextc.
m← Decrypt(c, skID) : The decryption algorithm decrypts a ciphertextc using the identity secret keyskID.

I. CORRECTNESS OFDECRYPTION. For any(mpk,msk) produced bySetup(1λ), any ID ∈ ID, anym ∈ M, we
have

Pr

[
m′ 6= m

∣∣∣∣
skID ← KeyGen(ID,msk)

c← Encrypt(ID,m) , m′ ← Decrypt(c, skID)

]
≤ negl(λ)

II. SEMANTIC SECURITY WITH LEAKAGE. We define thesemantic security game, parametrized by a security param-
eterλ and a leakage parameterℓ as the following game between an adversaryA and a challenger.

IBE-SS(λ, ℓ)

Setup: The challenger computes(mpk,msk)← Setup(1λ) and givesmpk to the adversaryA.
Test Stage 1: The adversaryA can adaptively ask the challenger for the following queries:

Secret-Key Queries: On inputID ∈ ID, the challenger replies withskID.
Leakage Queries: On inputID ∈ ID, a PPT functionf : {0, 1}∗ → {0, 1}, the challenger replies withf(skID).

Challenge Stage:The adversary selects two messagesm0,m1 ∈ M and a challenge identityID∗ ∈ ID which never ap-
pearedin a secret-key query and appeared inat mostℓ leakage queries. The challenger choosesb← {0, 1} uniformly
at random and computesc← Encrypt(ID∗,mb) and givesc to the adversaryA.

Test Stage 2: The adversary gets to makesecret-key queriesfor arbitraryID 6= ID∗. The challenger replies withskID.
Output: The adversaryA outputs a bitb′ ∈ {0, 1}. We say that the adversarywins the game ifb′ = b.

Note: In test stages 1,2 the challenger computesskID ← KeyGen(ID,msk) the first time thatID is queried (in a secret-key or
leakage query) and responds to all future queries on the sameID with the sameskID.

Theadvantageof an adversaryA in thesemantic security game with leakageℓ is AdvIBE-SS
IBE,A (λ, ℓ)

def
=
∣∣Pr[A wins ]− 1

2

∣∣.

Definition 4.1 (Leakage-Resilient IBE) An IBE scheme isℓ-leakage-resilient, if (1) it satisfies the correctness of de-
cryption property, and (2) the advantage of any any PPT adversaryA in the semantic security game with leakageℓ, is
AdvIBE-SS

IBE,A (λ, ℓ) = negl(λ). We define therelative leakageof the scheme to beα
def
= ℓ/m̂, wherem̂ is the number of bits

needed to efficiently store identity secret keysskID.

Remark on Stateful vs. Stateless Key Authority. In the semantic-security game with leakage, we assume that
skID ← KeyGen(ID,msk) is computed only once per identityID and reused subsequently. In reality, this requires that
the key-authority that issues identity secret keys is stateful, and caches the secret keys that it computes. As noted in
[Gen06, BGH07, GPV08], this requirement can be overcome easily and generically to get a stateless key-authority.
We simply add a pseudo-random functionf ∈R F , from a PRF familyF , to the master secret keymsk and always
run KeyGen(ID,msk) using random coins derived fromf(ID). That way the output is consistent each timeKeyGen is
called.
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4.2 Construction of Leakage-ResilientIBE

The construction of a leakage-resilient IBE from a leakage-smoothIB-HPS is almost immediate, by simply using the
encapsulated key as a one-time-pad to encrypt a message. In particular,given anIB-HPS where the encapsulated key
setK has some group structure(K,+) (e.g. bit-strings with⊕), we construct anIBE scheme with the same identity set
ID and message setM = K. TheSetup,KeyGen algorithms are the same for both primitives andEncrypt,Decrypt

are defined by:

Encrypt(ID,m): Choose(c1, k)← Encap(ID) and letc2 = k + m. Outputc = (c1, c2).
Decrypt(c, skID): Parsec = (c1, c2) and computek = Decap(c1, skID). Outputm = c2 − k.

Note that theEncap∗ algorithm of theIB-HPS is not used in the construction, but will be used to argue security.

Theorem 4.1 Assume that we start with anℓ-leakage-smoothIB-HPS. Then the above construction yields anℓ-
leakage-resilientIBE.

Proof. The correctness of decryption, follows by the correctness of decapsulation. For the security analysis, we us a
series of games argument:

Game 0: Define Game 0 to be the semantic security game with leakageℓ. Notice that, in the challenge stage of Game
0, the challenger computesc← Encrypt(ID∗,mb) which we expand asc = (c1, c2) where

(c1, k)← Encap(ID∗), c2 = mb ⊕ k.

Game 1: We modify the challenge stage, so that the challenger uses the secret keyskID to compute the ciphertext
c = (c1, c2) by: 4

(c1, k1)← Encap(ID∗), k2 ← Decap(c1, skID∗), c2 = mb ⊕ k2

The difference between Game 0 and Game 1 is only the use ofk1 versusk2. But, by the correctness of decapsu-
lation,k1 = k2 with all but negligible probability so Games 0 and 1 are (statistically) indistinguishable.

Game 2: In Game 2, we modify the challenge stage still further by having the challengeruse ainvalid encapsulation
procedure to compute the ciphertextc = (c1, c2):

c1 ← Encap∗(ID∗), k2 ← Decap(c1, skID∗), c2 = mb ⊕ k2.

We claim that Games 1 and 2 are computationally indistinguishable by the valid/invalidciphertext indistinguisha-
bility of IB-HPS. Notice that, although the valid/invalid ciphertext indistinguishability game does not haveleak-
age queries, it allows the adversary to learn all secret-keys, including the secret key skID∗ of the challenge identity
ID∗. Therefore indistinguishability between Games 1,2 holdsevenif the adversary sees thefull challenge identity
secret-keyskID∗ , and hence certainly given just some bounded leakagef(skID∗).

Game 3: In Game 3, the challenge ciphertextc = (c1, c2) is computed by:

c1 ← Encap∗(ID∗), c2 ← UK.

We claim that Games 2 and 3 are statistically indistinguishable by theℓ-leakage-smoothness ofIB-HPS. In-
deed, for fixed values ofmpk,msk the only values in Game 2 which are correlated toskID∗ are the outputs of
the ℓ leakage-queries, andk2 ← Decap(c1, skID∗). But, by ℓ-leakage smoothness, (thinking of theℓ leakage
queries together as a single randomized functionf∗(sk∗ID)), this is (statistically) indistinguishable from choosing
a completely independentk2 ← UK, which is equivalent to Game 3.

Therefore Game 0 and Game 3 are indistinguishable by a PPT adversary. Also, it is clear that the advantage of any
adversary in Game 3 is exactly0 (since Game 3 is independent of the bitb chosen by the challenger). Therefore the
advantage of any PPT adversary in Game 0 is at most negligibly different from that of Game 3, and hence negligible in
λ, as we wanted to show. �

4The valueskID∗ is either already defined ifID∗ was part of a leakage/secret-key query, or chosen fresh fromKeyGen(ID∗, msk) and used to
respond to future queries otherwise
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5 Leakage Amplification of IB-HPS

We now show how to construct anℓ-leakage-smoothIB-HPS, for arbitrarily large values ofℓ, meeting the efficiency
requirements of the BRM. This will be the main step towards building PKE (and IBE) schemes in the BRM. We start
with a IB-HPS schemeΠ1 = (Setup,KeyGen1,Encap1,Encap∗1,Decap1) and compile it into a newIB-HPS scheme
Π2 = (Setup,KeyGen2,Encap2,Encap∗2,Decap2), where the identity secret keys can be made arbitrarily large, so as
to achieveℓ-leakage-smoothness for a largeℓ. We will assume there is a one-to-one functionH : ID2 × [n] → ID1

whereID1, ID2 are the identity sets ofΠ1,Π2 respectively. In the constructed scheme, the identity secret key of each
ID ∈ ID2 consists ofn componentsskID = (skID[1], . . . , skID[n]), where each componentskID[i] is an independently
sampled identity secret key for an identityH(ID, i) ∈ ID1 of the original scheme. Here,n will be a key-size parameter,
which gives us flexibility in the size of the identity secret key in the constructedscheme, and will depend on the desired
leakage-parameterℓ. The encapsulation procedureEncap2(ID) will target only a small subset oft-out-of-n of the
identitiesH(ID, i), and decapsulationDecap2 will only need to read the valuesskID[i] associated with theset identities.
Heret will be a locality-parameterwhich can be much smaller than (and independent of)n. A formal description of
the construction appears in Figure 1. It is described abstractly in terms of arbitrary parametersn, t, v. In the theorem
that follows, we show how to instantiate these appropriately based on the setting of ℓ, λ.

Let Π1 = (Setup,KeyGen1,Encap1,Encap∗1,Decap1) be aIB-HPS with encapsulated-key-setK and identity-setID1.
Let n, t, v ∈ Z

+. We calln akey-size parameter, t a locality parameterandv aoutput-sizeparameter.
LetH : ID2 × [n]→ ID1 be a one-to-one function for some setID2.a

Let G be a 1
2v -universal hash function family of functionsg : Kt → {0, 1}v.

DefineΠ2 = (Setup,KeyGen2,Encap2,Encap∗2,Decap2) as follows:

Setup(1λ): The setup procedure is the same as that ofΠ1.

KeyGen2(ID,msk): For i ∈ [n], sampleskID[i]← KeyGen1(H(ID, i),msk). OutputskID = (skID[1], . . . , skID[n]).

Encap2(ID): Chooset random indicesr = (r1, . . . , rt)← [n]t. Chooseg ← G.
For i ∈ {1, . . . , t}, compute:(ci, ki)← Encap1(H(ID, ri)). Let c = (c1, . . . , ct).
Output:C = (r, c, g), k = g(k1, . . . , kt).

Encap∗2(ID): Chooset random indicesr = (r1, . . . , rt)← [n]t. Chooseg ← G.
For i ∈ {1, . . . , t}, compute:ci ← Encap∗1(H(ID, ri)). Let c = (c1, . . . , ct). Output:C = (r, c, g).

Decap2(C, skID): ParseC = (r, c, g). Computeki = Decap1(ci, skID[ri]) for i ∈ {1, . . . , t}. Outputk = g(k1, . . . , kt).

aA collision-resistant hash function (CRHF) would suffice here as well.

Figure 1: Leakage-Amplification of anIB-HPS: Construction ofΠ2 from Π1.

For the analysis of the construction, we need to define a new parameter called theeffective key sizem′. This is
the minimal value such that, for any fixedmpk,msk, ID, the number of values thatskID ← KeyGen(ID) can take on
is bounded by2m′

. If the actual key size iŝm and the key entropy ism, thenm̂ ≥ m′ ≥ m. Note that in all of our
constructions,m/m′ is a constant (even whenm/m̂ is not, as is the case for our QR-based construction).

Theorem 5.1 AssumeΠ1 is an (m, ρ)-universalIB-HPS with effective key sizem′, whereρ < 1 andm/m′ > 0 are
constants. Then, for any constantε > 0 and any polynomialv(λ), there is some setting oft = O(v + λ) so that,
for any polynomialn(λ), the above construction ofΠ2 with parametersn, t, v is an ℓ-leakage-smoothIB-HPS for
ℓ(λ) = (1− ε)nm− v − λ. The encapsulated-key-set ofΠ2 isK = {0, 1}v.

It is easy to see thatΠ2 satisfies correctness. Also, the valid/invalid ciphertext indistinguishability property ofΠ2

follows by a simple hybrid argument. Therefore, we only need to showℓ-leakage smoothness, for theℓ given by the
theorem statement. For a fixedmpk,msk, ID in Π2, the entropy of the random variableSKID ∼ KeyGen2(ID,msk),
is amplified toH∞(SKID) ≥ nm, since it consists ofn independently sampled secret keys ofΠ1. If we could show
that the scheme is alsoρ′-universal, for some smallρ′ ≤ ( 1

2v + negl(λ)), then we could rely on Theorem 3.1 to
show leakage-smoothness. Unfortunately, this is not the case. The problem is that, if two valuesskID 6= sk′ID in the
constructed scheme differ in only one positionj, thenDecap2(C, skID) = Decap(C, sk′ID) as long as the ciphertextC
does not “select”j, which happens with large probability. We analyze the leakage smoothness of the construction in
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Appendix E. First, we define a new notion calledapproximately universal hashing(Definition E.3), where we only insist
that values which are far from each other in Hamming distance (over some alphabet) are unlikely to collide. We then
show a variant of the leftover-hash lemma (Lemma 2.2), called theapproximate leftover-hash lemma(Theorem E.2)
holds for approximate hashing. Lastly, in Appendix E.3, we show that the decapsulation procedureDecap2(C, skID)
is approximately universal, for appropriate parameters, whenC ← Encap∗(ID).5 Combining these results, we get the
parameters of the theorem.

