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Abstract

We study the design of cryptographic primitives resilient to key-leakage attacks, where an at-
tacker can repeatedly and adaptively learn information about the secret key, subject only to the
constraint that the overall amount of such information is bounded by some parameter ℓ. We
construct a variety of leakage-resilient public-key systems including the first known identification
schemes (ID), signature schemes and authenticated key agreement protocols (AKA). Our main re-
sult is an efficient three-round leakage-resilient AKA in the Random-Oracle model. This protocol
ensures that session keys are private and authentic even if (1) the adversary leaks a large fraction
of the long-term secret keys of both users prior to the protocol execution and (2) the adversary
completely learns the long-term secret keys after the protocol execution. In particular, our AKA
protocol provides qualitatively stronger privacy guarantees than leakage-resilient public-encryption
schemes (constructed in prior and concurrent works), since such schemes necessarily become inse-
cure if the adversary can perform leakage attacks after seing a ciphertext.

Moreover, our schemes can be flexibly extended to the Bounded-Retrieval Model, allowing us
to tolerate very large absolute amount of adversarial leakage ℓ (potentially many gigabytes of
information), only by increasing the size of the secret key and without any other loss of efficiency
in communication or computation. Concretely, given any leakage parameter ℓ, security parameter
λ, and any desired fraction 0 < δ ≤ 1, our schemes have the following properties:� Secret key size is ℓ(1 + δ) + O(λ).

In particular, the attacker can learn an approximately (1− δ) fraction of the secret key.� Public key size is O(λ), and independent of ℓ.� Communication complexity is O(λ/δ), and independent of ℓ.� All computation reads at most O(λ/δ2) locations of the secret key, independently of ℓ.

Lastly, we show that our schemes allow for repeated “invisible updates” of the secret key, allowing
us to tolerate up to ℓ bits of leakage in between any two updates, and an unlimited amount of leakage
overall. These updates require that the parties can securely store a short “master update key” (e.g.
on a separate secure device protected against leakage), which is only used for updates and not
during protocol execution. The updates are invisible in the sense that a party can update its secret
key at any point in time, without modifying the public key or notifying the other users.
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1 Introduction

Traditionally, cryptographic systems rely on complete privacy of cryptographic keys. Unfortunately,
this idealized assumption is often hard to satisfy in real systems. In many situations, the attacker
might get some partial information about secret keys through means which were not anticipated by
the designer of the system and, correspondingly, not taken into account when arguing its security.
Such attacks, referred to as key-leakage attacks, come in a large variety. For example, this includes
side-channel attacks [Koc96, BDL97, BS97, KJJ99, QS01, GMO01], where an adversary observes some
“physical output” of a computation (radiation, power, temperature, running time etc.) in addition
to the “logical output” of the computation. Alternatively, this also includes the “cold-boot” attack
of Halderman et al. [HSH+08], where an adversary can learn (imperfect) information about memory
contents even after a machine is powered down. Lastly, this can include various malware/virus/hacking
attacks where the adversary can download arbitrary information from an attacked computer.

Given that one cannot hope to eliminate the problem of leakage attacks altogether, it is natural to
design leakage-resilient cryptographic schemes which remain (provably) secure, even in the face of such
attacks. To do so, we must first decide on an appropriate model of what information the adversary
can learn during a leakage attack. In this work, we assume that the attacker can repeatedly and
adaptively learn arbitrary functions of the secret key sk, as long as the total number of bits leaked
during the lifetime of the system is bounded by some parameter ℓ. Due to its generality, this model
seems to include a very large class of attacks mentioned above, and has recently attracted a lot of
attention from the research community. In particular, this model simultaneously covers the following
two typical scenarios, which seem to be treated differently in the existing literature.

Relative Leakage. Here, the secret key is chosen to be of some particular length s, which depends on
the security parameter, and we assume that the leakage ℓ is bounded by some shrinking function of s;
e.g., the attacker’s leakage is less than half of the key-size. This assumption seems to be natural for
modeling attacks where, no matter what the key-size is, the attacker gets some imperfect reading of
the key. For example, this naturally models “cold boot attacks” attacks [HSH+08] (where the attacker
might get part of the key stored in RAM) and “microwave” attacks (where the attacker manages to
extract a corrupted copy of the key from a smart-card), among others.

Bounded-Retrieval Model (BRM). Here we assume that there is an external natural bound ℓ on the
overall amount of information the attacker can learn throughout the lifetime of the system, particularly
concentrating on the setting when ℓ can be extremely large. For example, the attacker may be able
to repeatedly perform many side-channel attacks, each of which reveals a few bits of information
about the key but, if the bandwidth of such attacks is relatively small, it may be infeasible, too time
consuming, or simply not cost-affective for the adversary to learn “too much” information (say, more
than 10 megabytes) overall. Alternatively, if an attacker hacks into a remote system (or infects it
with some malware) it may again be infeasible/impractical for the attacker to download “too much”
data (say, more than 10 gigabytes). In these situations the leakage bound ℓ is decided by external
factors and one can only resist such attacks by making the secret key intentionally large, to dominate
ℓ. Therefore, we want to be able to set the key size flexibly depending on the security parameter and
the leakage bound ℓ. By itself, having large secret-keys might be a big problem for usability, given the
extremely cheap price of storage nowadays. Therefore, the main goal of this setting, usually refereed
to as the Bounded-Retrieval Model (BRM) [CLW06, Dzi06], is to ensure that the necessary inefficiency
in storage is essentially the only inefficiency that the users of the system incur. In particular, honest
users should only have to read a small portion of the secret (this is called locality), and the public keys,
communication and computation should not be much larger than in conventional cryptosystems. In
particular, all efficiency parameters other than the secret-key size should only be proportional to the
security parameter, and not the leakage bound ℓ.
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To summarize, both leakage models (relative and BRM) study essentially the same technical ques-
tion. However, the BRM setting additionally demands that: users can increase their secret key size
flexibly, so as to allow for an arbitrary large leakage bounds ℓ, but without degrading other efficiency
parameters, such as computation, communication and locality. This is the perspective we will take in
this paper, treating both settings together, while striving to allow for the flexibility of the BRM.

Notions of security. Security with respect to key leakage attacks can be defined for nearly all
cryptographic primitives (e.g. encryption, signatures, authenticated key agreement . . . ) However, for
many of the above primitives, there are natural limitations on the security notions that can be achieved
in the presence of such attacks. For example, encryption schemes lose all privacy if the adversary can
perform leakage attacks after seeing a ciphertext, since the leakage function can simply decrypt it and
reveal some information about plaintext. Similarly, one cannot achieve existential unforgeability for
signature schemes if the leakage bound ℓ is larger than the size of a single signature (as is the case
in the BRM), since the adversary can simply leak the signature of a message of her choosing. These
limitations do not seem to apply when considering interactive primitives, and therefore we choose
to concentrate on authenticated key agreement (AKA) protocols where we can achieve qualitatively
stronger security guarantees, even in the BRM.

1.1 Our Results

Our main result is the construction of a leakage-resilient public-key authenticated key agreement
(AKA) protocol with the flexibility required by the BRM. We assume a public-key infrastructure
where users have short public-keys and flexibly sized (potentially huge) secret keys. In a leakage-
resilient AKA protocol, pairs of users agree on shared session-keys which are private and authentic,
even if: (a) the attacker learns at most ℓ bits of information about the secret keys of both users prior to
the protocol execution; (b) the attacker may learn the secret keys entirely after the protocol execution.
In particular, condition (a) ensures that the adversary cannot impersonate an honest user, even after
learning ℓ bits of leakage about that user’s secret key. Since the shared session-keys can safely be used
for encryption/authentication, a public-key AKA naturally yields interactive public-key encryption
and authentication schemes which are secure under assumptions (a) and (b), and do not suffer from
the inherent limitations of their non-interactive counterparts.

Roadmap of AKA construction. Our construction of AKA is based on simpler primitives and,
in particular, we also construct identification schemes (ID) and (non-interactive) signature schemes,
which are of interest in their own right. The main technical portion of our paper will be the construction
of ID schemes secure against leakage attacks. We then apply the Fiat-Shamir heuristic to obtain
efficient leakage-resilient signature schemes in the random oracle (RO) model. Of course, our signature
schemes cannot provide existential unforgeability, if the allowed leakage exceeds the size of even a single
signature (which is usually the case in the BRM). Interestingly, we show how to achieve existential
unforgeability under this necessary constraint, which resolves an open problem mentioned in [AGV09].
For the BRM setting, which is our main point of interest, we must settle for a weaker, but still very
useful security notion, that we call entropic unforgeability. Although an attacker may be able to forge
signatures for a few messages after she performs a key-leakage attack, she should be unable to forge
the signature of a random message sampled from any distribution of high enough min-entropy.

Finally, we use a standard construction of AKA based on Diffie-Hellman key exchange, in which
the parties bind the protocol execution to a particular session and to their identities using signatures.
We plug our entropically secure signature scheme into this construction to get leakage-resilient AKA.
Intuitively, the usage of entropically secure signature will suffice, since each party only signs messages
which are partially controlled by the other party, and happen to have entropy. We note that our
constructions of authenticated key agreement from entropic signatures, and our constructions of such
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signatures from ID schemes, are extremely efficient and essentially preserve (1) the long-term pub-
lic/secret key size, (2) the communication complexity, (3) the locality, and (4) the allowed leakage.
Therefore, we apply most of our efforts to the construction of optimized, leakage-resilient ID schemes.

ID Scheme Constructions. We present three ID scheme constructions, which build on top of one
another. First we notice that a generalization of the discrete-log based Okamoto ID scheme [Oka92]
using m generators, denoted Okamotoλ

m, is secure against leakage attacks where the allowed leakage
is ℓ ≈ (1 − 1

m)|sk|, and can be set arbitrarily close to the size of the secret key. Our argument relies
on the following three simple properties of the scheme:

(1) Any adversarial prover that impersonates some identity must know a corresponding secret key
for the identity’s public key.