6 Public-Key Encryption and IBE in the BRM

A public-key encryption (PKE) scheme in the BRM consists of the algorithms(KeyGen,Encrypt,Decrypt), which are
all parameterized by a security parameterλ and a leakage parameterℓ. The syntax and the correctness property of
an encryption scheme follow the standard notion of public-key encryption.We define the followingsemantic-security
game with leakageℓ between an adversaryA and a challenger.

SemS(λ, ℓ)

Key Generation: The challenger computes(pk, sk)← KeyGen(1λ, 1ℓ) and givespk to the adversaryA.
Leakage: The adversaryA selects a PPT functionf : {0, 1}∗ → {0, 1}ℓ and getsf(sk) from the challenger.
Challenge: The adversaryA selects two messagesm0,m1. The challenger choosesb ← {0, 1} uniformly at random and

givesc← Encrypt(mb, pk) to the adversaryA.
Output: The adversaryA outputs a bitb′ ∈ {0, 1}. We say thatA wins the game ifb′ = b.

For any adversaryA, theadvantage ofA in the above game is defined asAdvSemS
PKE,A(λ, ℓ)

def
=
∣∣Pr[A wins ]− 1

2

∣∣.

Definition 6.1 (Leakage-Resilient PKE)A public-key encryption schemePKE is leakage-resilient, if for any polyno-
mial ℓ(λ) and any PPT adversaryA, we haveAdvSemS

PKE,A(λ, ℓ(λ)) = negl(λ).

Definition 6.2 (PKE in the BRM) We say that a leakage-resilient PKE scheme is aPKE in the BRM, if the public-key
size, ciphertext size, encryption-time and decryption-time (and the number of secret-key bits read by decryption) are
independent of the leakage-boundℓ. More formally,there existpolynomialspksize, ctsize, encT, decT, such that,for
any polynomialℓ and any(pk, sk)← KeyGen(1λ, 1ℓ(λ)), m ∈M, c← Encrypt(m, pk), the scheme satisfies:

1. Public-key size is|pk| ≤ O(pksize(λ)), ciphertext size is|c| ≤ O(ctsize(λ, |m|)).
2. Run-time ofEncrypt(m, pk) is≤ O(encT(λ, |m|)).
3. Run-time ofDecrypt(c, sk), and the number of bits ofsk accessed, is≤ O(decT(λ, |m|)).

Therelative-leakageof the scheme isα
def
= ℓ/|sk|.

We can generalize the above definition to IBE schemes, and say that a leakage-resilient IBE is anIBE in the BRM
if the master-public-key size, master-secret-key size, ciphertext size and encryption/decryption times are bounded by
polynomials independent ofℓ.

Theorem 6.1 (PKE and IBE in BRM) Assume that we have an(m, ρ)-universalIB-HPS satisfying the conditions of
Theorem 5.1 and having actual key sizem̂. Then, for any constantε > 0 and any polynomialv, we get PKE (resp. IBE)
schemes in the BRM with message spaceM = {0, 1}v and:

1. Public-key size (resp. master public/secret key size) is the same as that of the underlyingIB-HPS.
2. The locality-parameter ist = O(v + λ). The # of secret-key bits accessed during decryption istm̂.
3. Ciphertext-size/encryption-time/decryption-time differ by a factor oft from those of the underlyingIB-HPS.
4. Relative leakage isα ≥ m

m̂(1− ε), for sufficiently large values of the leakage-parameterℓ.
In particular, for large enoughℓ, the secret-key size (resp. identity-secret-key size) is≤ m̂

m(1 + ε)ℓ.

5For approximate universality, we think ofskID as consisting ofn symbols of an alphabetΣ, with one symbol for each component keyskID[i].
For the sizeq = |Σ|, we can consider an abstract (not necessarily efficient) representation of the keysskID[i], soq ≤ 2m′

.
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Proof. Follows directly from leakage-amplification (Theorem 5.1). For any leakage-parameterℓ, the key-size parameter
n in the construction ofΠ2 in Figure 1 is made just large enough so thatℓ ≤ (1 − ε)nm − v − λ. Therefore,Π2 is
ℓ-leakage smooth. By Theorem 4.1, this yields anℓ-leakage resilient IBE. The efficiency parameters are obvious from
the construction, so it is easy to see that we get an IBE in the BRM. By ignoring all identities except for a single one,
we naturally get a PKE in the BRM. The relative leakage isα = ℓ

m̂n ≈ m
m̂(1− ε), for ℓ large enough in relation tov, λ.

�

7 Extensions

CCA SECURITY. In Appendix F we show that the main ideas underlying our approach can be extended to deal with
chosen-ciphertext attacks. We present constructions of encryption schemes that are resilient to leakage even under
chosen-ciphertext attacks. That is, these schemes are semantically secure even against an adversary that is allowed to
submit both leakage queries and decryption queries. We first consider identity-based encryption, and show that the
CCA-secure variant of Gentry’s scheme [Gen06] can be generalizedto deal with leakage. We then consider public-key
encryption in the BRM, and observe that the generic transformation from chosen-plaintext security to chosen-ciphertext
security, using the Naor-Yung paradigm [NY90], also applies in the BRM.

SHORTER CIPHERTEXTS VIA ANONYMOUS ENCAPSULATION. We notice that two of ourIB-HPS constructions,
based on lattices and quadratic residuosity, have additional structure, which allows for a more efficient version of our
leakage-amplification construction. In the construction shown in Figure 1, the ciphertextC of the constructed scheme
Π2 containst ciphertextsc1, . . . , ct of the underlying schemeΠ1, wheret = O(λ+v). We show how to reduce this to a
single ciphertext if we start with anIB-HPS constructionΠ1 that has an additional property, which we callanonymous
encapsulation. Such a scheme has two additional procedures:

• (c, s)← EncapC(), which samples a ciphertextc together with a trapdoors withoutknowing the targetID.
• k = EcnapK(c, s, ID), which (deterministically) computesk for anyID, givenc and a trapdoors.

Note that the proceduresEncapC,EcnapK (like Encap) are implicitly parameterized by the master public keympk.

Definition 7.1 (Anonymous Encapsulation)An IB-HPS hasanonymous encapsulationif there exist efficient proce-
duresEncapC,EcnapK as above, such that, for any fixedmpk,msk, ID, sampling(c, k) ← Encap(ID) is equivalent to
sampling(c, s)← EncapC() and computingk = EcnapK(c, s, ID).

For our lattice-based and quadratic-residuosity based constructions, the proceduresEncapC,EcnapK are already im-
plicitly defined byEncap, which first samplesc anonymously (independently ofID) and then computesk for a givenID

using the randomnesss that was used to generatec.
There are several advantages toIB-HPS schemes that have the anonymous-encapsulation property. Firstly, it’s

easy to see that the IBE constructed from such schemes hasanonymity, in that the ciphertext does not reveal the target
identity. Perhaps more importantly, anonymous encapsulation can be used to get an improved leakage-amplification
scheme with shorter ciphertexts.6 In particular, we modify the procedureEncap2(ID) of the constructedΠ2 scheme,
so that it samples asingleciphertext/trapdoor pair(c, s) ← EncapC1() of the underlying schemeΠ1, and computes
ki = EcnapK1(c, s,H(ID, ri)) for each of of thet random indicesri ∈ [n]. The ciphertexts of the constructed scheme
therefore consist ofC = (r, c, g), and contain only a single ciphertextc of the underlying scheme. To reduce the
ciphertext size still further, we can employ the following optimizations:

1. Instead of sampling the indicesr ← [n]t uniformly at random, and communicating this choice in the ciphertext,
we use use ahitting sampler, or hitter (see Definition E.2) to sampler ∈ [n]t efficiently. This choice can then
be communicated using a seed of description sizelog(n) + O(λ + v), rather than the previous sizet log(n) =
O((λ+ v) log(n)) needed to communicater explicitly.

2. Use aγ-universal, instead of fully universal, hash functiong, whereγ = 1
2v (1 + negl(λ)). As observed in

[SZ99], such hash functions can have description sizesO(v+λ), only proportional to the output size, and not the
somewhat larger input size.

6 A similar technique is implicitly used to get shorter ciphertexts relative to the message length in the IBE constructions of [BGH07, GPV08].
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In Appendix E.4, we show that leakage-amplification still holds for the modifiedconstructions, by showing that
Decap2(C, ·) is an approximately-universal hash function with appropriate parameters, whenC ← Encap∗(ID). Un-
fortunately, the setting of the parameters requires thatρ ≤ 1

2v in the original scheme, which is only the case for our
QR-based scheme butnot the lattice-based scheme.

8 Comparison of PKE (and IBE) in BRM Constructions

In Table 1, we compare the efficiency and relative-leakage of our various IBE and PKE in BRM constructions. We
assume that the plaintext size isv = O(λ).7 In all of the schemes, the leakage-parameterℓ can be arbitrarily large and
the relative leakage column indicates the ratio of leakage to secret-key size.The public-key size of all schemes is the
same as the master-public-key size of the correspondingIB-HPS and the encryption/decryption times (and the number
of bits accessed) differ by a multiplicative factor oft = O(λ). The “CT expansion” column indicates the ratio of the
ciphertext size in the BRM to that of the underlyingIB-HPS. The “CT size in BRM” column measures the size of the
ciphertext in the BRM on an absolute scale.8 The valueε > 0 can be an arbitrary constant.

Scheme Assumption Relative Leakage CT Size in BRM CT Expansion Locality
Bilinear-Groups

[Gen06]
TABDHE ( 1

2 − ε) O(λ2) O(λ) O(λ)

Quadratic Residuosity
[BGH07]

QR † 1
O(λ) O(λ) O(1) O(λ)

Lattices
[GPV08]

LWE/GapSVP† (1− ε) O(λ4) O(λ) O(λ)

† = Random Oracle Model/Interactive Assumption

Table 1: Comparison of Our PKE in BRM Constructions
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Mogens Nielsen, editors,ICALP, volume 1644 ofLecture Notes in Computer Science, pages 1–9. Springer, 1999.
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A Counterexample to PKE in BRM Construction
from General Leakage-Resilient IBE

We give a counterexample showing that a generic construction of PKE in theBRM from a leakage-resilient IBE, via
parallel repetition, does not work. More specifically we construct an IBE with leakageℓ, such that parallel-repetition
does not amplify leakage-resilience beyond some small value, no matter how many “repetitions”n are taken.

As a start, assume thatI is any IBE scheme. We first construct an IBEI ′ where the set of identities is exactly
[n] (which is only polynomial). The scheme is the same asI otherwise, except that the identity-secret-key generation
procedure also gives a shareSi of the master secret keymsk to each identityi ∈ [n], along with its identity secret
key. We assume the share is computed using ann-out-of-n secret sharing scheme. The resulting schemeI ′ is still and
IBE (albeit with a small, polynomially size identity set) since, after observing the identity secret key of up ton − 1
identities, the master secret key is still perfectly hidden. Moreover, the scheme is leakage-resilient, at least for some
small (logarithmic in the security parameter) leakageℓ (this must be the case forany IBE/PKE since a logarithmic
number of bits of leakage can be efficiently guessed with polynomial probability). Nevertheless, the PKE construction
that results fromn-wise parallel-repetition is not leakage-resilient for anyℓ greater than the size of the master secret key
of I, no matter how largen is. Indeed a valid leakage attack can look at all sharesS1, . . . , Sn, and output the master
secret key.

One objection to the counterexample, is that the IBE schemeI ′ only has a polynomial number of identities, and
so it is not a legitimate IBE. We can get around this by defining a schemeI ′′ which runs one copy ofI ′ for identities
{1, . . . , n} and an independent copy of the original schemeI for all other (exponentially many) identities. ThenI ′′ is a
proper IBE, but leakage-amplification still fails.

B A Construction of IB-HPS Based on Bilinear Groups

B.1 Review of Bilinear Groups and Assumptions

Let G,GT be two (multiplicative) groups of prime orderp and letg be a generator ofG. Let e : G × G → GT be a
map fromG to thetarget groupGT . We say that the groupG is bilinear if we have

1. Bilinearity: For allu, v ∈ G anda, b ∈ Zp we havee(ua, vb) = e(u, v)ab.

2. Non-degeneracy: For the generatorg of G, we gete(g, g) 6= 1.

3. Efficiency: Operations (multiplication, exponentiation) inG,GT and the mape can be computed efficiently.

We assume the existence of a group-generation algorithmG(1λ) which, on input1λ, outputs a tuple(G,GT , g, e(·, ·), p)
whereG is a bilinear group of prime orderp.

We will rely on thetruncated augmented bilinear Diffie-Hellman exponent assumption(q-TABDHE ) from [Gen06].
We define the two distributions

D
(0)
λ,q =

(
g, gα, g(α2), . . . , g(αq), g′, g′(αq+2), e

(
g(q+1), g′

))

and
D

(1)
λ,q =

(
g, gα, g(α2), . . . , g(αq), g′, g′(αq+2), Z

)

where(G,GT , g, e(·, ·), p) ← G(1λ), g′ ← G, α ← Zp, andZ ← GT . For any algorithmB, the distinguishing

advantage ofB in theq-TABDHE problemis AdvTABDHE
B (λ, q)

def
=
∣∣∣Pr
[
B
(
D

(0)
λ,q

)
= 0
]
− Pr

[
B
(
D

(1)
λ,q

)
= 0
]∣∣∣ .

Definition B.1 We say that theq-TABDHE assumption holds if, for any PPTB, AdvTABDHE
B (λ, q) = negl(λ). We say

that theTABDHE assumption holds ifq-TABDHE holds for all polynomialq.
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B.2 Construction of IB-HPS based on Gentry’s IBE [Gen06].

We now present the construction ofIB-HPS which is based directly on Gentry’sIBE [Gen06].

Setup(1λ) : Let (G,GT , g, e, p)← G(1λ). Leth← G, α← Zp andg1 := gα.
Setmpk = (G,GT , g, e, p, g1, h) and setmsk = α.
The identity set isID = Zp \ {α} and the encapsulated-key set isK = GT . a

KeyGen(ID,msk) : For ID ∈ ID, chooserID ← Zp and computehID = (hg−rID)1/(α−ID). OutputskID = (rID, hID).

Encap(ID) : Choose randoms ∈ Zp and computeu = gs
1g

−sID, v = e(g, g)s and outputc = (u, v), k = e(g, h)s.

Encap∗(ID) : Choose a random pair(s, s′) ∈ Zp subject to the constraints 6= s′. Letu = gs
1g

−sID, v = e(g, g)s′

and output
c = (u, v).

Decap(c, skID) : Parsec = (u, v) and outputk = e(u, hID)vrID .

aThe setID is defined in terms of the secretα. GivenID ∈ Zp, one can efficiently check ifID ∈ ID by checking ifgID ?
= g1.

Essentially, various parts of Gentry’s proof already show that the scheme satisfies the properties ofIB-HPS. For com-
pleteness, we include the proof tailored to our presentation and terminology below.

Theorem B.1 Under theTABDHE assumption, the above construction is anIB-HPS which is simultaneouslysmooth
and (m, ρ)-universalfor ρ = 0. More precisely, the valid/invalid ciphertext indistinguishability property holds under
theq-TABDHE assumption for any adversary making at mostq queries in test stages 1,2. Moreover:

1. The identity-key entropy ism = log(p).
2. The actual identity-key size iŝm = 2 log(p) +O(1).9

3. The effective-key size (logarithm of the number of values that anyskID can take on) ism′ = log(p).
4. The encapsulated-key size isv = log(p).

Proof. Let us writeh = gβ for someβ ∈ Zp, so thathID = g(β−rID)/(α−ID) for eachID ∈ Zp.

I. For correctnesswe see that, for anyID ∈ Zp, any correctly generatedmpk,msk, skID, if a pair (c = (u, v), k) is
generated byEncap(ID) thenu = gs

1g
−sID = gs(α−ID), v = e(g, g)s for somes ∈ Zp andk = e(g, h)s. Correctness

follows since:

Decap(c, skID) = e(u, hID)vrID

= e
(
gs(α−ID), g(β−rID)/(α−ID)

)
e(g, g)srID

= e(g, g)sβ = e(g, h)s = k.

II. For valid/invalid ciphertext indistinguishability, we show how to use an adversaryA, which distinguishes valid and
invalid ciphertexts usingq queries, to create an adversaryB which is a distinguisher for theq-TABDHE problem. In

particular, the algorithmB receives as input(g, g1, . . . , gq, g
′, g′q+2, Z) wheregi = g(αi), g′i = g′(αi) for an unknown

α, andZ is eithere(gq+1, g
′) or a random element ofGT . The algorithmB simulates the valid/invalid ciphertext

distinguishability game forA as follows:

Setup: The algorithmB chooses a polynomialf(x) ∈ Zp[x] of degreeq uniformly at random, and computesh = gf(α)

usingg1, . . . , gq (and without knowledge ofα). The valuempk = (g, g1 = gα, h = gf(α)) is given toA.

Test Stage 1:WheneverAmakes a query for a new value ofID ∈ Zp, the algorithmB computesrID = f(ID) and sets
hID = gFID(α) whereFID(x) = (f(x) − f(ID))/(x − ID) is a polynomial of degreeq − 1 and thushID can be
efficiently computed usingg1, . . . , gq−1 without knowingα. B givesskID = (rID, hID) to the attackerA.

9We use the fact that many elliptic-curves with pairings have source groups whose representation size is not much larger than its order.
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Challenge Stage:The attackerA chooses an identityID∗. Let skID∗ = (rID∗ , hID∗) be computed as in the Test Stage.
LetHID(x) = (xq+2− IDq+2)/(x− ID) be the polynomial of degreeq+1, in which thexq+1 term has coefficient
1. LetH−ID(x) = HID(x)− xq+1 be the polynomial of degreeq. ThenB sets:

u =
g′q+2

g′((ID
∗)q+2)

= g′(αq+2−(ID∗)q+2), v = Z ·
(
g′, gH−

ID∗ (α)
)

wheregH−
ID∗ (α) is computed usingg1, . . . , gq, and givesc = (u, v) toA.

Test Stage 2:The algorithmB responds to ID queries the same way as in Test Stage 1.

Output: If the adversaryA outputsb′ = 0 (indicating a valid ciphertext), the algorithmB outputs0 (indicating that
Z = e(gq+1, g

′)) and ifA outputs 1 thenB also outputs 1.

We show that the view ofA is statistically close to a run of the valid/invalid ciphertext indistinguishability game.
Firstly, sincef is random degreeq polynomial,and is evaluated at at mostq + 1 values (the ID queries ofA and at
α) all of the outputs are mutually independent and uniform overZp. In particular, lettingβ = f(α), this means that
mpk = (g, g1 = gα, h = gβ) and the identity secret keysskID = (rID, hID = g(β−rID)/(α−ID)) seen during the Test
Stages are (mutually) chosen from the same distribution as in the valid/invalid ciphertext indistinguishability game.

Now let us look at the challenge key-ciphertext. We writeg′ = gγ for a random (unknown)γ. WhenZ = e(gq+1, g
′)

then the challenge ciphertext isu = gs(α−ID∗) for s = γHID∗(α), which is uniformly random for a randomγ. Also,

v = e(g′, g)HID∗ (α) = e(g′, g)s/γ = e(g, g)s.

Therefore this (perfectly) corresponds to the distribution seen byA when the challenger choosesb = 0 (i.e. a valid
key-ciphertext). On the other hand, whenZ is uniformly random, thenv = e(g, g)s′ for a randoms′, independent ofs
so that(u, v) are uniform overG × GT . This is1/p statistically close to the distribution of invalid ciphertexts output
by Encap∗(ID∗) and thus the case where the challenger choosesb = 1 (i.e. an invalid key-ciphertext). Therefore the
advantage ofB in theq-TABDHE game is negligibly close to the advantage ofA in the valid/invalid indistinguishability
game.

III. To show smoothnessandρ-universality, fix any mpk,msk, ID. Let c be some output ofEncap∗(ID), so thatc =
(u, v) for u = gs(α−ID) andv = e(g, g)s′ wheres 6= s′. Then, for any secret keyskID = (rID, hID = g(β−rID)/(α−ID))
we get:

Decap(c, skID) = e(u, hID)vrID

= e
(
gs(α−ID), g(β−rID)/(α−ID))

)
vrID

= e(g, g)s(β−rID)e(g, g)s′rID

= e(g, g)sβ+(s′−s)rID

Therefore:

1. For any fixedc output byEncap∗(ID), the distribution ofDecap(c, skID) (over a uniformskID ← KeyGen(ID,msk))
is uniform overK = GT . This impliessmoothness.

2. If Decap(c, skID) = Decap(c, sk′ID) andskID, sk
′
ID are outputs ofKeyGen(ID,msk) thenskID = sk′ID. This implies

0-universality.

�

C A Construction of IB-HPS Based on Quadratic-Residuosity

C.1 Review of Terminology, the QR Assumption, Background

For a positive integerN , letJ (N) denote the setJ (N)
def
= {x ∈ ZN :

(
x
N

)
= 1} where

(
x
N

)
denotes the Jacobi symbol

of x in ZN . Let QR(N) ⊆ J (N) denote the set of quadratic residues moduloN .
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Let PrimeGen(1λ) be an algorithm which, given security parameterλ, outputs two primes(p, q) of length which is
exponential inλ. We define the distributions:

DQRλ : Choose(p, q)← PrimeGen(1λ),N = pq, S ← QR(N). Output(N,S).
DNQRλ : Choose(p, q)← PrimeGen(1λ),N = pq, S ← J (N) \QR(N). Output(N,S).

The quadratic residuosity assumptions states that no PPT adversary can distinguish the distributionsDQRλ andDNQRλ.

Definition C.1 (QR Assumption) The quadratic residuosity assumptions states that for any PPT algorithmA,

|Pr [A (DQRλ) = 1]− Pr [A (DNQRλ) = 1]| ≤ negl(λ).

Recall the following elementary property of the Jacobi symbol.

Lemma C.1 For anyx, y ∈ ZN ,
(

x
N

) ( y
N

)
=
(xy

N

)
. Therefore, ifxy ∈ J (N). Then

(
x
N

)
=
( y

N

)
.

We will also rely on the following two lemmas shown in [BGH07].

Lemma C.2 ([BGH07]) LetN be a product of two primes, letX ∈ QR(N), andS ∈ J (N). Letx1, x2 ∈ Zn be any
two square roots ofX. Letf be a polynomial such thatf(x)f(−x)S is a quadratic residue for all four square rootsx
ofX. Then:

• WhenS 6∈ QR(N), the Jacobi symbols ofx1, x2 are different
(

f(x1)
N

)
6=
(

f(x2)
N

)
iff x1 6= −x2.

• WhenS ∈ QR(N), the Jacobi symbols ofx1, x2 are always the same
(

f(x1)
N

)
=
(

f(x2)
N

)
.