(2) For any Okamoto public key, there are (exponentially) many corresponding secret keys. More-
over, the actual secret key of the scheme maintains a high level of information-theoretic entropy,
even when given: (a) the public key, (b) protocol executions between adversarial verifier and
honest prover, and (c) ℓ bits of secret-key leakage.

(3) It is computationally infeasible to come up with an Okamoto public key and two different cor-
responding secret keys.

By property (1), an adversarial prover that successfully mounts impersonation attacks knows some
secret key for the honest user’s public key and, by property (2), this secret key is (information the-
oretically) unlikely to match the one possessed by the honest user, even if the adversary got ℓ bits
leakage. Therefore, the adversarial prover together with the honest user can generate two different
secret keys for a single Okamoto public key, contradicting property (3) and hence proving security.
We note that several other identification schemes (e.g. an alternate construction by Okamoto [Oka92]
based on RSA, and the Ong-Schnorr [OS90] scheme based on factoring) also have the three mentioned
properties and are therefore leakage-resilient as well.

While the (generalized) Okamoto scheme already provides an adequate solution for relative leakage,
it cannot achieve large absolute leakage, without a proportional increase in communication complexity
and locality. Therefore, we present two extensions of the Okamoto scheme which are suitable to the
BRM setting. The first extension, denoted DirProdλ

n,m,t, is based on the idea of taking a “direct-
product” of n basic Okamoto schemes, where the verifier will selects a small random subset of t≪ n
of these schemes, and executes the basic protocol for them in parallel. One can think of this as a
simple form of “leakage amplification”, where we amplify the amount of allowed absolute leakage.
Lastly, we improve the communication complexity of this second scheme still further (in the Random
Oracle model), by showing how to use ideas from coding-theory and the special structure of the
Okamoto scheme, to “securely compress” the t chosen Okamoto public keys into a single public key,
and then running a single ID protocol for this key. Therefore, and quite remarkably, our third scheme,
denoted CompDirProdλ

n,m,t, has essentially the same communication complexity as the basic (non-
BRM) Okamoto scheme even though the allowed leakage ℓ can be made arbitrarily large.

Overview of Achieved Parameters. We summarize the main parameters of the three ID scheme
constructions (which translate into essentially the same parameters for the corresponding signatures
and AKA protocols) in Table 1. The columns indicate the sizes of: the public parameters shared by
all users, the public key, the secret key, a helper key (which is stored locally by each user, but does
not have to be kept secret), the communication complexity per party (or signature size), the locality,
and the allowed leakage ℓ. For simplicity, only the leakage parameter ℓ is measured in bits, and all
other quantities are measures in group elements. The parameters m,n, t offer flexibility to meet the
various desired settings of of absolute leakage ℓ and relative leakage (1− δ). In particular:
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Scheme pub. params pk sk help Comm. Loc. Leakage ℓ (in bits)

Okamotoλ
m m 1 m 0 m + O(1) m

(1 − δ)|sk|
δ ≈ 1

m

DirProdλ
n,m,t m 1 nm n O(tm) tm

(1 − δ)|sk|
δ ≈

(
1
m

+ O
(

λ
t

))

CompDirProdλ
n,m,t m 1 nm n m + O(1) tm

(1 − δ)|sk|
δ ≈

(
1
m

+ O
(

λ
t

))

Entries (except ℓ) represent # of group elements. Security parameter is λ. Parameters n, m, t offer flexibility.

Table 1: Efficiency vs. Leakage Trafeoffs For Our ID, Sig, AKA schemes� For the first scheme (Okamotoλ
m), the only flexibility is in the number of generators m. Essentially

to allow for relative leakage (1− δ) we can set m ≈ 1/δ which gives us very practical schemes for
reasonable settings of the relative leakage (e.g. δ = 1

2). However, to allow for a large absolute
leakage ℓ, we must increase m still further (and proportionally with ℓ), which increases the
communication, computation and size of public parameters to unreasonable levels.� For the second and third scheme (DirProdλ

n,m,t,CompDirProdλ
n,m,t), we have the additional

flexibility offered by parameters n (the number of stored copies of Okamoto key pairs) and t
(the number of Okamoto keys used during a particular protocol). We notice that, by setting
m ≈ 1/δ, t ≈ O(λ/δ) we allow a relative leakage of (1 − δ) and still get practical schemes with
small public parameters, public key size, communication (especially in the third scheme), and
locality. Moreover, we can then flexibly accommodate any value of the absolute leakage ℓ only
by increasing n which only affects the size of the secret key.

Invisible Key Updates. Lastly, we mention a simple but powerful feature of our schemes. We
introduce a method for users to periodically update their secret keys, so that the scheme remains
secure as long as the adversary learns at most ℓ ≈ (1 − δ)|sk| bits of key leakage in between updates,
but may learn leak significantly more than the size of the secret key overall. Our updates are invisible
to the outside world, in the sense that the public keys remain unchanged and users do not need to
know when or how often the secret keys of other users are updated in order to run an AKA protocol.
For such updates, we require the use of a “master update key” which must be stored securely on an
external storage device that is not susceptible to leakage attacks.

1.2 Related Work

Weak secrets, Side-channel Attacks and BRM. The model of key leakage attacks, as studied
in this work, is very related to the study of cryptography with weak secrets. A weak secret is one
which comes from some arbitrary distribution that has a sufficient level of (min-)entropy, and one can
think of a secret key that has been partially compromised by leakage attacks as coming from such a
distribution. Most of the prior work concerning weak secrets is specific to the symmetric key setting and
much of this work is information-theoretic in nature. For example, the study of privacy-amplification
[BBR88, Mau92b, BBCM95] shows how two users, who share a weak secret, can agree on a uniformly
random key in the presence of a passive attacker. The works of [MW97, RW03, DKRS06, KR09, DW09]
extend this to active attacks, and the works of [Mau92a, AR99, ADR02, Lu02, Vad04] extended this to
the case of huge secrets (motivated by the Bounded Storage Model, but also applicable to the BRM).
Such information-theoretically secure schemes can only be used once to convert a shared secret, which
may have been partially compromised by leakage attacks, into a single uniform session-key.

In the computational setting, users can agree on arbitrarily many session-keys using Password
Authenticated Key Agreement (PAKE) [BM93, BPR00, BMP00, KOY01, GL06], where they use their
shared weak (or partially compromised) secret key as the password. However, these solutions do not
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scale to the BRM, as they do not preserve low locality when the secret is large. The Bounded-Retrieval
Model (BRM), where users have a huge secret key which is subject to large amounts of adversarial
leakage, was introduced by [CLW06, Dzi06]. In particular, Dziembowski [Dzi06] constructed a sym-
metric key authenticated key agreement protocol for this setting in the Random Oracle model. This
was later extended to the standard model by [CDD+07]. Other symmetric-key applications, such as
password authentication and secret sharing, were studied in the BRM setting by [CLW06] and [DP07],
respectively. We also note that non-interactive symmetric key encryption schemes from weakly-secret
keys were constructed implicitly in [Pie09] (based on weak pseudorandom functions) and explicitly in
[DKL09] based on “learning parity with noise”.

The only related prior work that considers leakage attacks in the public-key setting is a recent work
of Akavia et al. [AGV09], which showed that Regev’s public-key encryption scheme [Reg05] (based on
lattices) is leakage-resilient. Recently, and concurrently with our work, the results of [NS09, KV09]
present several new constructions of of public key encryption schemes for this setting, based on other
(non-lattice) assumptions, tolerating more leakage, achieving CCA-2 security and allowing for stronger
“auxiliary-input” attacks (described subsequently). The main two drawbacks of these works, which we
address with our result, are that (1) non-interactive encryption schemes inherently become insecure if
the adversary can perform leakage attacks after seeing a ciphertext and (2) the proposed encryption
schemes are only secure with respect to relative leakage and it is unclear how to extend them to the
BRM setting.

Other models of adversarial key compromise. It is worth describing several related models
for key compromise which differ from the one used in this work. One possibility is to restrict the
type of information that the adversary can learn about the secret key. For example, a line of work
called exposure resilient cryptography [CDH+00, DSS01] studies a restricted class of adversarial leakage
functions, where the adversary gets a subset of the bits of the secret key. In this setting, one can
secure keys against leakage generically, by encoding them using an all-or-nothing transform (AONT).
We note that many natural side-channel attacks (e.g. learning the hamming weight of the key) and
most malware attacks are not captured by this model.

Another line of work, initiated by Micali and Reyzin [MR04] and studied further by Dziembowski
and Pietrzak [DP08, Pie09], designs various symmetric-key primitives under the axiom that “only
computation leaks information”. In these works, each stage of computation is assumed to leak some
arbitrary shrinking function of (only) the data it accesses, but the adversary can observe computation
continuously, and can learn an unbounded amount of such information overall. In particular, this
model can protect against an adversary that continuously perform side-channel attacks (such as DPA
attacks), each of which leaks some partial information (only) about the “current” computation. On
the other hand, the axiom that “only computation leaks information” does not seem to apply to many
other natural attacks, such as the memory/microwave attacks or virtually all malware/virus attacks. A
related model, where the adversary can learn the values on some subset of wires during the evaluation
of a circuit, was studied by Ishai et al. [ISW03, IPSW06].

Lastly, the recent works [DKL09, KV09] study auxiliary input, where the adversary can learn
functions f(sk) of the secret key sk subject only to the constraint that such a function is hard to
invert. This is a strictly stronger model than the one considered in this work, as such functions f can
have output length larger than the size of the secret key and can reveal all of the statistical entropy
of the key.

2 Preliminaries

All proofs missing from the main body of the paper are relegated to Appendix B.

Entropy and Predictability. We review information-theoretic definitions for entropy, along with
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some of our generalizations and lemmas which we will rely on in the paper.