Lemma C.3 ([BGH07]) There exists anefficient and deterministicalgorithmQ which takes as input(N, u,R, S),
whereN ∈ Z

+, u,R, S ∈ ZN , and outputs polynomialsf, f , g, τ ∈ ZN [x] satisfying the following conditions:

1. IfR,S ∈ QR(N), thenf(r)g(s) ∈ QR(N) for all square rootsr ofR ands of S.
2. If uR, S ∈ QR(N), thenf(r)g(s)τ(s) ∈ QR(N) for all square rootsr of uR ands of S.
3. IfR ∈ QR(N), thenf(r)f(−r)S ∈ QR(N) for all square rootsr ofR.
4. If uR ∈ QR(N), thenf(r)f(−r)S ∈ QR(N) for all square rootsr of uR.
5. If S ∈ QR(N), thenτ(s)τ(−s)u ∈ QR(N) for all square rootss of S.
6. For any fixed values ofN, u, S, the polynomialτ output byQ(N, u,R, S) is the same for all choices ofR.

Lastly, we review theinteractive QR (IQR)assumption of [BGH07]. LetPrimeGen be as before, and letHN : {0, 1}∗ →
J (N). We define two IQR oraclesOQR

λ andONQR
λ which work as follows:

• The oracle selects(p, q)← PrimeGen(1λ) and outputsN = pq.
• The oracle selectsu← J (N) \QR(N) and outputsu.
• The oracleOQR

λ selectsS ← QR(N) whileONQR
λ selectsS ← J (N)/QR(N). The oracle outputsS.

• On each inputx ∈ {0, 1}∗, the oracle computesR = HN (x) and outputs a random square-root of eitherR or
uR, depending on which one is a residue.

Definition C.2 (IQR Assumption of [BGH07]) The IQR assumption for a pair(PrimeGen, HN ) states that no PPT
adversaryA can distinguish oracle access toOQR

λ from that toONQR
λ . That is,

∣∣∣Pr
[
AO

QR

λ (1λ) = 1
]
− Pr

[
AO

NQR

λ (1λ) = 1
]∣∣∣ ≤ negl(λ).

It is easy to see (as was shown in [BGH07]) that the IQR assumption followsfrom the standard QR assumption when
the hash-functionHN is modeled as a Random Oracle.

21



C.2 Construction of IB-HPS Based on the IBE of Boneh Gentry and Hamburg [BGH07]

We now present the construction ofIB-HPS which is based on an IBE scheme of Boneh Gentry and Hamburg [Gen06],
with some small modifications. In the description,Q is the algorithm defined by Lemma C.3 andPrimeGen is the
prime-generation of Definition C.1.

Setup(1λ) : Choose(p, q)← PrimeGen(1λ) and setN = pq. Sampleu← J (N) \QR(N). LetH : {0, 1}∗ → J (N).
Outputmpk = (N,u,H) andmsk = (p, q). The identity set isID = {0, 1}∗. The encapsulate-key set isK = {±1}.

KeyGen(ID,msk) : Let R = H(ID). Let a ∈ {0, 1} be the unique choice for whichuaR ∈ QR(N). Let {r1, r2, r3,r 4}
be a labeling of the four square-roots ofuaR so thatr1 < r2 < r3 < r4 (in Z) andr1 = −r4, r2 = −r3. Choose
r ← {r1, r2}, outputskID = r.

Encap(ID) : Chooses← ZN and setS = s2. RunQ(N,u, 1, S) to obtainτ and computeb =
(

τ(s)
N

)
. Setc = (S, b).

LetR = H(ID). RunQ(N,u,R, s) to obtain a polynomialg, setk =
(

g(s)
N

)
. Output(c, k).

Encap∗(ID) : ChooseS ← J (N) \QR(N), b← {±1}. Outputsc = (S, b).

Decap(c, skID) : Let r = skID, R = H(ID). Parsec = (S, b). If r2 = R, outputk =
(

f(r)
N

)
else outputk = b

(
f(r)
N

)
,

wheref, f are the polynomials output byQ(N,u,R, S).

Theorem C.1 Under the IQR assumption on the pair(PrimeGen, H), the above construction is(m, ρ)-Universal and
smoothIB-HPS with ρ = 0. In particular, this is also the case under the QR assumption, when the function H is
modeled as a Random Oracle. Moreover:

1. The identity-key entropy ism = 1.
2. The actual identity-key size iŝm = log(N).
3. The effective-key size (logarithm of the number of values that anyskID can take on) ism′ = 1.
4. The encapsulated-key size isv = 1.

Proof. We show correctness, valid/invalid ciphertext indistinguishability and universality separately.

I. CORRECTNESSLet S ∈ QR(N) ands be an arbitrary square-root ofS. LetR ∈ J (N). Let g, f, f , τ be outputs of
Q(N, u,R, S), which results in the sameτ as that output byQ(N, u, 1, S) by property 6 ofQ. To show correctness, it
suffices to show that:

• If R ∈ QR(N) thenk =
(

g(s)
N

)
=
(

f(r)
N

)
for any square-rootr of R.

• If R 6∈ QR(N) thenk =
(

g(s)
N

)
=
(

τ(s)
N

)(
f(r
N

)
wherer is any square-root ofuR.

For the first bullet, we getf(r)g(s) ∈ QR(N) by property 1 of the algorithmQ (Lemma C.3) and so correctness follows
by Lemma C.1. For the second bullet, we getf(r)g(s)τ(s) ∈ QR(N) by property 2 of the algorithmQ. Correctness
then follows by Lemma C.1.

II. VALID /INVALID CIPHERTEXT INDISTINGUISHABILITY Assume that there is a PPT adversaryA that distinguishes
valid and invalid ciphertexts with non-negligible probability. We useA to construct an adversaryB for the IQR as-
sumption. Essentially,B gets oracle access to some oracleO which is eitherOQR

λ orONQR
λ . As a first step,B receives

(N, u, S) from its oracle. ThenB simulates the valid/invalid ciphertext indistinguishability game forA as follows:

Key Setup: Givempk = (N, u,H) to the adversaryA.
Test Stage 1:For each query toID ∈ {0, 1}∗, the adversaryB submitsID to its oracleO and receives an outputr. It

then outputs eitherr or−r depending on the which one is smaller inZ.
Challenge Stage:No matter what the challengeID is, chooseb← {±1} and give(S, b) toA.
Test Stage 2:Same as Test Stage 1.

At the endB outputs whateverA does. It is easy to see the the key setup, and the test stages 1,2, are simulated correctly.
For the challenge phase:
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• If the oracleO is ONQR
λ then the ciphertextc = (S, b) is uniform over(J (N) \ QR(N), {±1}), which is the

same as when the challenger samplesc← Encap∗(ID).
• If the oracleO isOQR

λ then the ciphertextc = (S, b) is uniform over(QR(N), {±1}). We claim this is the same

as when the challenger samplesc ← Encap(ID), whereS ← QR(N) andb =
(

τ(s)
N

)
for a random square-root

s of S. This follows by property 5 ofQ in conjunction with Lemma C.2 which tells us that, for a fixedS, b is
uniformly random over{±1} over a random square-roots of S.

Therefore the distinguishing advantage ofA in the valid/invalid ciphertext indistinguishability game is the same as
the advantage ofB in the IQR game, which proved the theorem.

III. U NIVERSALITY For any fixedmpk = (N, u,H),msk = (p, q), ID there is a fixedR = H(ID) and there are
only two possibilities forskID = r ∈ {r1, r2}. For anyc = (S, b) output byEncap∗(ID) we claim that, ifk1 =
Decap(c, r1), k2 = Decap(c, r2) thenk1 6= k2. We do this in two cases:

CaseR ∈ QR(N): Thenk1 =
(

f(r1)
N

)
, k2 =

(
f(r2)

N

)
wheref is output byQ(N, u,R, S). By property 3 ofQ, we

havef(r)f(−r)S ∈ QR(N) for all square rootsr of R. By Lemma C.2, sinceS 6∈ QR(N), andr1 6= −r2, we
see thatk1 6= k2.

CaseuR ∈ QR(N): Thenk1 = b
(

f(r1)
N

)
, k2 = b

(
f(r2)

N

)
wheref is output byQ(N, u,R, S). By property 4 ofQ,

we havef(r)f(−r)S ∈ QR(N) for all square rootsr of uR. By Lemma C.2, sinceS 6∈ QR(N), andr1 6= −r2,

we see that
(

f(r1)
N

)
6=
(

f(r2)
N

)
and sok1 6= k2.

Therefore, we get0-universalityand, sincer chosen uniformly from{r1, r2}, we also getsmoothness. Lastly, we see
that the min-entropy ofr is exactly 1 bit. �

D A Construction of IB-HPS Based on Lattices

As this section will use lattice and LWE based tools we keep to the standards common in these areas. In particular we
usen to denote the security parameter. We will also use the following (slight abuse of) notation. For setS we write
x ← S to denote sampling variablex uniformly fromS. Finally for random variabley and we writey ∼ D to denote
thaty is distributed according toD.

D.1 Learning with Errors

Following [GPV08] we briefly review some important definitions and facts concerninglearning with errors(LWE). For
fixed integersn andq = q(n), vectors ∈ Z

n
q and error distributionχ = χ(n) overZq define the LWE oracleAs,χ as

follows. At each invocationAs,χ samplesa ← Z
n
q and error termx ← χ and outputs(a,aT s + x). For s ← Z

n
q the

decision variant (DLWEq,n,χ) is the problem of distinguishing between oracle access toAs,χ and access to an oracle
which simply samplesUZn

q×Zq
. The LWEq,n,χ on the other hand is defined as the problem of findings when given

oracle access toAq,χ.

Gaussian Error Distribution. To base our construction on a concrete DLWE assumption we must specify aparticular
error distribution. We writeΨα to denote the Gaussian (normal) distribution with mean0 and varianceα2. The error
distribution we are interested in (which we denote withΨα) is called theone-dimensional discrete Gaussian overZq

for some positive integerq. It can be sampled by selectingx ← Ψα and outputting⌈q · x⌋ mod q. We will also need
the standard tail inequality for the continuous Gaussian. That is ifx ∼ Ψα andt > 1 then

Pr[|x| > tα] ≤ 1

t
e

−t2

2 (4)

23



Reductions to Lattice Problems. The security of our scheme is based on the hardness of average-caseDLWE. Ideally
we would like use the results of [Reg05, Pei09] to further reduce to some worst case lattice problem such as the GapSVP
or one of it’s variants. While the reduction from average-case DLWE to worst-case apply directly, the reduction from
worst-case DLWE to worst-case LWE runs in time polynomial in length of the primefactors ofq (ref. [Pei09], Lemma
3.3). Yet for our construction we will requireq = 2ω(log n) to be prime. Thus we must make an exponential hardness
assumption for the worst-case LWE problem which in turn implies a similar assumption for GapSVP. Note that for
q ≥ 2n/2 such a hardness assumption then suffices for a classic reduction to the standard GapSVP problem while for
smallerq [Pei09] shows a classic probabilistic poly-time reduction to theζ-to-γ-GapSVP variant.

D.2 Preimage Sampleable Functions

We will use the preimage sampleable functions of [GPV08]. That is the set offunctionsfA, indexed by matrixA ∈
Z

n×m
q , which map vectorx ∈ Z

m
q to fA(x) = Ax ∈ Z

n
q . Further the trapdoor sampling algorithms of [Ajt99, AP09]

efficiently generate an (almost) uniformA ∈ Z
n×m
q together with a trapdoorT which is used to invertfA.

Of particular interest to us is the preimage distributione ∼ Dm,r (overZm) which the authors of [GPV08] describe
in detail. For the purpose of our construction we will require a special case of a Lemma 4.4 of [MR04b] which bounds
the length ofe← Dm,r for large enoughr together with Lemma 5.3 of [GPV08] which describes a concrete bound on
r for our choice of lattices (i.e. ones defined as the null space of left multiplication by a matrixA as defined above).

Lemma D.1 Letm ≥ 2n log q, r > ω(
√

logm) andε > 0. Then we have:

Pr
e∼Dm,r

[
‖e‖ > r

√
m
]
≤ 1 + ε

1− ε · 2
−m

We will also need their efficient probabilistic algorithmSampleISIS which uses trapdoorT to sample from the
preimage off−1

A
(e) such that for random variablese ∼ Dm,r andy ∼ UZn

q

SD [(e, fA(e)) , (SampleISIS (y) ,y)] ≤ negl(n).

Finally we will need a lower bound on the min-entropy the output ofSampleISIS. For general lattices, Lemma 2.11
of [PR06] provides such a bound but we will use the refined version of[Vai09]. For our case it is summarized in the
following lemma:

Lemma D.2 For constantc > 0, fixedA andT as generated bySetup and fixedu ∈ Z
n
q let e← SampleISIS(u). The

H∞(e) ≥ m(log(r)− log(mc)).

D.3 The Construction

We now describe a Universal Identity-Based Hash Proof System based on the DLWE which is a slight variant of the
IBE scheme in [GPV08] which is in turn based on a variant of the encryptionscheme of [Reg05].

Letm andn be positive integers,q be a prime. Further letχ be an LWE error distribution. Finally letH : {0, 1}∗ −→ Z
n
q be

a hash function mapping identities to integer vectors.

Setup() : Run the trapdoor sampling algorithm of [Ajt99, AP09] to generateA ∈ Z
n×m
q together with a trapdoorT. If the

columns ofA do not generateZn
q repeat. Otherwise setmpk = A andmsk = T.

KeyGen(ID,msk) : Setu = H(ID). Usemsk = T to runSampleISIS samplinge ∈ f−1
A

(u). OutputskID = e.

Encap(ID) : Setu = H(ID). Samples ← Z
n
q , error vectorx ← χm and integerv ← Zq. Computep = AT s + x ∈ Z

m
q .

If
∣∣v − uT s

∣∣ ≤ q−1
4 then setk = 1 else setk = 0. Output ciphertextc = (p, v) and keyk.

Encap∗(ID) : Samplep← Z
m
q andv ← Zq. Output ciphertextc = (p, v).

Decap(c, skID) : Parsec = (p, v) and sete = skID. If
∣∣v − eT p

∣∣ ≤ q−1
4 then outputk = 1. Otherwise outputk = 0.
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The construction is parametrized by anε ∈ (0, 1). The reason being that later we will use theIB-HPS to create a
leakage resilient IBE which supports leakage of up to a1− ε fraction of the secret key. Thus most of the settings of our
parameters will depend on thisε.

The remainder of this section focuses on proving the following theorem.

Theorem D.1 Letε ∈ (0, 1) be a constant andn be the security parameter. Let primeq = 2ω(log n),m ≥ 2n log q and

let r ≥ m 1
ε . Letα ≤ 1

r
√

2mn
. Then, under the DLWEq,Ψα

assumption, the following holds in the Random Oracle model
for the above construction:

1. It is an(m∗, ρ)-UniversalIB-HPS for m∗ = 1−ε2

ε m log(m) and forρ = 1
2 + 1

2q2 .

2. The actual key size (number of bits needed to representskID) is m̂ = 1+ε
ε m log(m).

3. As a consequencem
∗

m̂ ≥ 1− ε.

Proof. The non-trivial part of the theorem is the first statement. It’s proof has been broken up into three lemmata; one
for each of the three following three properties of a UniversalIB-HPS: correctness, indistinguishability and universality.

Lemma D.3 (Correctness)For the choice of parameters above, the construction iscorrect.

Proof. The crux of showing correctness is captured by the following claim. Intuitively it tells us that the distance
betweenuT s which is used to compute the value ofk during encapsulation is very close to the value ofeTp which
is used to guessk during decapsulation. Indeed, using this claim we can then argue that the error this discrepancy
introduces is small enough to only have a negligible probability of causing decapsulation to fail at guessingk correctly.

Claim D.1 For honestly generated parameters, secret key and encapsulation in the above scheme there exists a poly-
nomialp such that

∣∣eTp− uT s
∣∣ ≥ p(n) with at most negligible probability.

Proof. Essentially we follow the proof of Lemma 8.2 in [GPV08] however for a different choice of parameters which
results in a distance negligible inn. We first note thateTp − uT s = eT (AT s + x) − uT s = eTx. Thus we are
interested in bounding the length ofeTx.

By definitionχ = Ψα and soxi = ⌈q · yi⌋ mod q whereyi ← Ψα independently of allyj for j 6= i. Thus
||x− y|| ≤ √m/2 and we get

|eTx| = |〈e,x〉|
= |〈e,y + (x− y)〉|
≤ |〈e,y〉|+ |〈e,x− y〉|
≤ |〈e,y〉|+

√
m/2 · r

√
m

= |〈e,y〉|+ (rm)/2

where the 4-th line follows from Cauchy-Schwarz inequality.
It remains to estimate the sizeeTy. The components ofy are independently normally distributed therefor(yTe) ∼

Ψ||e||α. By Lemma D.1 we have||e||α ≤ r
√
m · α ≤ 1√

2n
with overwhelming probability over the choice ofe and

for our constraint onα. Then the standard tail inequality (equation 4) witht =
√

2n implies thatPr
[
||eTy|| > 1

]
≤

negl(n). �

For correctness it remains to show that with at most negligible probabilityDecap will output a bad guess fork. This
happens if and only if exactly one of the valueseTp anduT s is further thenq−1

4 from v. Let d =
∣∣eTp− uT s

∣∣, then
for fixede,p,u ands there are2d values ofv such thatDecap produces a bad guess fork. By Claim D.1 we have that
d is a polynomial inn and so sinceq = 2ω(log n) the probability2d/q that an independentv ← Zq takes on one of those
values in a negligible function inn. �

Lemma D.4 (Indistinguishability) For our choice of parameters, the construction satisfiesvalid/invalid ciphertext
indistinguishability.
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Proof. We need to show that for fixede the ciphertexts output byEncap andEncap∗ have indistinguishable distribu-
tions. We do this by reducing to the DLWEq,n,χ assumption. That is we give a black-box construction of an efficient
DLWE adversaryB from any distinguishability adversaryA such thatB’s advantage in the DLWE game is negligibly
close toA’s advantage at distinguishing outputs ofEncap from those ofEncap∗.

DLWE attackerB is given access toA (which expects to play the indistinguishability attack game) and to an oracle
O which returns elements(a, b) ∈ Z

m
q ×Zq. B’s goal is to decide whetherO is an LWE oracle or not. We now describe

B’s behavior during each of the steps of the indistinguishability attack game.

Setup: B makesm queries toO receiving{(ai, bi)}i∈[m]. It sets thei-th column of matrixA ∈ Z
n×m
q to ai and gives

mpk = A toA.

Test Stage 1:B initializes an empty table of triples of the form(ID,u, e) ∈ {0, 1}∗ × Z
n
q × Z

m
q . For each extraction

query ID made byA, B first checks whether a triple of the form(ID, ·, ·) is already in the table. If so then it
returnsskID = u for the corresponding value ofu in the triple. If not thenB selects a freshe ← DZm,r, stores
(ID,Ae, e) and returnsskID = e toB.

Random Oracle Calls: Upon receiving callH(ID), B checks if it has already stored a triple forID. If so it returns the
correspondingu. Otherwise it samples a freshe← DZm,r, stores(ID,Ae, e) and returnsAe as a response toA.

Challenge Stage:B returns the stringc = b1b2 · · · bm as a challenge ciphertext.

Test Stage 2:B answers key extraction and random oracle queries as in Test Stage 1.

Output: B receivesb′ fromA and forwards it the the DLWE challenger.

It remains to argue the correctness ofB. First we point out that the view ofA is identical to that of the real
indistinguishability attack game. This follows from the fact that the distribution ofA in the real game is statistically
close to uniform while both types of oraclesO output truly uniformA. Further the joint distributions of(H, ID, e) are
indistinguishable by the correctness of theSampleISIS algorithm10.

Next we analyze the distribution of challenge ciphertextc in the game run byB. WhenO = Aq,χ thenc is distributed
exactly like the output ofEncap(ID∗). On the other hand, whenO samplesUZn

q×Zq
, thenc is distributed exactly like

the output ofEncap∗(ID∗). Therefor the game run byB essentially imitates the gameA expects to play and the bitb′

output byB depends on which type of oracleA has access to. �

Lemma D.5 (Universality) For the choice of parameters above the construction is(m∗, ρ)-universal for
m∗ = 1−ε2

ε m log(m) andρ = 1
2 + 1

2q2 .

Proof. To show(m∗, ρ)-universality we need two properties. First, for fixedA,H11 andu = H(ID) we need to show
that the min-entropy ofe as output byKeyGen(ID,A) is at leastm∗ ≥ 1−ε2

ε m log(m). Setc = ε andr ≥ m 1
ε then the

result follows directly from Lemma D.2.
To show the second property fixID ande 6= e′ with H(ID) = Ae = Ae′. We wish to compute

ρ = Pr
c←Encap∗(ID)

[
Decap(c, e) = Decap(c, e′)

]

This is done in two steps. Recall thatc = (p, v). For random variablep define variableD =
∣∣eTp− e′Tp

∣∣. First we
show thatD ∼ UZq

. Then we use that fact to explicitly calculate the collision probabilityρ of Decap.
Let i ∈ [m] be the index of a component wheree ande′ differ. Fix all pj with j 6= i and let

a =

∣∣∣∣∣∣

∑

j 6=i

(ej − e′j)pj

∣∣∣∣∣∣

10In particular the upper-bound on||T|| from [AP09] implies that our choice ofr is enough to satisfy the conditions ofSampleISIS.
11Note that for the proof of Universality we do not need to modelH as a Random Oracle.
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Now asq is prime addition (ofa) in Zq is a bijection and multiplication by the non-zero value(ei−e′i) is also a bijection
in Zq. Thus there is a bijection between values taken bypi ∼ UZq

andD implyingD ∼ UZq
.

We are now ready to calculate the value ofρ. A collision occurs if and only if exactly one of the two quantities
eTp ande′Tp is more thenq−1

4 from v. Let ρd be the collision probability for a given distanceD = d, then for
d ∈ [(q − 1)/2] we haveρd = 1− (2d)/q becausev ← Zq is independent ofe, e′ andp. Then we can have:

ρ =

q−1∑

d=0

ρd · Pr[D = d] =
1

q
+ 2

(q−1)/2∑

d=1

ρd · Pr[D = d] =
1

q
+

2

q

(q−1)/2∑

d=1

ρd

=
1

q
+

2

q

(q−1)/2∑

d=1

1− 2d

q
=

1

q
+

2

q


q − 1

2
− 2

q

(q−1)/2∑

d=1

d




=
1

2
+

1

2q2

�

Taken together the previous three lemmata conclude the proof of the first statement of Theorem D.1.
The second statement follows directly form Lemma D.1. If the norm ofe is bounded byr

√
m (with overwhelming

probability) then so too of course, are it’s components. Thuslog(r) + log(m) bits suffice to represent each component
of which there arem. In particular forr ≥ m 1

ε no more then̂m = 1+ε
ε m log(m) bits are needed.

Finally the third statement of the theorem follows from the calculation:

m∗

m̂
=

1−ε2

ε m log(m)
1+ε

ε m log(m)
=

(1− ε)(1 + ε)

1 + ε
= 1− ε

�

E Approximate Hashing and Approximate Leftover-Hash Lemma

E.1 Background.

First, we review several standard notions which we will need in the remainder of the section.

Definition E.1 Theq-ary Shannon entropy function is defined asHq(x)
def
= x logq(q−1)−x logq(x)−(1−x) logq(1−x).

Lemma E.1 (Volume of Hamming Ball) Letx ∈ Σn be an arbitrary value, whereΣ is some alphabet of size|Σ| = q,

and letδ be an arbitrary value in the range1/n < δ ≤ 1 − 1/q. DefineVq(n, δ, x)
def
= |{x′ ∈ Σn : dH(x, x′) ≤ δn}|

to be the volume of the hamming ball of radiusδn centered atx. Then there is a functionVq(n, δ) such thatVq(n, δ) =
Vq(n, δ, x) for all x ∈ Σn, andVq(n, δ) ≤ qHq(δ)n.

See e.g. [Sho05] for the following Lemma.

Lemma E.2 (Collision Probability and Statistical Distance) SupposeX is a random variable that takes values from
a setΠ of size|Π| = p. We define thecollision probabilityβ

def
= Pr[x = x′] wherex, x′ are independently sampled

according toX. ThenSD(X,UΠ) ≤ 1
2

√
pβ − 1.