Definition 2.1. The min-entropy of a random variable X is H∞(X)
def
= − log(maxx Pr[X = x]).

We can rephrase the above definition in terms of predictorsA. The min-entropy of a random variable X
measures how well X can be predicted by the best predictor A, i.e. H∞(X) = − log(maxA Pr[A() =
X]), where the max is taken over all predictors without any requirement on efficiency. The work
of [DORS08], offered a natural generalization of min-entropy, called the (average) conditional min-

entropy of X conditioned on Z, defined as H̃∞(X|Z)
def
= − log(Ez maxx Pr[X = x|Z = z]). We

can rephrase this definition in terms of predictors A that are given some information Z (presumably
correlated with X), so H̃∞(X|Z) = − log(maxA Pr[A(Z) = X]). In this paper, we generalize the
notion of conditional min-entropy still further, to interactive predictors A, which participate in some
randomized experiment E . We model experiments as interactions between A and a challenger oracle
E(·) which can be randomized, stateful and interactive (think of this as a challenger in an attack game).
We consider the predictability of X by a predictor AE(·) which can act arbitrarily in the experiment
with the challenger.

Definition 2.2. The conditional min-entropy of a random variable X, conditioned on the experiment

E is H̃∞(X | E)
def
= − log(maxA Pr[AE(·)() = X]). In the special case that E is a non-interactive

experiment which simply outputs a random variable Z, we abuse notation and write H̃∞(X | Z) to
denote H̃∞(X | E).

In Appendix A, we present several new results connecting entropy and the (approximate) list-decoding
of error-correcting codes. These results help us prove the security of our constructions for the Bounded-
Retrieval Model.

Review of Σ-protocols. Let R be a relation consisting of instance, witness pairs (x,w) ∈ R
and let LR = {x | ∃w, (x,w) ∈ R} be the language of R. A Σ-protocol for R is a protocol between
a PPT ITM prover P(x,w) and a PPT ITM verifier V(x), which proceeds in three rounds where:
(1) the prover P(x,w) sends an initial message a, (2) the verifier V(x) sends a uniformly random
challenge c, (3) the prover P(x,w) sends a response z. The verifier V(x) either accepts or rejects the
conversation by computing some predicate of the instance x and the conversation (a, c, z). We require
that Σ-protocols satisfy the following three properties:

1. Perfect Completeness: For any (x,w) ∈ R, the execution {P(x,w) ⇋ V(x)} is always accepting.

2. Special Soundness: There is an efficient algorithm such that, given an instance x and two
accepting conversations for x: (a, c, z), (a, c′, z′) where c 6= c′, the algorithm outputs w such that
(x,w) ∈ R.

3. Perfect Honest Verifier Zero Knowledge (HVZK): There is a PPT simulator S such that, for any
(x,w) ∈ R, the simulator S(x) produces conversations (a, c, z) which are identically distributed
to the conversations produced by an honest execution {P(x,w) ⇋ V(x)}.

As was shown in [CDS94], the HVZK property implies witness indistinguishability. Here, we rephrase
essentially the same property in a slightly different manner. We show that, oracle access to a prover
P(x,w) does not decrease the entropy of w in any experiment in which x is given to the predictor.

Lemma 2.1. Let (P,V) be an HVZK protocol for the relation R, and let (X,W ) be random variables
over R. Let E1 be an arbitrary experiment in which A is given X at the start of the experiment, and let
E2 be the same as E1, except that A is also given oracle access to P(X,W ) throughout the experiment.
Then H̃∞(W |E2) = H̃∞(W |E1).
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Hardness Assumptions. We review several of the standard hardness assumptions for prime-order
groups. Let G(1λ) be a group sampling algorithm which, on input 1λ, outputs a tuple G = (p,G, g)
where p is a prime, G is a (description of a) group of order p, and g is a generator of G. Each
of the following assumptions is made for some specific groups G and algorithms G which we do not
specify. The discrete-logarithm (DL) assumption for groups G states that Pr[A(G, gx) = x | G ←R

G(1λ), x ←R Zp] ≤ negl(λ). The computational Diffie-Hellman (CDH) assumption for groups G

states that Pr[A(G, gx, gy) = gxy | G ←R G(1
λ), x, y ←R Zp] ≤ negl(λ). The decisional Diffie-

Hellman (DDH) assumption for groups G states that the tuples (G, gx, gy, gxy) and (G, gx, gy , gz) are
computationally indistinguishable, where x, y, z are uniformly random over Zp and G← G(1λ). Lastly,
the Gap Diffie-Hellman (GDH) assumption for groups G states that the CDH assumption holds for
these groups, but DDH is easy. In particular, we require that there is a poly-time algorithm which,
on input (G, g, gx, gy , h) outputs 1 iff h = gxy. For example, this is the case for bilinear groups, where
the bilinear map allows us to solve DDH easily, but CDH is still believed to be hard.

3 Leakage Oracle

We model adversarial leakage attacks on a secret key sk, by giving the adversary access to a leakage
oracle, which the adversary can (periodically) query to gain information about sk. Intuitively, we
would like to capture the fact that the adversary can compute arbitrary efficient functions of the
secret key as long as the total number of bits learned is bounded by some parameter ℓ. These leakage
functions can be chosen adaptively, based on the results of prior leakage attacks and any other events
that may take place during the attack game.1 The following definition formalizes the above concept.

Definition 3.1. A leakage oracle Oλ,ℓ
sk (·) is parameterized by a secret key sk, a leakage parameter ℓ

and a security parameter λ. A query to the oracle consists of (a description of) a leakage function
hi : {0, 1}∗ → {0, 1}αi (i.e. a Turing Machine whose output tape is at most αi bits). The oracle

Oλ,ℓ
sk (·) checks if the sum of αi, over all queries received so far, exceeds the leakage parameter ℓ and

ignores the query if this is the case. The oracle computes the function hi(sk) for at most poly(λ) steps
and, if the computation completes, responds with the output. Otherwise, it responds with the dummy
value 1αi .

We now show that, in any experiment E , adding access to the leakage oracle Oλ,ℓ
sk (·) decreases the

entropy of sk by at most ℓ bits.

Lemma 3.1. For any random variable SK, any experiment E1, let E2 be the experiment which is the
same as E1, but also gives the predictor access to the leakage oracle Oλ,ℓ

SK(·). Then H̃∞(SK | E2 ) ≥

H̃∞(SK | E1)− ℓ.

4 Identification Schemes

4.1 Definition

In an identification scheme, a prover attempts to prove its identity to a verifier. This proof should
be convincing and non-transferable. More formally, an identification scheme consists of the four PPT
algorithms (ParamGen,KeyGen,P,V):

1For example, in a chosen message attack on a signature scheme, the adversary may adaptively choose its leakage
functions based on the signatures it gets from the signing oracle.
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params← ParamGen(1λ): Outputs the public parameters of the scheme, which are common to all
users. These parameters are available as inputs to KeyGen,P,V, and we omit them from the
descriptions.

(pk, help, sk)← KeyGen(): Outputs the public key pk, a helper help and a secret key sk. The value help
is analyzed as a public key with respect to security (i.e. it need not be kept secret and is given
to the adversary) but is thought of as a secret key for usability (i.e. it is not used by honest
verifiers).2

P(pk, help, sk),V(pk): These are the prover and verifier ITMs respectively. The verifier V outputs a
judgement from one of {Accept,Reject} at the conclusion of a protocol execution.

We require that an ID scheme is complete, so that in an interaction {P(pk, sk) ⇋ V(pk)} between
honest prover and honest verifier, the verifier always accepts the proof. We now formally define the
security of ID schemes for adversaries that can perform leakage attacks against the secret key sk. As
discussed, we will consider two separate security notions. The first notion, called pre-impersonation
leakage security, is modeled by the attack game IDPREλ

ℓ (A) and only allows the adversary to submit
leakage queries prior to an impersonation attack, but not during one. The second notion, called
anytime leakage security, is modeled by the attack game IDANYλ

ℓ (A) where the adversary can perform
leakage attacks adaptively at any point in time, even during an impersonation attack. The two attack
games are defined below and only differ in the impersonation stage.

IDPREλ
ℓ (A), IDANYλ

ℓ (A)

1. Key Stage: Let params← ParamGen(1λ), (pk, help, sk)← KeyGen() and give (params, pk, help) to A.

2. Test Stage: The adversary AO
λ,ℓ

sk
(·),P(pk,sk) gets access to the leakage oracle Oλ,ℓ

sk (·) and to an honest
prover P(pk, sk), modeled as an oracle that runs (arbitrarily many) proofs upon request.

3. Impersonation Stage: This stage is defined separately for the two games.

For IDPREλ
ℓ (A): The adversary A loses access to the all oracles and runs a protocol {A ⇋ V(pk)}

with as an honest verifier.

For IDANYλ
ℓ (A): The adversary AO

λ,ℓ

sk
(·) maintains access to the leakage oracle Oλ,ℓ

sk (·), but not the

prover oracle P , and runs a protocol {AO
λ,ℓ

sk
(·)

⇋ V(pk)} with an honest verifier.

The advantage of an adversary A in the games IDPREλ
ℓ (A), IDANYλ

ℓ (A) is the probability that the
verifier V accepts in the impersonation stage.

Definition 4.1. Let (KeyGen,P,V) be an identification scheme with perfect completeness, parame-
terized by security parameter λ. We say that the scheme is secure with pre-impersonation leakage ℓ if
the advantage of any PPT adversary A in the attack game IDPREλ

ℓ (A) is negligible in λ. We say that
the scheme is secure with anytime leakage ℓ if the above also holds for the attack game IDANYλ

ℓ (A).

4.2 Construction 1: Generalized Okamoto Scheme

We now show that the Okamoto identification scheme from [Oka92] is secure against key leakage
attacks. The standard Okamoto scheme is defined with respect to two generators. Here, we describe
a generalized version of the Okamoto scheme with m generators. Since we will re-use the basic
components of the scheme as building-blocks for our more complicated schemes, we abstract away
most of the computation of the scheme into the algorithms (A,Z,Ver) which are used by P,V to

2In some of our constructions, when sk is made intentionally huge, the size of help will become large as well, and thus
it is important that this does not detract from the usability of the scheme by also increasing the size of the public key.
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ParamGen(1λ) : Let (p, G, g)← G(1λ), g1, . . . , gm ←R G. Set params = (p, G, g1, . . . , gm).

KeyGen(): Choose sk = (x1, . . . , xm)←R (Zp)
m and set pk =

∏m

j=1{gj}
xj . Output (pk,⊥, sk).

P ,V: The machines P ,V run the following protocol:

(1) P: Computes (a, y)← A() and sends a to V .
A() : Choose y = (y1, . . . , ym)←R (Zp)

m, compute a =
∏m

j=1 gj
yj . Output (a, y).

(2) V: Choose c←R Zp and send c to P .

(3) P: Compute z ← Zsk(c, y) and send z to V .
Zsk(c, y): Compute zj := yj + cxj for j = 1, . . . , m, output z := (z1, . . . , zm).

Verpk(a, c, z): Output Accept iff
∏m

j=1 g
zj

j

?
= a(pk)c.

Figure 1: The Okamotoλ
m identification scheme.

run the protocol as defined in Figure 1. To analyze the above scheme, we define the relation R =
{(pk, sk)|sk = (x1, . . . , xm), pk =

∏m
j=1 g

xj

j }. We will rely on only three properties of the relation R
and the generalized Okamoto ID scheme, which are outlined in the following lemma.

Lemma 4.1. The following three properties hold for the Okamotoλ
m ID scheme:

(1) It is difficult to find a public key pk and two different secret keys sk′ 6= sk for pk. In particular,
under the DL assumption, for any PPT adversary A:

Pr[sk′ 6= sk and (pk, sk′), (pk, sk) ∈ R | (pk, sk, sk′)← A(params), params← ParamGen(1λ)] ≤ negl(λ).

(2) The protocol P,V is Σ-protocol for the relation R.

(3) Thinking of key pairs (pk, sk) as random variables (PK,SK), we get H̃∞(SK|PK) ≥ (m−1) log(p).

Using the properties in the above lemma, we show that the Okamoto ID scheme is secure against key
leakage attacks.

Theorem 4.1. Under the DL assumption, Okamotoλ
m is a secure ID-scheme for pre-impersonation

leakage of up to ℓ = (m− 1) log(p) − λ ≥ (1 − 2
m)|sk| bits. It is secure with anytime leakage of up to

ℓ′ = 1
2ℓ bits.

Proof. The (perfect) completeness property is easy to verify. For security, we start with pre-
impersonation leakage. Assume that there is an adversary A which runs in time t (including the

run-time of the queries for Oλ,ℓ
sk (·)) and has advantage ε in the game IDPREλ

ℓ (A). Then, we construct
an adversary B which runs in time ≈ 2t and

Pr[sk′ 6= sk and (pk, sk′), (pk, sk) ∈ R | (pk, sk, sk′)← B(params), params← ParamGen(1λ)] ≥ ε2−
1

p
−2−λ.

The adversary B chooses a random pair (pk, sk)← KeyGen() and runs as the challenger for A in the

game IDPREλ
ℓ (A). In particular, B gives pk to A and uses sk to construct the leakage oracle Oλ,ℓ

sk (·)
and a prover P(pk, sk) for A to interact with. When A reaches the impersonation stage, B chooses
a random challenge c ←R Zp which results in the conversation (a, c, z). Then B rewinds A, sends an
fresh random challenge c′ ←R Zp, and gets a conversation (a, c′, z′). If both conversations (a, c, z),
(a, c′, z′) are accepting and c 6= c′ then, using the special soundness property, B (always) extracts a
witness sk′ such that (pk, sk′) ∈ R. Let E1 be the event that the above occurs and let E2 be the event
that sk′ = sk.
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Claim 4.1. The probability of the event E1 is Pr[E1] ≥ ε2 − 1/p.

Proof. By assumption, the overall advantage of A is ε. Let εv be the advantage of A conditioned
on a particular execution of the attack game up until the challenge phase (i.e. the coins of A, the

responses from Oλ,ℓ
sk (·) and P(pk, sk)). Let V be a random variable for such executions v. We have

Pr[E1 | V = v] ≥ ε2
v − 1/p, since the probability that two conversations are accepting is ε2

v , and the
probability that c = c′ is at most 1/p. Therefore

Pr[E1] =
∑

v

Pr[E1|V = v] Pr[V = v] ≥ E[ε2
v − 1/p] ≥ E[ε2

v ]− 1/p ≥ (E[εv ])
2 − 1/p ≥ ε2 − 1/p

which completes the proof of the claim. 2

Claim 4.2. The probability of E2 is Pr[E2] ≤ 2−λ.

Proof. We can think of the process which produces the secret key as a predictor that runs in
an experiment E0, in which it gets access to the oracles Oλ,ℓ

SK(·), P(PK,SK) and public key PK. In
particular, our specific predictor runs the adversary A once, rewinds it, and gives it an alternate

challenge. Therefore, we can bound Pr[E2] ≤ 2−H̃∞(SK | E0). Let E1 be the same experiment as E0,

except that the predictor does not get access to Oλ,ℓ
SK(·), and E2 be the same as E1 except that the

predictor doesn’t get access to P(PK,SK) either (i.e. only gets PK). Then

H̃∞(SK | E0) ≥ H̃∞(SK | E1)− ℓ ≥ H̃∞(SK | E2)− ℓ = H̃∞(SK | PK)− ℓ ≥ (m− 1) log(p)− ℓ

where the first inequality follows by Lemma 3.1, the second one by Lemma 2.1, and the last one by
part (3) of Lemma 4.1. The claim follows since ℓ ≤ (m− 1) log(p)− λ. 2

(continuing the proof of Theorem 4.1) Given the two claims, the first part of the theorem (pre-
impersonation leakage) follows by noticing that the success probability of the attacker B is:

Pr[E1 ∧ ¬E2] ≥ ε2 − 1/p − 2−λ ≥ ε2 + negl(λ).

The proof for anytime security is the same with one small modification. Now, adversary A can make
(all of its) queries after receiving the challenge c and choose its leakage functions depending on c.
Therefore, when it is rewound and given a fresh challenge c′ it may attempt to make fresh new and
different queries to Oλ,ℓ

sk (·). Hence, for anytime leakage, the predictor in experiment E0 (in Claim 4.2)
really gets access to a leakage oracle with leakege parameter 2ℓ′ if the adversary A has access to one
with leakege ℓ′. Therefore, for anytime attacks, the amount of allowed leakege is halved. 2

4.3 Construction 2: Adding Flexibility Through Direct-Products

We now propose a construction of an ID scheme with pre-impersonation security that is suitable for
the BRM setting. In particular, it is possible to increase the allowed leakage ℓ arbitrarily without
significantly affecting the communication and computation complexity, or even the size of the public
key and public parameters. As we will see, some of the parameters in our construction are still sub-
optimal, and we will get further efficiency gains in Section 4.4. However, the construction we present
here is more natural and simpler to understand, and hence we present it first.

The main idea of our construction, is to run many copies of the Okamotoλ
m scheme in parallel. In

particular, the secret key will be a (possibly huge) database sk = (sk[1], . . . , sk[n]) where each sk[i] is
a secret key for the underlying generalized Okamoto scheme, and defines a corresponding public key
pk[i]. During key generation, the prover also chooses a key pair (verk, sigk) for a signature scheme and
computes signatures σ[i] for each public key pk[i] (after which point sigk is never used again and deleted
from memory) and sets help = (σ[1], . . . , σ[n]). We could then define a 4 rounds protocol, where the
verifier begins by giving t random indices (r1, . . . , rt) ∈ [n]t to the prover. Then the prover and verifier
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ParamGen(1λ): Let (p, G, g)← G(1λ), g1, . . . , gm ←R G. Set params = (p, G, g1, . . . , gm).

KeyGen(): Choose (verk, sigk)← SigKeyGen(1λ) and set pk = verk.
For i = 1, . . . , n set: (sk[i], pk[i])← Gen(), σ[i] = Signsigk(i||pk[i]).

Set sk = (sk[1], . . . , sk[n]), help = (pk[1], . . . , pk[n], σ[1], . . . , σ[n]) and output (pk, sk, help).†

P ,V: The machines P ,V run the following protocol:

(1) P: For i = 1, . . . , t: choose (ai, yi)← A(). Send (a1, . . . , at) to V .

(2) V: Choose t indices (r1, . . . , rt)←R [n]t, and c∗ ←R Zp.
Send the challenge c = (r1, . . . , rt, c

∗) to P .

(3) P: For i = 1, . . . , t: set pki = pk[ri], σi = σ[ri], zi = Zsk[ri](c
∗, yi) and send (pki, σi, zi) to V .

V accepts iff, for i = 1, . . . , t:

(I) The conversation (ai, c
∗, zi) is accepting for pki. That is, Verpki

(ai, c
∗, zi)

?
= Accept.

(II) The signatures σi for ri||pki verify under pk. That is SigVerpk(ri||pki, σi)
?
= Accept.

† Note that the values pk[i] can be easily computed from sk[i] and thus need not be stored seperately.

Figure 2: The DirProdλ
n,m,t identification scheme.

execute t independent copies of Okamotoλ
m (in parallel) for the public keys pk[r1], . . . , pk[rt], which the

prover sends to the verifier along with their signatures σ[ri]. Our actual construction will be a three
round scheme where the indices r1, . . . , rt are sent by the verifier with the challenge (we rely on the
fact that the first messages a of the generalized Okamoto scheme do not depend on the public key pk).