Definition E.2 (Hitter) Let Hit : {0, 1}w → [n]t be a function and interpret the outputHit(e) as a sample oft
elements in[n]. We say thatHit(e) hitsS ⊆ [n] if it includes at least one member ofS. A functionHit is a (δ, ψ)-hitter
if for every subsetS ⊆ [n] of size|S| ≥ δn, Pre←Uw

[Hit(e) hitsS] ≥ (1− ψ).

A simple hitter construction involves choosingt uniformly random and independent elements of[n]. This results
in a (δ, ψ)-hitter with ψ = (δ)t for any0 < δ < 1. Alternatively, for any0 < δ < 1, 0 < ψ we get a(δ, ψ)-hitter
with sample complexityt = O(log(1/ψ)/δ) andrandomness complexityw = t log(n). Interestingly, the randomness
complexity can be reduced significantly by using a more clever construction.Indeed, the survey of Goldreich [Gol97]
shows how to achieve the following parameters using a construction based on expander graphs.
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Theorem E.1 ([Gol97]) There exists an efficient ensemble of hittersHit : {0, 1}w → [n]t such that, for any integer
n and anyδ, ψ with 0 < δ < 1 , 0 < ψ, we get sample complexityt = O(log(1/ψ)/δ) and randomness complexity
w = log(n) + 3 log(1/ψ).

E.2 Definition and Results.

We define a new notion of universal hashing, which relaxesρ-universality, byonly insisting that values which are far
from each other (over the Hamming metric) are unlikely to collide.

Definition E.3 (Approximately Universal Hashing) A function-familyH, consisting of functionsh : Σn → Π, is
called(δ, τ)-approximatelyuniversal if for allx, x′ ∈ Σn with dH(x, x′) ≥ δn we havePrh←H[h(x) = h(x′)] ≤ τ .

Now we are ready to prove a generalized version of the leftover-hash lemma for approximate universal hashing.

Theorem E.2 (Approximate Leftover-Hash Lemma) Assume that a familyF of functionsf : Σn → Π is (δ, τ)-

approximately universal. Defineq
def
= |Σ|, v def

= log(|Π|). Letδ be in the range1/n ≤ δ ≤ (1− 1
q ). LetX,Z be arbitrary

random variables whereX is distributed overΣn andm
def
= H̃∞(X|Z). LetF be uniform overF . Then

SD( (F,Z, F (X)) , (F,Z, UΠ) ) ≤ 1

2

√
2Hq(δ)n log(q)+v−m + τ2v − 1

whereHq is q-ary Shannon entropy function. In particular, the statistical distance above is at mostε as long as:

m ≥ Hq(δ)n log(q) + v + 2 log (1/ε)− 1 and τ ≤ 1

2v
(1 + ε2).

Proof. For each valuez in the support ofZ, define the random variableXz = (X | Z = z). We start by computing
the collision probabilityβ

def
= Pr[(f, f(x)) = (f ′, f ′(x′))] wheref, f ′ are independently sampled fromF andx, x′ are

independently sampled according toXz. Then

β = Pr[(f, f(x)) = (f ′, f ′(x′))] = Pr[f = f ′] Pr[f(x) = f(x′)]

≤ 1

|H|
(
Pr[dH(x, x′) < δn] + τ

)

≤ 1

|H|

(
Vq(n, δ)

2H∞(Xz)
+ τ

)
≤ 1

|H|

(
qHq(δ)n

2H∞(Xz)
+ τ

)
(5)

≤ 1

|H|2v

(
2Hq(δ)n log(q)+v−H∞(Xz) + τ2v

)

where (5) follows by Lemma E.1. We now apply Lemma E.2 to the random variable(F, F (Xz)), which gives us:

SD( (F, F (Xz)) , (F,UΠ) ) ≤ 1

2

√
2Hq(δ)n log(q)+v−H∞(Xz) + τ2v − 1

Now, by averaging overz ← Z, we get:

SD( (F,Z, F (X)) , (F,Z, UΠ) ) = Ez [ SD( (F, F (Xz)) , (F,UΠ) )]

≤ Ez

[
1

2

√
2Hq(δ)n log(q)+v−H∞(Xz) + τ2v − 1

]

≤ 1

2

√
Ez

[
2Hq(δ)n log(q)+v−H∞(Xz)

]
+ τ2v − 1

=
1

2

√
2Hq(δ)n log(q)+v− eH∞(X|Z) + τ2v − 1

=
1

2

√
2Hq(δ)n log(q)+v−m + τ2v − 1
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which proves the first part of theorem. For the second part of the theorem,SD( (F,Z, F (X)) , (F,Z, UΠ) ) ≤ ε if

ε ≥ 1

2

√
2 max

(
2Hq(δ)n log(q)+v−m , τ2v − 1

)

which is satisfied by the conditions of the second part of the theorem. �

E.3 Analysis of a Concrete Approximately Universal Function.

We now explore a concrete example of anapproximately universal hash functionwith locality, which will be used in
our construction PKE in the BRM. LetΣ,Ψ be some alphabets, and letF be a family ofρ-universal hash functions
f : Σ→ Ψ. For integersn, t, v > 0 we define the familyH(n,t,v) of hash functionh : Σn → {0, 1}v as follows:

• Eachh inH(n,t,v) is uniquely described by:

1. A vectorr = (r1, . . . , rt) of (not necessarily distinct) indicesri ∈ [n].

2. A vectorf of functions(f1, . . . , ft) wherefi ∈ F .

3. A functiong ∈ G, whereG is some(1/2v)-universal-hash function family of functionsg : Ψt → {0, 1}v.

In particular, a randomh fromH consists of a uniformly random choice of(r, f , g) ∈R ([n]t,F t,G).

• Forx ∈ Σn, we defineh(x) = g( ( f1(x[r1]), . . . , ft(x[rt]) ) ).

The familyH(n,t,v) will be useful as it will form the backbone of our construction of PKE in theBRM. Note that,
although the above definition ofH might appear overly complicated and unnatural, it arises from our need to work
with an existingIB-HPS (which, in turn, is delicately designed based on some underlying computational assumptions)
and thus we do not, in general, have the freedom to choose all the components ofH. In particular, the alphabetsΣ,Ψ
and the function familyF will be a part of the underlyingIB-HPS and thus not in our control, while we will have the
freedom to choosen, t, v.

Lemma E.3 Let Σ,Ψ be alphabets, and letF be a family ofρ-universal hash functionsf : Σ → Ψ. For integers
n, t, v > 0 let H(n,t,v) be the family of functionsh : Σn → {0, 1}v as defined above. Then the familyH is (δ, τ)-
approximately universal for anyδ > 0 with τ ≤ (1− δ(1− ρ))t + 1/2v.

Proof. For anyx, x′ ∈ Σn wheredH(x, x′) ≥ δn, we have

Pr
h←H

[h(x) = h(x′)] ≤ Pr
h←H

[ ( f1(x[r1]), . . . , ft(x[rt] ) = ( f1(x
′[r1]), . . . , ft(x

′[rt] ) ] + 1/2v

≤
t∑

i=0

(
Pr[dH( (x[r1], . . . , x[rt]) , (x′[r1], . . . , x

′[r′t]) ) = i]ρi
)

+ 1/2v

≤
t∑

i=0

[(
t

i

)
δi(1− δ)t−iρi

]
+ 1/2v

≤ (1− δ(1− ρ))t + 1/2v

�

Corollary E.1 LetΣ,Ψ be alphabets where|Σ| = q andF be aρ-universal family of hash functions. Letλ, n, t, v > 0
be integers, and1/n < δ < 1/2. LetH be uniform overH(n,t,v) andX,Z be arbitrary correlated random variables
whereX is distributed overΣn. ThenSD( (X,H,Z,H(X)) , (X,H,Z,Uv) ) ≤ 2−λ as long as:

t ≥ (v + 2λ)/(δ(1− ρ)) , H̃∞(X|Z) ≥ Hq(δ)n log(q) + v + 2λ− 1.

In particular, for any constantsε > 0 andρ < 1, there exists some constantc ≥ 0, such that for anyq ≥ 2, v ≥ 1,
t ≥ c(v + λ), n ≥ 0 the familyH(n,t,v) has the following property:

If H̃∞(X|Z) ≥ εn log(q) + v + 2λ then SD( (X,H,Z,H(X)) , (X,H,Z,Uv) ) ≤ 2−λ

whereH is uniform overH(n,t,v).
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E.4 An Alternative Approximately Universal Function (For An onymous Encapsulation Scheme)

We also explore another example, which is used by our “short ciphertext”scheme based on “anonymous encapsulation”.
Let Σ,Ψ be some alphabets, and letF be a family ofρ-universal hash functionsf : Σ→ Ψ. LetHit : {0, 1}w ← [n]t

be a(δ, τ)-hitter andG be a family ofγ-universal hash functionsg : Ψt → {0, 1}v. For integersn, v > 0 we define
the familyH∗(n,v) of hash functionh : Σn → {0, 1}v as follows:

• Eachh inH∗(n,v) is uniquely described by:

1. A seede ∈ {0, 1}w for the hitter.

2. A functionf ∈ F .

3. A functiong ∈ G.

In particular, a randomh fromH∗(n,v) consists of a uniformly random choice of(e, f, g) ∈ ({0, 1}w,F ,G).

• Forx ∈ Σn, we defineh(x) = g( ( f(x[r1]), . . . , f(x[rt]) ) ) where(r1, . . . , rt) = Hit(e).

Lemma E.4 LetΣ,Ψ be alphabets, and letF be a family ofρ-universal hash functionsf : Σ→ Ψ. LetHit be a(δ, ψ)
hitter andG be aγ-universal hash family. For integersn, v > 0 letH∗(n,v) be the family of functionsh : Σn → {0, 1}v
as defined above. Then the familyH∗(n,v) is (δ, τ)-approximately universal for anyδ > 0 with τ ≤ ψ + ρ+ γ.

Proof. For anyx, x′ ∈ Σn wheredH(x, x′) ≥ δn, we have

Pr
h←H

[h(x) = h(x′)] ≤ Pr
h←H

[ ( f(x[r1]), . . . , f(x[rt] ) = ( f(x′[r1]), . . . , f(x′[rt] ) ] + γ

≤ Pr
h←H

[ ( x[r1], . . . , x[rt] ) = ( x′[r1], . . . , x
′[rt] ) ] + ρ+ γ

≤ ψ + ρ+ γ

where(r1, . . . , rt) = Hit(e) andh = (e, g, f). �

Corollary E.2 For any familyF of 0-universal functions, any constantε > 0, anyq ≥ 2, any polynomialsv(λ), n(λ),
there exists some some instantiation of the hitterHit and the familyG so that the following holds about the resulting
familyH∗(n,v). For anyX,Z

If H̃∞(X|Z) ≥ εn log(q) + v + Ω(λ) then SD( (X,H,Z,H(X)) , (X,H,Z,Uv) ) ≤ 2−Ω(λ)

whereH is uniform overH∗(n,v). Moreover, the description size ofh ∈ H∗n,v isO(v+λ)+|f |where|f | is the description
size off ∈ F . Lastly, the locality ofh ∈ H∗n,v (the number ofxi accessed) ist = O(v + λ).

F Chosen-Ciphertext Security

F.1 A Leakage-Resilient CCA-Secure IBE

Following the approach presented in Appendix B, we show that the CCA-secure variant of Gentry’s IBE scheme
[Gen06] can used for constructing an IBE scheme that is resilient to any leakage of length roughlyℓ = s/6 bits,
wheres is the length of the secret key of each identity. We begin by providing a formal definition of a leakage-resilient
IBE, and then present our construction.

F.1.1 Definition

The following definition is a natural generalization of the definition presentedin Section 4. Given a security parameter
λ and a leakage parameterℓ, we define the following game between an adversaryA and a challenger:
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IBE-SS-CCA(λ, ℓ)

Setup: The challenger computes(mpk,msk)← Setup(1λ) and givesmpk to the adversaryA.