To analyze the security of the scheme, we notice that, in a pre-impersonation attack, the adversary’s
queries to the leakage oracle are independent of the indices r1, . . . , rt, which are only chosen later during
the impersonation stage. In Appendix A we show that, if sk has a significant amount of entropy
at the beginning of the impersonation stage, then the random tuple (sk[r1], . . . , sk[rt]) will preserve
some significant amount of this entropy as well. This analysis is based on thinking of the tuples
(sk[r1], . . . , sk[rt]) as positions in an (exponentially) long direct-product encoding of sk. Such codes
were defined and analyzed in [IJK06], where it is shown that they are “approximately-list decodable”.
We show that this property implies entropy preservation in our sense. Our security analysis then relies
on the fact that, if an adversarial prover can complete a proof on the challenge r1, . . . , rt, then it must
know the values (sk[r1], . . . , sk[rt]) in their entirety, which is unlikely by our entropy argument.

Notice that, although our discussion seems quite general, it is not clear that the main idea of our
construction (taking direct products) would imply a general a compiler which converts an ID scheme
with pre-impersonation leakage ℓ into one with “amplified” pre-impersonation leakage ℓ′ ≫ ℓ. Indeed,
our argument is (crucially) information theoretic in the sense that we show that a random subset of
secret keys still has (information theoretic) entropy after the adversary gets some key leakage. To
translate this into a more general argument, we would need to somehow simulate an ℓ′ bit leakage
oracle for the entire key sk by accessing (many) ℓ-bit leakage oracles for the individual keys sk[i], which
does not seem possible.

We present our construction, called DirProdλ
n,m,t in Figure 2. The presentation is based on the

algorithms (Gen,A,Z,Ver) where Gen is the key generation algorithm for the underlying Okamoto
scheme, and (A,Z,Ver) are the algorithms used by the prover and verifier as defined in Figure 1.

Theorem 4.2. Assuming that (SigKeyGen,Sign,SigVer) is an existentially secure signature scheme
under chosen message attacks, and assuming the hardness of DL, the construction DirProdλ

n,m,t is a
secure ID-scheme for pre-impersonation leakage of up to ℓ = (1− δ)nm log(p) = (1− δ)|sk| bits where

δ = 1
m(1 + log(n)

λ + 4
n) + 2λ

t ≈
1
m + O(λ/t).
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4.4 Construction 3: Saving Communication using Compressed Direct-Products

As we saw, Construction 2 gives us flexibility, in the sense that we can increase the parameter n
to allow for arbitrarily large leakage ℓ, without (significantly) affecting the size of the public key,
the computation or the communication complexity. Unfortunately, even though these factors do not
depend on n, the communication of the scheme is fairly large since it uses t = O(λ) copies of the
underlying Okamoto scheme. In fact, just having the prover send t public keys pk[r1], . . . , pk[rt] to
the verifier in construction 2 already takes the communication complexity to O(λ2), which may be
prohibitive. As we will see later, large communication complexity of the ID schemes will translate into
long Fiat-Shamir signature and, therefore, large communication complexity in our final authenticated
key agreement protocols.

In this section, we show how to reduce the communication complexity of the ID scheme significantly.
As in the previous construction, the secret key sk = (sk[1], . . . , sk[n]) is a (possibly huge) database of
keys sk[i] for the underlying generalized Okamoto scheme, and the verifier selects a random set of t
indices which define a set of t secret keys sk[r1], . . . , sk[rt] used by the protocol execution. However, in-
stead of running parallel versions of the Okamotoλ

m scheme for these keys individually, the prover now
compresses them into a single secret key sk∗ and then runs a single copy of the Okamoto scheme for
the corresponding public key pk∗, which the prover sends to the verifier. The two important properties
of this compression are: (1) it must be entropy preserving, in the sense that sk∗ should be (informa-
tion theoretically) unpredictable, assuming that there is sufficient entropy spread-out over the entire
database sk and (2) the public key pk∗ for the secret key sk∗ can be computed from pk[r1], . . . , pk[rt]
alone, so that the value pk∗ does not decrease the entropy of the database sk. Our compression func-
tion is based on the Reed-Solomon Error-Correcting Code. In particular, the verifier chooses a random
value e ∈ Zp, and the prover compresses the secret keys {sk[ri] = (x1[ri], . . . , xm[ri])}i∈[t] into a single

key sk∗ = (x∗
1, . . . , x

∗
m), where x∗

j =
∑t

i=1(xj [ri])e
(i−1) is the e-th position in the Reed-Solomon encod-

ing of the value xj[r1]|| . . . ||xj [rt]. In Appendix A, we show that this compression function is entropy

preserving. The corresponding public key pk∗ for sk∗ is just pk∗ =
∏t

i=1(pk[ri])
(ei−1), which is easy to

compute from the individual keys pk[ri]. Thus it satisfies the two properties we required.
Of course, there is one crucial problem we have not yet addressed: how does an honest verifier

check that the compressed public key pk∗ given by the prover is indeed the right one (i.e. corresponds
to the correct combination of pk[r1], . . . , pk[rt] using e as requested)? Recall that in construction 2 we
used signatures to ensure that the prover uses the right public keys pk[ri]. Unfortunately, the prover
cannot store a signature for every possible key pk∗ (corresponding to all choices of r1, . . . , rt and e)
since there are exponentially many. The prover could store signatures of the individual public keys
pk[i], but then, would have to send all of the individual component public keys and their signatures
to validate pk∗, which defeats the whole point of compression! What we really need is a signature
scheme, where the signatures σ[i] of individual keys pk[i] can be combined into a short authenticator
σ∗, which validates pk∗.

The idea of combining signatures of component blocks to validate some function over the blocks
was used in the work of Shacham and Waters [SW08], and we borrow the techniques of that work.
In particular, we (also) use a modification of the BLS signature scheme ([BLS01]) to compute the
component signatures σ[i]. Unfortunately, our authenticators σ∗ do not validate keys pk∗ on their
own. Instead, we analyze our scheme as a unit, and show that the adversary cannot do both: (1)
come up with a public key pk∗ authenticated by σ∗ and (2) run the generalized Okamoto scheme
using this key pk∗. Note that the use of (modified) BLS signatures requires us to work in Gap Diffie-
Hellman (GDH) groups where the CDH problem is believed to be hard, but DDH tuples can be identified
efficiently (see Preliminaries). In addition, the use of BLS signatures requires us to rely on the Random
Oracle Model for security. We present our construction, in Figure 3. The presentation is based on
the algorithms (Gen,A,Z,Ver) for the underlying generalized Okamoto scheme (see Figure 1). In
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addition, our construction relies on a hash function H modeled as a random oracle.

ParamGen(1λ): Let (p, G, g)← G(1λ), g1, . . . , gm, u←R G. Set params = (p, G, g1, . . . , gm, u).

KeyGen(): Choose s←R Zp and set pk = v = us.
For i = 1, . . . , n set: (pk[i], sk[i] = (x1[i], . . . , xm[i])←R Gen(), σ[i] = (H(i)pk[i])s

Set sk = (sk[1], . . . , sk[n]), help = (pk[1], . . . , pk[n], σ[1], . . . , σ[n]) and output (pk, sk, help).

P ,V: The machines P ,V run the following protocol:

(1) P: Choose (a, y)← A() and send a to V .

(2) V: Choose t indices (r1, . . . , rt)←R [n]t, and (c∗, e)←R (Zp)
2.

Send the challenge c = (r1, . . . , rt, e, c
∗) to P . †

(3) P: Compute sk∗ = (x∗
1, . . . , x

∗
m) by setting x∗

j =
∑t

i=1(xj [ri])e
i−1 for j = 1, . . . , t.

Set pk∗ =
∏t

i=1 pk[ri]
(ei−1), σ∗ =

∏t

i=1 σ[ri]
(ei−1), z = Zsk∗(c

∗, y).
Send (pk∗, σ∗, z) to V .

V accepts iff:
(I) The conversation (a, c∗, z) is accepting for pk∗. That is, Verpk∗(a, c∗, z) = Accept.

(II) The value (u, v, (pk∗
∏t

i=1 H(ri)
ei−1

), σ∗) is a DDH tuple.�As stated, the challenge size is t log(n) which dominates the remaining communication. In the Random Oracle
model, we can compress the challenge to a λ bit value, which is then expanded into the full challenge using the
Random Oracle. This version matches the parameters claimed in Table 1.

Figure 3: The CompDirProdλ
n,m,t identification scheme.

Theorem 4.3. Under the GDH assumption, the CompDirProdλ
n,m,t scheme is a secure ID-scheme in

the Random Oracle model, with pre-impersonation leakage of up to ℓ = (1− δ)nm log(p) = (1− δ)|sk|

bits where δ = 1
m(1 + log(n)

λ + 10
n ) + 6λ

t ≈
1
m + O(λ/t).

5 Existentially and Entropically Unforgeable Signatures

In this section we consider leakage-resilient signatures, where the adversary can (periodically) query
a leakage oracle for up to ℓ bits of information about the secret key. Unfortunately, if ℓ is larger
than the size of a single signature, it is clear that we cannot achieve the standard notion of existential
unforgeability as the attacker can simply choose to learn the a signature of some message m as its
leakage function. Therefore, to construct meaningful signature schemes in the BRM, we also define a
new (weaker) security notion called entropic unforgeability. An attack against entropic unforgeability
is only valid if, the attacker manages to forge a message which is chosen from some distribution
of significant entropy, after the adversary finishes interacting with the leakage oracle. To further
strengthen the attack game we let the forger select this distribution. This notion is useful since, in
many practical scenarios, an attacker must be able to forge signatures for messages that are somehow
beyond her control in order to damage the security of the system.

A signature scheme consists of algorithms (ParamGen,KeyGen,Sign,Verify). The ParamGen al-
gorithm produces some public parameters, params, which can be shared by all the users and are
(implicitly) available to all of the other algorithms. The KeyGen algorithm produces a key tuple
(verk, help, sigk) where help has the same semantics as in ID schemes: it is given to the adversary
and need not be kept secret, but it is also not needed by honest users to verify signatures. Lastly
Signsigk,help,Verifyverk are the standard signing and verification algorithms. To capture entropic un-
forgeability, we separate the attacker into two parts A = (A1,A2), where A1 runs during the first
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stage of the attack, with access to a leakage oracle and signing oracle. Once this stage is done, A1

can output an arbitrary hint for A2, who then attempts to forge the signature of some message while
having access only to the signing oracle. The formal definition of the entropic unforgeability attack
game EUGλ

ℓ appears in Figure 4. We use Ssigk(·) to denote the signing oracle which accepts arbitrary
messages m ∈ {0, 1}∗ as input, and outputs σ = Signsigk,help(m).

EUGλ
ℓ

Initialization: The challenger selects (verk, help, sigk)← KeyGen(1λ) and gives verk to the forger A1.

Signing & Leakage Queries: Adversary A
O

λ,ℓ

sk
(·),Ssigk(·)

1 is given access to the signing oracle Ssigk(·) and

leakage oracle Oλ,ℓ
sk (·) and outputs an arbitrary hint v ∈ {0, 1}∗.

Post-Leakage: Adversary A
Ssigk(·)
2 is given the hint v and access to (only) the signing oracle Ssigk(·). We

parse the output of A2 as a message, signature pair (m, σ).

Figure 4: Entropic Unforgeability Attack Game

We define the advantage of forger A = (A1,A2) to be the probability that Verifyverk(m, σ) = Accept
and that the signing oracle was never queried with m. For entropic security, we also require that the
output message m is chosen sufficiently randomly by A2, so that it could not have been known ahead
of time by A1. When discussing signature schemes in the random-oracle model, we assume that the
adversary A1,A2 and the leakage functions f submitted to Oλ,ℓ

sk (·), all have access to the random
oracle.

Definition 5.1. For an adversary A = (A1,A2), let ViewA1 be a random variable describing the
view of A1 including its random coins and signing-oracle/leakage-oracle responses.3 Let MSGA2 be the
random variable describing the message output by A2 in EUGλ

ℓ . We say that an adversary A = (A1,A2)

is entropic if H̃∞(MSGA2 |ViewA1) ≥ λ for security parameter λ.
We say that a signature scheme (KeyGen,Verify,Sign) is existentially-unforgeable with leakage ℓ if the
advantage of any PPT adversary A = (A1,A2) in the game EUGλ

ℓ (A) is negligible in λ. We say that
the signature scheme is entropically-unforgeable with leakage ℓ if the above only holds for entropic
adversaries A.

We now show that the Fiat-Shamir heuristic [FS86] can be used to construct entropically (resp.
existentially) unforgeable signature schemes secure against ℓ bits of key leakage, from ID schemes
secure against pre-impersonation (resp. anytime) leakage of ℓ bits. Recall that, for three round ID
scheme with flows (a, c, z), the Fiat-Shamir signature scheme defines a signature of a message m to be
(a, z) such that the conversation (a,H(a||m), z) is accepting. Here H(·) is hash function modeled as
a Random Oracle.

Theorem 5.1. Let ID = (ParamGen,KeyGen,P,V) by a public coins ID scheme consisting of three
rounds of interaction initiated by the prover. Let Sig = (ParamGen,KeyGen,Sign,Verify) be the signa-
ture scheme produced by the Fiat-Shamir heuristic applied to ID.

1. If ID allows pre-impersonation leakage ℓ, then Sig is entropically-unforgeable with leakage ℓ.
2. If ID allows anytime leakage ℓ, then Sig is existentially-unforgeable with leakage ℓ.

Concrete Schemes: Combining this theorem with the Okamotoλ
m identification scheme, analyzed

in Theorem 4.1, we obtain a (I) leakage-resilient existentially-unforgeable signature scheme where ℓ
approaches up to half the size of the secret key (and signature) and a (II) leakage-resilient entropically-
unforgeable signature scheme where ℓ approaches the size of the entire secret key (and signature). For

3In the Random Oracle Model, this also includes responses to Random Oracle queries.
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the BRM setting, we can instead use CompDirProdλ
n,m,t, analyzed in Theorem 4.3 and get a (III)

entropically-unforgeable signatures, where ℓ approaches the size of the entire secret key, and can be
made arbitrarily large without negatively impacting the other parameters (and can be much larger
than the size of a signature).

6 Authenticated Key Agreement

Using our leakage-resilient entropically-unforgeable signatures, we construct a leakage-resilient key
agreement protocol eSIG-DH. The details of the model, security notion, construction and proof are
in Appendix C. Bellow we a give high level overview of the result.

Model & Security Notion: We adapt the notion of SK-security with perfect forward secrecy from
Canetti and Krawczyk in [CK01]. In particular, we prove security in the unauthenticated-links (UM)
model with erasures where we consider a “man-in-the-middle” adversary playing against multiple
concurrent sessions between n players P1, . . . ,Pn. Further, every session is initiated by the adversary
which also chooses the intended peer with whom the session owner wishes to establish a shared session
key. Any such efficient adversary is called a KA-adversary.

The main modification we make to the [CK01] model is to augment the abilities of a KA-adversary

A with an attack called a leak query. In particular we give A access to n leakage oracles Oλ,ℓ
ski

(·)
where ski is the secret key of player Pi which can be called at any time, adaptively, and in any order.
Intuitively our definition guarantees the security of a session key for any session θ between players Pi

and Pj as long as:

1. Before session θ is initiated, A learns at most ℓ bits through leak query attacks against Pi and ℓ
bits in leak query attacks against Pj .

2. During session θ, A makes no leak query attacks against either player.

In particular, we require perfect forward secrecy : the key exchanged in θ remains secure even if A
learns the entire long-term secrets and internal states of Pi and Pj after θ is complete and the session
key has been deleted from their memory. (This security property is called.)

The Protocol: Our construction is essentially an instantiation of the SIG-DH construction of [CK01].
In SIG-DH a passive key agreement protocol (namely the Diffie-Hellman protocol) is authenticated
with a signature scheme. We only modify the construction by plugging in our entropically-secure
signatures with leakage ℓ. Since each party signs a random group element chosen by the other party
(and hence having entropy), our entropically-unforgeable signatures are sufficient for this setting. We
refer to the resulting protocol as eSIG-DH and the details of a slightly optimized construction are given
in Figure 6.

Theorem 6.1. Let Sig be a entropically-unforgeable signature scheme with leakage ℓ. Then, under
the DDH assumption, eSIG-DH is an ℓ-SK-secure KA protocol with perfect forward secrecy.

We notice that the above theorem constructs a KA protocol which essentially preserves the efficiency
of the underlying signature scheme. In particular, plugging in our specific instantiation, we get au-
thenticated key agreement protocols with the parameters claimed in Table 1.

Remark 6.1 (Generalization of Diffie-Hellman). We note that, although the construction of eSIG-DH
makes use of a Diffie-Hellman key agreement protocol, we can use any Key Encapsulation Mechanism
(formalized in [CS04]) in its place. More generally, it seems that any passively secure key agreement
protocol could be used. However, in general, this may require that players supply each other with
random challenges to be included with each message signed.
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Remark 6.2 (Using existentially-unforgeable signatures). Another option is to instantiate eSIG-DH
with a leakage-resilient, existentially-unforgeable signature scheme. This allows for the strengthening
of the security notion of the resulting AKA, in that security is maintained even if the adversary gets
to perform leakage attacks during a protocol execution.In particular, this allows us to guarantee the
security of sessions against which a leak query is made, provided that ephemeral state (and the agreed
upon session-key) is not leaked. On the other hand, this requires that the amount of information
leaked is smaller then the length of a signature, and thus is not suitable for the BRM setting.

7 Invisible Key Updates

We notice that our schemes also allow for efficient updates of the secret key, using an externally
stored “master update key”. Since this is technically simple, we only give a high-level description of
how this is done. In particular, for our constructions DirProdλ

n,m,t and CompDirProdλ
n,m,t, there is

already a “master key” which is used to create a secret-key database of unbounded size – namely,
the “master signing key” for generic signatures in DirProdλ

n,m,t and for modified BLS signatures in

CompDirProdλ
n,m,t. In our original descriptions, this master key is used once to create the secret-key

database sk = (sk[1], . . . , sk[n]) and helper help = (help[1], . . . , help[n]) of sizes n, and then deleted
immediately afterwards. However, we can store this “mater key” on a separate external device which
is not susceptible to leakage, as a “mater update key”. Then, to update the secret-key database,
we simply overwrite the current secret-keys (and helper values) with the “next” n values. That is,
sk := (sk[nk + 1], . . . , sk[n(k + 1)]), help = (help[nk + 1], . . . , help[n(k + 1)]) after the kth update. To
run an ID scheme, the prover simply sends the current index k to the verifier in the first flow of the
protocol, and the verifier chooses the challenge indices in the range [nk + 1, n(k + 1)]. Note that an
adversarial prover can send any index k′ of his choosing. However, if the adversary learns at most ℓ
bits in between any two updates, then there is no index for which the adversary can successfully run
an impersonation attack. The signature schemes and AKA protocols are then just based on the new
ID scheme. Notice that our updates do not modify the public key, and the user has a completely free
choice of when or how often the secret key is updated.
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A Entropy Preservation

Our analysis of entropy preservation is mostly based on the notion of approximately list-decodable
codes. We take the following definition from [IJK06].

Definition A.1. An error-correcting code enc : Σn
1 → ΣN

2 is (ε, δ, L)-approximately list-decodable if
for any value c̃ ∈ ΣN

2 there exists a collection of at most L source messages m1, . . . ,mL ∈ Σn
1 such that

for every codeword c = enc(m) that agrees with c̃ in at least an ε fraction of positions, there exists an
index i ∈ [L] such that the hamming distance d(m,mi) ≤ δk.