Test Stage 1: The adversaryA can adaptively ask the challenger for the following queries:

Secret-Key Queries: On inputID ∈ ID, the challenger replies withskID.
Leakage Queries: On inputID ∈ ID and a PPT functionf : {0, 1}∗ → {0, 1}, the challenger replies withf(skID).
Decryption Queries: On inputID ∈ ID and a ciphertextc, the challenger replies withDecrypt(c, skID).

Challenge Stage:The adversary selects two messagesm0,m1 ∈ M and a challenge identityID∗ ∈ ID which never ap-
peared in a secret-key query and appeared in at mostℓ leakage queries. The challenger choosesb← {0, 1} uniformly
at random, computesc∗ ← Encrypt(ID∗,mb), and givesc∗ to the adversaryA.

Test Stage 2: The adversary can adaptively submit secret-key queries with anyID 6= ID∗, and decryption queries with any
(ID, c) 6= (ID∗, c∗).

Output: The adversaryA outputs a bitb′ ∈ {0, 1}. We say that the adversarywins the game ifb′ = b.

Note: In test stages1 and2 the challenger computesskID ← KeyGen(ID,msk) the first time thatID is queried (in a secret-key,
leakage, or decryption query) and responds to all future queries on the sameID with the sameskID.

For any adversaryA, its advantage in the above game with an identity-based encryption schemeIBE is defined as
AdvIBE-SS-CCA

IBE,A (λ, ℓ)
def
=
∣∣Pr[A wins ]− 1

2

∣∣. We say that an identity-based encryption schemeIBE is ℓ-leakage-resilient

under a chosen-ciphertext attackif for any PPT adversaryA it holds thatAdvIBE-SS-CCA
IBE,A (λ, ℓ) is negligible inλ.

F.1.2 The Construction

Let G andGT be cyclic groups of prime orderp, and lete : G×G→ GT be a bilinear map. LetExt : GT ×{0, 1}d →
{0, 1}m be an average-case(log p−ℓ, ε)-strong extractor for some negligibleε = ε(λ), whereℓ ≤ log p−ω(log λ)−m,
and letH = {H : G×GT×{0, 1}d×{0, 1}m → Zp} be a collection of universal one-way hash functions. The following
describes an identity-based encryption schemeIBE = (Setup,KeyGen,Encrypt,Decrypt):

Setup: Choose random generatorsg, h1, h2, h3 ∈ G, a randomα ∈ Zp, and a sample a functionH ∈ H. Let g1 = gα and
output

mpk = (g, g1, h1, h2, h3,H), msk = α .

Key generation: On input an identityID ∈ Zp \ {α} samplerID,i ∈ Zp uniformly at random fori ∈ {1, 2, 3}, and output
the secret keyskID = {(rID,i, hID,i)}3i=1 where

hID,i =
(
hig

−rID,i
)1/(α−ID)

.

If ID = α then the algorithm aborts without producing a secret key.

Encryption: On input a messagem ∈ {0, 1}m and an identityID ∈ Zp, chooser ∈ Zp ands ∈ {0, 1}d independently and
uniformly at random, and output the ciphertextc = (u, v, s, w, y), where:

u = gr
1g

−r·ID, v = e(g, g)r, w = Ext (e(g, h1)
r, s)⊕m, y = e(g, h2)

re(g, h3)
rβ ,

andβ = H(u, v, s, w).

Decryption: On input a ciphertext(u, v, s, w, y) and a secret keyskID, if y = e(u, hID,2hID,3
β)vrID,2+rID,3β whereβ =

H(u, v, s, w), then outputw ⊕ Ext (e(u, hID,1)v
rID,1 , s), and otherwise output⊥.

Theorem F.1 Fix any polynomialsqID, qL, qC , and letq = qID + qL + 3. Assuming the hardness of theq-TABDHE
problem,AdvIBE-SS-CCA

IBE,A (λ, ℓ) is negligible for any PPT adversaryA submitting at mostqID secret-key queries,qL
leakage queries, andqC decryption queries.

Proof. We show that any efficient adversaryA for whichAdvIBE-SS-CCA
IBE,A (λ, ℓ) is noticeable can be used to either solve

theq-TABDHE problem with a noticeable advantage or the break the security of the collectionH of universal one-way
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hash functions. LetD be a distinguisher for theq-TABDHE problem that receives as input a challenge of the form(
g′, g′q+2, g, g1, . . . , gq, Z

)
(recall thatgi = g(αi), g′q+2 = g′(α

q+2), and thatZ is eithere(gq+1, g
′) or a random element

of GT ), and simulates the gameIBE-SS-CCA(λ, ℓ) to the adversaryA as follows:

• Setup: For i ∈ {1, 2, 3} the distinguisherD generates a random polynomialfi(x) ∈ Zp[x] of degreeq, and
setshi = gfi(α) (note thathi is efficiently computable fromg, g1, . . . , gq). In addition,D samplesH ∈ H, and
outputsmpk = (g, g1, h1, h2, h3, H).

• Secret-key queries:If A ever submits a secret-key query withID = α thenD solves theq-TABDHE problem.
Otherwise, wheneverA submits a secret-key query withID 6= α, for everyi ∈ {1, 2, 3} let FID,i(x) denote the
(q − 1)-degree polynomial(fi(x)− fi(ID))/(x− ID), andD outputsskID = {(rID,i, hID,i)}3i=1 where

rID,i = fi(ID), hID,i = gFID,i(α) .

• Leakage queries: If A ever submits a leakage query withID = α thenD solves theq-TABDHE problem.
Otherwise, wheneverA submits a leakage query withID 6= α thenD computesskID as in the simulation of
secret-key queries, and outputs the value of the given leakage functionwhen applied toskID.

• Decryption queries: If A ever submits a decryption query(ID, c) with ID = α thenD solves theq-TABDHE
problem. Otherwise, wheneverA submits a decryption query withID 6= α thenD computesskID as in the
simulation of secret-key queries, and outputs the result of the decryption algorithm applied toskID andc.

• Challenge stage:If A submits(ID,m0,m1) such thatID = α thenD solves theq-TABDHE problem. Otherwise,
D choosesb ∈ {0, 1} uniformly at random, and computesskID as in the simulation of secret-key queries. Let
f̄(x) = xq+2, F̄ID(x) = (f̄(x) − f̄(ID))/(x − ID). Then,D choosess ∈ {0, 1}d uniformly at random, and
computes

u = g′f̄(α)−f̄(ID)

v = Z · e
(
g′,

q∏

i=0

gF̄ID,iα
i

)

w = Mb ⊕ Ext (e(u, hID,1)v
rID,1 , s)

y = e(u, hID,2hID,3
β)vrID,2+rID,3β ,

whereF̄ID,i is the coefficient ofxi in F̄ID(x), andβ = H(u, v, s, w). Finally,D outputs the challenge ciphertext
(u, v, s, w, y).

• Output: If A outputsb′ such thatb′ = b thenD outputs1, and otherwiseD outputs0.

In the remainder of the proof we say that a ciphertext(u, v, s, w, y) is well-formedfor identity ID if it holds that
y = e(u, hID,2hID,3

β)vrID,2+rID,3β , whereβ = H(u, v, s, w). Note that by the definition of the decryption algorithm, it
accepts a ciphertext if and only if it is a well-formed ciphertext. In addition, we say that a ciphertext(u, v, s, w, y) is
valid for identity ID if it holds thatv = e(u, g)1/(α−ID), and otherwise we say that it isinvalid.

Without loss of generality we assume that if the adversary submits more thanℓ leakage queries with the same
identity, then in queryℓ+ 1 he is given the secret key of this identity. That is, we replace queryℓ+ 1 with a secret-key
query. This assumption is valid since such an identity cannot be chosen as the challenge identity, and therefore the
adversary can might as well ask for the corresponding secret key. In addition, we assume that the adversary never
submits a decryption query with an identity to which he already knows the secret key. This assumption is valid since the
challenger in theIBE-SS-CCA(λ, ℓ) game simply invokes the decryption algorithm, and this can be simulated internally
by the adversary.

The proof consists of two main arguments. First, we prove that ifZ = e(gq+1, g
′) thenA’s view in the simulated

attack (i.e., in the interaction withD) is statistically-close toA’s view in the actual attack (i.e., in theIBE-SS-CCA(λ, ℓ)
game). Then, we prove that ifZ is random thenA has only a negligible advantage in outputting the bitb. These two
arguments are proved in Lemmata F.1 and F.2, respectively, and conclude the proof of the theorem.
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Lemma F.1 If Z = e(gq+1, g
′) thenA’s view in the simulated attack is statistically-close toA’s view in the actual

attack.

Proof. Assuming that in both the simulated attack and the actual attack all decryption queries with invalid ciphertexts
are rejected, the views of the adversary are identical in both cases. Thisfollows from the fact that the adversary learns
the value off1, f2, andf3 on at mostq − 1 = qID + qL + 1 points (these includeqID secret-key queries,qL leakage
queries, the pointα, and the challenge identity), and that decryption queries with valid ciphertext reveal no information
on the secret key that is used to decrypt the ciphertext. Therefore, thefact that the polynomialsf1, f2, andf3 are of
degreeq implies that the aboveq − 1 values are independent and uniformly distributed from the adversary’spoint of
view (note that here it in fact suffices that these polynomials are of degreeq−2, but we will need them to be of degreeq
to argue that invalid ciphertexts are rejected). In the following claim we argue that in the simulation all invalid ciphertext
are rejected with overwhelming probability. A similar and much simpler claim holds for the actual attack as well (see
[Gen06]).

Claim F.1 If Z = e(gq+1, g
′) then the decryption algorithm rejects all invalid ciphertexts, except with a negligible

probability.

Proof. We bound the probability that the adversary submits a decryption query with an invalid ciphertext and
this query is accepted by the decryption algorithm (i.e., the ciphertext is well-formed). We analyze this probably
by considering the joint distribution of the coefficients of the polynomialsf2 andf3 from the adversary’s point of
view. Denote by(ID, (u, v, s, w, y)) the first decryption query submitted byA with an invalid ciphertext. Denote by
skID = {(rID,i, hID,i)}3i=1 the secret key forID as computed byD when answering this decryption query. In order for the
ciphertext(u, v, s, w, y) to be accepted by the decryption algorithm it must hold thaty = e(u, hID,2hID,3

β)vrID,2+rID,3β ,
whereβ = H(u, v, s, w). By lettingau = logg u, av = loge(g,g) v, anday = loge(g,g) y, this condition can be written
as

ay = au

(
logg hID,2 + β logg hID,3

)
+ av (rID,2 + βrID,3) . (6)

In addition, from the public parameters we obtain the following equations:

logg h1 = (α− ID) logg hID,1 + rID,1 (7)

logg h2 = (α− ID) logg hID,2 + rID,2 (8)

logg h3 = (α− ID) logg hID,3 + rID,3 . (9)

Combining Equations (6), (8), and (9), in order for the ciphertext to be accepted the adversaryA has to computey such
that

ay =
au

α− ID
·
(
logg h2 + β logg h3

)
+

(
av −

au

α− ID

)
· (rID,2 + βrID,3) . (10)

Up to this point the view of the adversary contains the public parameters (which we already took into consideration
in Equations (7), (8), and (9)), the result of at mostqID secret-key queries andqL key-leakage queries, the result of
decryption queries with valid ciphertexts (these do not reveal any more information onf2 andf3), and possibly also the
challenge ciphertext. For the sake of this proof we can even assume that the adversary actually obtains all the secret
keys for which it requested leakage information, the secret key of the challenge identity, and an additionalℓ bits of
leakage on the secret key ofID. Ignoring theseℓ bits of leakage for now, this means that the adversary knows the values
of f2 andf3 at the pointα (this is fromh2 andh3), and at no more thanqID + qL + 1 = q− 2 distinct identities that we
denote byx1, . . . , xq−2. Letting fi(x) =

∑q
j=0 fi,jx

j for i ∈ {2, 3}, andxq−1 = α, the knowledge of the adversary
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can be represented by the following product:

(
f2,0 · · · f2,q f3,0 · · · f3,q

)




1 · · · 1 0 · · · 0
x1 · · · xq−1 0 · · · 0
...

. . .
...

...
. ..

...
xq

1 · · · xq
q−1 0 · · · 0

0 · · · 0 1 · · · 1
0 · · · 0 x1 · · · xq−1
...