For a value c ∈ ΣN we use the notation c[i] to denote the ith symbol of c. The following general
lemma will be the main technical tool for analyzing entropy preservation for our constructions.
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Lemma A.1. Let enc : Σn
1 → ΣN

2 be (ε, δ, L)-approximately list decodable. Let X be a random variable

over Σn
1 , and E1 be an arbitrary experiment such that H̃∞(X |E1) ≥ log(L/ε)+ δn(log(|Σ1|)+ log(n)).

Let E2 be an experiment which first runs E1 and then chooses R uniformly at random over [N ] and
gives R to A . Then H̃∞(enc(X)[R] | E2) ≥ log(1/ε) − 1.

Proof. We argue the contrapositive. Assume that H̃∞(enc(X)[R] | E2) < log(1/ε) − 1. Then there
is a statistical predictor A such that Pr[AE2 = enc(X)[R]] > 2ε. Let us consider pairs (X,V ) where
V denotes a random variable for the execution of AE1 – i.e everything until the point where R1 is
chosen. We say that a pair (x, v) is “good” if Pr[Aexp2 = enc(X)[R] | X = x, V = v] ≥ ε (where the
probability is taken entirely over R). We define the event G to be the event that the random variables
(X,V ) are a “good” pair. Then, using standard good-bad analysis, we get Pr[G] > ε.
We now define a machine B which runs in the experiment E1 and acts as follows:

1. Run A with the oracle E1(·). At the conclusion, of this process, run A all N possible values of
R. This results in some N predictions c̃ = (c̃[1], . . . , c̃[N ]). Approximately list-decode c̃ to a set
of L values m1, . . . ,mL as defined in Definition A.1.

2. Choose mi uniformly at random from this list.

3. Choose a random subset S ⊂ [n] of size δn.

4. Output a value m ∈ Σn
1 by choosing m[j] uniformly at random from Σ1 for each j ∈ S, and

setting m[j] := mi[j] for each j 6∈ S.

We define the events: E1 is the event (X,V ) is a good pair, E2 is the event that d(enc(X),mi) ≤ δn,
E3 is the event that mi = enc(X) for each j 6∈ S, and E4 is the event that m = enc(X). Then

Pr[BE1(·) = X] = Pr[E4] ≥ Pr[E1] Pr[E2 | E1] Pr[E3 | E1, E2] Pr[E4 | E3, E2, E1]

≥ Pr[G]

(
1

L

)(
1

n

)δn ( 1

|Σ|

)δn

(1)

>
( ε

L

)
2−δn(log(|Σ1|)+log(n))

where (1) follows by noting:� Pr[E2 | E1] ≥ 1/L. The event E1 implies that A answers an ε fraction of the positions c̃[i]
correctly and therefore at least one of the values m1, . . . ,mL is of distance δn from X.� Pr[E3 | E2, E1]

(
1
n

)δn
. If E2 occurs then there at most δn incorrect positions in mi. Therefore,

at least one choice of δn indices includes all of such positions.� Pr[E4 | E3, E2, E1] ≥
(

1
|Σ|

)δn
. This is the event that m[j] ∈ Σ is chosen correctly for each j ∈ S.

There are exactly δn independent choices, each uniform over the set Σ.

Therefore H̃∞(X|E1) < log(L/ε) + δn(log(|Σ1|) + log(n)), concluding the proof. 2

We now apply the above lemma to some specific encodings. The first such code is the “direct-
product” code DirProd : Σn × [n]t → Σt which takes a value x = (x[1], . . . , x[n]) ∈ Σn and indices
(r1, . . . , rt) ∈ [n]t and outputs (x[r1], . . . , x[rt]). Interestingly, the idea of using direct products is
reminiscent of lemmas in [NZ96, Vad04] where it is shown that, for the special case where the alphabet
Σ consists of bits, the entropy rate is preserved under direct product codes (in fact, these lemmas allow
for the use of randomness-efficient oblivious samplers). Our lemma, on the other hand, is proven for
arbitrary alphabets, and is more suitable for our needs. First we recall that direct-product codes are
good approximately list decodable codes.
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Lemma A.2 (from [IJK06]). Let enc be the t-wise direct product code over an initial alphabet
Σ. Then, for every ε > 0, δ ≥ 2 log(1/ε)/t the code enc is (ε, δ, L)-approximately list-decodable where
L ≤ 1/(ε2 − (1− δ)t) ≤ 1/(ε2 − e−δt) ≤ 4/ε2.

Now, taking the above lemma in conjunction with Lemma A.1, we get the following parameters.

Lemma A.3. Let DirProd be the t-wise direct product code over an alphabet Σ of size q. Let X be a
random variable over Σn

1 and E1 be an arbitrary experiment. Define E2 to be the experiment where, at
the conclusion of E1, a uniformly random index R ∈ [N ] is chosen and given to the predictor. Then:
(1) For any c > 0, if H̃∞(X | E1) ≥

2c
t n(log(q) + log(n)) + 3c + 5 then H̃∞(DirProd(X,R) | E2) > c.

(2) For alphabets of size q = pm, assume H̃∞(X | E1) ≥ n(m−1) log(p)−ℓ where ℓ ≤ (1−δ)nm log(p)

for some δ. Then H̃∞(DirProd(X,R) | E2) > c if δ ≥ [2c
t + (1+log(n)/ log(p))

m + 3c+5
nm log(p) ].

Proof. By Lemma A.2, the t-wise direct product code is (ε, δ, L)-approximately list decodable for
any ε ≥ 0 and any δ ≥ 2 log(1/ε)/t with L = 4/ε2. Setting c = log(1/ε) − 1, δ = (2c − 2)/t, we see
that the first part of the corollary follows from Lemma A.1.
For the second part, H̃∞(DirProd(X,R) | E2) ≥ c is implied by

H̃∞(X | E1) ≥ n(m− 1) log(p)− ℓ ≥ (2c/t)n(m log(p) + log(n)) + 3c + 5

which is in turn implied by

ℓ ≤ n(m− 1) log(p)− (2c/t)n(m log(p) + log(p))− 3c− 5

= (1− δ)(nm log(p))

2

We can also apply our main entropy lemma (Lemma A.1) to standard error correcting codes with
(very large) distance D. First we recall that such codes are good list-decodable codes.

Lemma A.4 (Johnson Bound from [Gur04]). For any [N, k,D]q code over an alphabet Σ, any

r ∈ ΣN the number of codewords that agree with r in at least an ε ≥
√

2N−D
N fraction of positions is

bounded by L = 2
ε2 .

Now, taking the above lemma in conjunction with Lemma A.1 we get the following parameters.

Corollary A.1. Let enc be an error-correcting code with distance D, X be a random variable over
Σn

1 , and E1 be an arbitrary experiment. Define E2 to be the experiment where, at the conclusion of
E1, a uniformly random index R ∈ [N ] is chosen and given to the predictor. Then for any c > 0, if

H̃∞(X | E1) ≥ 3c + 1 then H̃∞(enc(X)[R] | E2) ≥ min
(
c, 1

2(log( N
N−D )− 1)

)
.

Proof. The Johnson bound shows that enc is (ε, 0, L) list decodable for any ε ≥
√

2N−D
N with L = 2

ε2 .

Therefore, by Lemma A.1, if H̃∞(X|E1) ≥ 3 log(1/ε) + 1 then H̃∞(enc(X)[R] | Z,R) ≥ log(1/ε) − 1.

Setting c = log(1/ε) we see that the theorem holds for any c ≤ log
(√

N
2(N−D)

)
≤ 1

2(log(N/(N −D))−

1). 2

Lastly, we consider the compressed direct-product code CompDirProd which is used in the ID scheme
of Construction 3. This code may not appear very natural from an information theoretic sense, but
it ends up being useful in our constructions where we must match information theoretic codes with
computational assumptions. We define the function CompDirProd : F

n×m × ([n]t × F) → F
m, over

fields F of size p. It is actually easier to define CompDirProd as a composition of the direct product
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function DirProd : (Fm)n × [n]t → (Fm)t (over the alphabet F
m) and a Comp : (Ft×m)× F→ (F)m

defined by Comp(x, e) = (w1, . . . , wm) where wj =
∑t

i=1(x[i][j])ei−1 is the eth symbol of the Reed-
Solomon encoding of column j of the matrix x. Looking at Comp as an error correcting code (where
the Comp(x, e) defines the eth symbol of the encoding of x), any t positions in the codeword uniquely
determine the source value x and thus the distance of this code is D ≥ p − t + 1. This allows us to
use Lemma A.3 and Corollary A.1 to analyze the function CompDirProd.

Lemma A.5. Let CompDirProd : F
n×m × ([n]t × F) → F

m be as above, and let E1 be an arbitrary
experiment such that H̃∞(X | E1) ≥ n(m− 1) log(p)− ℓ for ℓ ≤ (1− δ)nm log(p) for some δ. Define
E2 to be the experiment where E1 is run first, and at its conclusion, a uniformly random index R =
(R1, R2) ∈ ([n]t × F) is chosen and given to the predictor. Then H̃∞(CompDirProd(X,R) | E2) ≥

min(c, (log(p)− log(t)− 1)/2) if δ ≥ [6c+2
t + (1+log(n)/ log(p))

m + 9c+8
nm log(p) ].