. . .
...

...
. ..

...
0 · · · 0 xq

1 · · · xq
q−1




(11)

Let f denote the vector on the left, and letV denote the matrix on the right. Note thatV contains two(q+ 1)× (q− 1)
Vandermonde matrices and its columns are linearly independent. Therefore, fromA’s view, sinceV has four more rows
than columns, the solution space forf is four-dimensional.

Let γID denote the vector(1, ID, . . . , IDq), then Equation (10) can be re-written as follows:

ay =
au

α− ID
·
(
logg h2 + β logg h3

)
+

(
av −

au

α− ID

)
· 〈f , γID||βγID〉 , (12)

where〈·, ·〉 denotes inner-product inZp, andγID||βγID is the vector of length2(q+1) that consists of the concatenation
of γID andβγID. Note that the vectorγID||βγID is not contained in the linear span of the columns of the matrixV , and
therefore even given all the above knowledge the value〈f , γID||βγID〉 is still uniformly distributed inZp. In addition, the
assumption that the ciphertext is invalid is equivalent toav − au/(α− ID) 6= 0, and therefore the valueay is uniformly
distributed as well. Now, assuming that the adversary obtains at mostℓ bits of leakage, then from the adversary’s view
the valueay has average min-entropy at leastlog p − ℓ, and this implies that the probability that this invalid ciphertext
is accepted (i.e., the probability that the adversary computesy that passes the validity test) is at most2ℓ/p.

An almost identical argument holds for all the subsequent invalid decryption queries. The only difference is that
each time the decryption oracle rejects an invalid ciphertext the adversary can rule out one more value off . This
shows that the decryption algorithm accepts thei-th invalid ciphertext with probability at most2ℓ/(p − i + 1). The
claim now follows from the fact that the numberqC of decryption queries is polynomial, and from the restriction
ℓ ≤ log p− ω(log n). �

�

Lemma F.2 If Z is random thenA has only a negligible advantage in outputting the bitb.

Proof. We denote by(u∗, v∗, s∗, w∗, y∗) and ID∗ the challenge ciphertext and challenge identity, respectively, and
denote byCollision the event in which for one ofA’s decryption queries(u, v, s, w, y) it holds that(u, v, s, w) 6=
(u∗, v∗, s∗, w∗) andH(u, v, s, w) = H(u∗, v∗, s∗, w∗). We prove Lemma F.2 in a sequence of three claims. First,
we prove that assuming that the eventCollision does not occur, the decryption algorithm rejects all invalid ciphertexts
except with a negligible probability. Then, we show that if the decryption algorithm rejects all invalid ciphertexts, then
A has only a negligible advantage in outputting the bitb (we note that this is essentially the only part in the proof of
this lemma that differs from [Gen06], given our analysis from the proof of Lemma F.1). Finally, we prove that the event
Collision occurs with only a negligible probability.

Claim F.2 If Z is random and the eventCollision does not occur, then the decryption algorithm rejects all invalid
ciphertexts except with a negligible probability.

Proof. Suppose thatA submits a decryption query(ID, (u, v, s, w, y)) with an invalid ciphertext. Letβ = H(u, v, s, w)
andβ∗ = H(u∗, v∗, s∗, w∗). For any such query that is submitted prior to the challenge phase the analysis of Claim F.1
still applies, since the view of the adversary up to this point is independent of whetherZ is e(gq+1, g

′) or random. For
any such query that is submitted after the challenge phase it holds that(ID, (u, v, s, w, y)) 6= (ID∗, (u∗, v∗, s∗, w∗, y∗)),
and therefore there are three cases to consider:
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Case 1:(u, v, s, w) = (u∗, v∗, s∗, w∗). If ID = ID∗ theny 6= y∗ and therefore the ciphertext(u, v, s, w, y) is not
well-formed for ID and will be rejected. IfID 6= ID∗, then the adversary has to compute they that satisfies
Equation (12) in order for the ciphertext to be well-formed. However, weclaim that the vectorγID||βγID (from
Equation (12)) is linearly independent of the vectorγID∗ ||βγID∗ (from the challenge ciphertext) and the columns
of the matrixV , and therefore (as in the proof of Claim F.1)A cannot generate such ay except with probability
2ℓ/(p− i+ 1), where(u, v, s, w, y) is thei-th invalid ciphertext.

To see that these vectors are indeed linearly independent, denote byV1, . . . , V2q−2 the columns of the ma-
trix V , and suppose that there exist integersa1, . . . , a2q, not all zero, such thata1V1 + · · · + a2q−2V2q−2 +

a2q−1(γID||βγID) + a2q(γID∗ ||βγID∗) is the zero vector inZ2(q+1)
p . Then, eithera1, . . . , aq−1, a2q−1, a2q or

(aq, . . . , a2q−2, a2q−1, a2q) is not all zeros. In the first case, note that the firstq + 1 coordinates of the vec-
torsV1, . . . , Vq−1, ID, ID

∗ form a invertible matrix, but the firstq + 1 coordinates ofa1V1 + · · · + aq−1Vq−1 +

a2q−1(γID||βγID) + a2q(γID∗ ||βγID∗) is the zero vector inZq+1
p and this is not possible. The second case is

similarly analyzed.

Case 2:(u, v, s, w) 6= (u∗, v∗, s∗, w∗) and β = β∗. This case is not possible since we assume that the event
Collision does not occur.

Case 3:(u, v, s, w) 6= (u∗, v∗, s∗, w∗) and β 6= β∗. In this case the adversary has to compute they that satisfies
Equation (12) in order for the ciphertext to be well-formed. IfID 6= ID∗ then the same analysis as in case 1
shows that the adversary has only a negligible probability in computing suchy. If ID = ID∗, then the vectors
V1, . . . , V2q−2, (γID||βγID), (γID∗ ||β∗γID∗) are linearly independent and the same analysis applies.

�

Claim F.3 If Z is random and the decryption algorithm rejects all invalid ciphertexts, thenA has only a negligible
advantage in outputting the bitb.

Proof. We prove the claim by analyzing the distribution ofe(u∗, hID∗,1)v
∗rID∗,1 from the adversary’s point of view.

Ignoring any leakage information from the secret keyskID∗ of the challenge identity for now, we argue thatrID,1 is
uniformly distributed and independent from the adversary’s view: the adversary’s view contains the values off1 on at
mostqID + qC identities, and therefore secret-key queries and leakage queries on any ID 6= ID∗ do not restrictrID,1

due to the degree of the polynomialf1, decryptions of valid ciphertexts do not reveal any additional information, and
all invalid ciphertexts are assumed to be rejected. The adversary may obtainat mostℓ bits of leakage onskID∗ , and
therefore from the adversary’s point of view prior to the challenge phase (and, in particular, before the seeds∗ is chosen)
it holds thatrID∗,1 has average min-entropy at leastlog p − ℓ (note that after the challenge phase the adversary obtains
no information onrID∗,1).

In addition, observe that

e
(
u∗, hID∗,1

)
v∗rID∗,1 = e

(
u∗,
(
h1g
−rID∗,1

)1/(α−ID∗)
)
v∗rID∗,1

= e (u∗, h1)
α−ID∗

(
v∗

e(u∗, g)1/(α−ID∗)

)rID∗,1

,

and sinceZ is completely random and independent of all other parameters then with probability 1 − 1/p it holds
thatv∗ 6= e(u∗, g)1/(α−ID∗). Therefore, with probability1 − 1/p also the valuee(u∗, hID∗,1)v

∗rID∗,1 has average min-
entropy at leastlog p − ℓ conditioned on the adversary’s view. Thus, the average-case strongextractor guarantees that
the challenge message is masked statistically. �

Claim F.4 The eventCollision occurs with only a negligible probability.

Proof. Given an adversaryA for which the eventCollision occurs with a noticeable probability, we construct an
algorithmA′ that breaks the security of the collectionH of universal one-way hash functions:

1. A′ choosesu ∈ G, v ∈ GT , s ∈ {0, 1}d andw ∈ {0, 1}m uniformly at random, and announces(u, v, s, w).

35



2. A′ is given a randomly chosen functionH ∈ H.

3. A′ chooses random generatorsg, h1, h2, h3 ∈ G and a randomα ∈ Zp. Then,A′ lets g1 = gα, mpk =
(g, g1, h1, h2, h3, H), msk = α, and sendsmpk toA.

4. A′ simulates the secret-key, leakage, and decryption queries toA usingmsk.

5. In the challenge phaseA′ ignores the two messagesm0,m1 ∈ {0, 1}m, computes

β = H(u, v, s, w), y = e(u, hID∗,2hID∗,3
β)vrID∗,2+rID∗,3β ,

and sendsA the challenge ciphertext(u, v, s, w, y).

6. If at some pointA submits a decryption query with(u′, v′, s′, w′) such that(u′, v′, s′, w′) 6= (u, v, s, w) and
H(u′, v′, s′, w′) = H(u, v, s, w) thenA′ outputs(u′, v′, s′, w′). OtherwiseA′ outputs⊥.

Claims F.2 and F.3 guarantee that as long as the eventCollision does not occur, thenA cannot distinguish betweenA′
andD. Specifically, both in the interaction withA′ and in the interaction withD the component in the challenge cipher-
text that depends on the bitb is ε-close to uniform given the adversary’s view (for some negligibleε). Therefore, with a
non-negligible probabilityA submits a decryption query with(u′, v′, s′, w′) such that(u′, v′, s′, w′) 6= (u, v, s, w) and
H(u′, v′, s′, w′) = H(u, v, s, w), and in this caseA′ finds a collision. �

�

�

F.2 A Generic Transformation in the BRM

In the setting of relative leakage Naor and Segev [NS09] proved that theNaor-Yung “double encryption” paradigm
[DDN00, NY90, Lin06, Sah99] can be used to construct a CCA-secure public-key encryption scheme from any CPA-
secure one using non-interactive zero-knowledge proofs. The keyproperty of the transformation is that the size of the
secret key in the resulting CCA-secure scheme is exactly the same as in the underlying CPA-secure scheme, and this
in turns enables to preserve the relative amount of leakage to which the scheme is resilient. Moreover, we point out
that since the resulting scheme also preserves the efficiency of the underlying scheme (when ignoring computations
that are independent of the amount of leakage), this implies that the same transformation extends to the BRM as well.
For completeness we provide here the description of the transformation, and refer the reader to [NS09] for the proof of
security.

Let Π0 = (KeyGen0,Encrypt0,Decrypt0) be a public-key encryption scheme that is semantically secure in the
BRM against chosen-plaintext attacks with leakageℓ, and letΠ1 = (KeyGen1,Encrypt1,Decrypt1) be any public-key
encryption scheme that is semantically secure against chosen-plaintext attacks (note thatΠ1 is not required to be resilient
to leakage). Let(P,V) be a one-time simulation-sound adaptive NIZK proof system for the followingNP-language12:

L = {(c0, c1, pk0, pk1) | ∃m, r0, r1 s.t. c0 = Encrypt0(m, pk0; r0) andc1 = Encrypt1(m, pk1; r1)} .

The following scheme is semantically secure against chosen-ciphertext attacks in the BRM with leakageℓ:

Key generation: Sample(sk0, pk0)← KeyGen0(1
λ) and(sk1, pk1)← KeyGen1(1

λ), and a reference stringσ for the NIZK
proof system. Outputsk = sk0 andpk = (pk0, pk1, σ).

Encryption: On input a messagem chooser0, r1 ∈ {0, 1}∗, and computec0 = Encrypt0(m, pk0; r0) and c1 =
Encrypt1(m, pk1; r1). Then, invoke the NIZK proverP to obtain a proofπ for the statement(c0, c1, pk0, pk1) ∈ L
with respect to the reference stringσ. Output the ciphertext(c0, c1, π).

Decryption: On input a ciphertext(c0, c1, π), invoke the NIZK verifierV to verify thatπ is an accepting proof with respect
to the reference stringσ. If V accepts then outputDecrypt0(c0, sk0), and otherwise output⊥.

12We refer the reader to [Lin06, Sah99] for the definition of a one-time simulation-sound adaptive NIZK proof system.
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