Proof. Let us define E1.5 where the experiment E1 is run, and then only the value R1 is sent.
By Lemma A.3, we get H̃∞(DirProd(X,R1) | E1.5) ≥ c′ where c′ = 3c + 1. Then, recalling that
CompDirProd(X, (R1, R2)) = Comp(DirProd(X,R1), R2) we get,

H̃∞(CompDirProd(X, (R1, R2)) | E2) = H̃∞(Comp(DirProd(X,R1), R2) | E2) ≥ min(c, (log(p)−log(t)−1)/2)

where the last inequality follows from Corollary A.1, applied to X ′ = DirProd(X,R1).
2

B Proofs Omitted From Main Body

B.1 Lemma 2.1

Proof of Lemma 2.1. By the (perfect) HVZK assumption, for any (x,w) ∈ R, there is a simulator
SHVZK(x) which defines a joint distribution (A,C,Z) on conversations (a, c, z) produced by {P(x,w) ⇋

V(x)} (honest prover, verifier). We claim that, for any (x,w) ∈ R and any arbitrary malicious verifier
V ′(x,w), the distribution {P(x,w) ⇋ V ′(x,w)} can be simulated (inefficiently) by the on-line simulator
S(x) in the following manner:
(1) S(x) chooses a ←R A and sends it to V ′(x,w) (2) S(x) gets a challenge c (3) S(x) samples
z ←R (Z|A = a,C = c) and sends z to V ′(x,w).
The simulation by S(x) perfectly matches the actual execution since (1) by the perfect HVZK property,
S(x) samples a from the same distribution as P(x,w) (2) by the perfect HVZK property, for any
particular choice of A = a,C = c, the value z is sampled from the same distribution as that of P(x,w)
computing z honestly, given that the first message was a and the challenge was c.
Since the simulator S(x) can replace the oracle P(x,w) in any experiment in which the predictor A
is given x, the entropy of W is the same in experiments E1 and E2. 2

B.2 Lemma 3.1

Proof of Lemma 3.1. Assume that for some predictor A, Pr[AE2(·) = SK] ≥ ε. Then we can construct

a predictor BE1(·) which runs A internally and, each time A attempts to query Oλ,ℓ
SK(·) with a leakage

function that has range {0, 1}αi , the predictor B just gives a random string of length αi to A. Let G

be the event that B gives the same answers as Oλ,ℓ
SK(·) would give on these queries. Then Pr[G] ≥ 2−ℓ

since B has to guess at most ℓ bits during the execution. Therefore Pr[BE1(·) = SK] ≥ Pr[BE1(·) =
SK | G] Pr[G] ≥ Pr[AE2(·) = SK]2−ℓ ≥ ε2−ℓ. 2
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B.3 Lemma 4.1

Proof of Lemma 4.1. For (1) we show a reduction. Assume that an adversary A runs in time t and
solves A(params) = (pk, sk, sk′) with sk′ 6= sk and (pk, sk), (pk, sk′) ∈ R with probability ε. We use A
to construct an adversary B which breaks the DL problem in time ≈ t and with probability ε/m. In
particular, B receives a challenge (g,G, p), gx and attempts to compute x. The attacker B computes
generators g1, . . . , gm by choosing a random index ρ ∈ [m], setting gρ := gx, and setting gj := gaj

for uniformly random aj ← Zp for all j 6= ρ. Then B calls A on input params := (p,G, g1, . . . , gm).
Assume that A succeeds in outputting pk, sk = (x1, . . . , xm), sk′ = (x′

1, . . . , x
′
m) such that sk′ 6= sk and

(pk, sk), (pk, sk′) ∈ R. Then, with probability at least 1/m, we get xρ 6= x′
ρ (since at least one xi 6= x′

i

and the choice of ρ is independent of A’s view). If this is the case, then:

g
∑m

i=1,i6=ρ aixi(gx)xρ =
∏

gxi

i =
∏

g
x′

i

i = g
∑m

i=1,i6=ρ aix
′
i(gx)x

′
ρ

⇒
m∑

i=1,i6=ρ

aixi + xxρ =
m∑

i=1,i6=ρ

aix
′
i + xx′

ρ

⇒ x =

m∑

i=1,i6=ρ

ai(x
′
i − xi)/(xρ − x′

ρ)

so B can easily compute x by computing the right-hand side of the above equation.
For (2), we show perfect completeness, special soundness and (perfect) HVZK. Completeness is

obvious. For special soundness we note that for any two conversations (a, c, z), (a, c′, z′) which are
both accepting for an instance pk and c 6= c′, we get:

m∏

i=1

gzi

i = ahc and

m∏

i=1

g
z′
i

i = ahc′

⇒

m∏

i=1

g
zi−z′i
i = hc−c′

⇒
m∏

i=1

g
(zi−z′

i
)/(c−c′)

i = h

So we see that it is easy to compute x′
i = (zi − z′i)/(c − c′) yielding a witness sk′ = (x′

1, . . . , x
′
m)

such that (pk, sk′) ∈ R. For the (perfect) HVZK property, we have a simulator S(pk) which chooses
c, z1, . . . , zm at random from Zp and sets a := (

∏m
i=1 gzi

i )/hc. For any (pk, sk) ∈ R, the distributions
S(pk) and {P(pk, sk) ⇋ V(pk)} are both uniformly random over all values (a, c, z = (z1, . . . , zm))
such that

∏m
i=1 gzi

i = ahc. Therefore the simulation perfectly matches the honest conversation. This
completes the proof of (2).

Part (3) simply follows from the fact that, for any value of pk, there are pm−1 possibilities for sk,
each of which is equally likely. 2

B.4 Theorem 4.2

Proof of Theorem 4.2. Assume that an adversary A runs in time t and succeeds with probability ε
in the attack hame IDPREλ

ℓ (A). Then, we construct an adversary B which runs in time ≈ 2t and

Pr

[
sk∗ 6= ˆsk∗ and (pk∗, sk∗), (pk∗, ˆsk∗) ∈ R

∣∣∣∣
params← ParamGen(1λ)

(pk∗, sk∗, ˆsk∗)← B(params)

]
≥ ε2 −

1

p
− 2−λ.

The adversary B gets params and runs (pk, help, sk)← KeyGen(). Then it gives pk, help to the adversary
A, and runs the attack game IDPREλ

ℓ (A), by acting as the challenger for A and providing with access
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to Oλ,ℓ
sk (·) and P(pk, help, sk). Let c1 = (r1, . . . , rt, c

∗
1) be the challenge that was chosen during this run.

Then B rewinds A and gives it the challenge c2 = (r1, . . . , rt, c
∗
2) for a fresh value c∗2 ← Zp and gets a

second response. Let E1 be the event that both runs are accepting and c∗1 6= c∗2. Then, by the same
analysis as in Claim 4.1, Pr[E1] ≥ ε2− 1/p. Let E2 be the event that the public keys pk1, . . . , pkt sent
by A match the actual public keys pk[r1], . . . , pk[rt] (which were chosen by B during key generation) in
both conversations. Then, since an incorrect public key pki 6= pk[ri] implies a forgery on the signature
scheme, Pr[E1∧¬E2] ≤ negl(λ) and so Pr[E1∧E2] ≥ ε2−1/p−negl(λ). Finally assume E1, E2 occur.
Then let
(
(a

(1)
1 , . . . , a

(1)
t ), c1 = (r1, . . . , rt, c

∗
1), (z

(1)
1 , . . . , z

(1)
t )
)

,
(
(a

(2)
1 , . . . , a

(2)
t ), c2 = (r1, . . . , rt, c

∗
2), (z

(2)
1 , . . . , z

(2)
t )
)

be the two accepting conversations (without public keys and signatures). Using the knowledge
soundness of the generalized Okamoto scheme, these conversations can be used to efficiently re-
trieve secret keys (ŝk1, . . . , ŝkt) for the public keys (pk[r1], . . . , pk[rt]). Let E3 be the even that
(ŝk1, . . . , ŝkt) = (sk[r1], . . . , sk[rt]), i.e. that the extracted secret keys perfectly match the ones chosen
by B during key generation.

We claim that Pr[E3] ≤ 2−λ. For this argument, we use the fact that the constructed ID scheme
is HVZK for the relation
R′ = {((pk, help), sk) | (pk[i], sk[i]) ∈ R, for i = 1, . . . , n}. This is easy to check using the HVZK
simulator for the underlying generalized Okamoto scheme.

Claim B.1. The probability of E3 is at most Pr[E3] ≤ 2−λ.

Proof. Let E1 be the experiment in which a predictor is given the value PK,HELP and oracle access
to Oλ,ℓ

SK(·), P(PK,SK). Then (reusing the same analysis from Claim 4.2) we get H̃∞(SK | E1) ≥

H̃∞(SK | PK) − ℓ ≥ n(m − 1) log(p) − ℓ. We can think of the rewinding process as an experiment
E2, which first runs E1 and then all oracle access is taken away and the predictor gets a value
R = (R1, . . . , Rt), which is random on [n]t. We can think of (SK[R1], . . . ,SK[Rt]) = DirProd(SK, R)
where DirProd is the direct product function which, on input a vector and indices, outputs the value
of the vector at the specified indices. Now we use our analysis in Appendix A, and in particular
Lemma A.3, we get H̃∞((SK[R1], . . . ,SK[Rt]) | E2) ≥ λ. Therefore, the probability of E3 is bounded
by 2−λ. 2

Using the above claim, Pr[E1 ∧ E2 ∧ ¬E3] ≥ ε2 − negl(λ). If E1 ∧ E2 ∧ ¬E3 occurs, than at least one
of the extracted keys is different than one of the generated keys – i.e. sk[ri] 6= ŝki. In this case, the
adversary B succeeds in its attack game, by outputting the tuple (pk[ri], sk[ri], ŝki). 2

B.5 Theorem 4.3

Lemma B.1. The following two properties hold for the CompDirProdλ
n,m,t construction:

1. The protocol (P,V) is HVZK for the relation: R′ = {((pk, help), sk) | (pk[i], sk[i]) ∈ R for i =
1, . . . , n}.

2. H̃∞(SK | PK,HELP) ≥ n(m− 1) log(p).

Proof of Lemma B.1. The HVZK simulator S(pk, help) chooses r1, . . . , rt, e randomly, and computes
the values pk∗, σ∗ using the helper string help, by running the computation specified in step (3) of
Figure 3. Then S just runs the simulator for the generalized Okamoto scheme with the key pk∗ to
produce the values (a, c∗, z). Putting these values together completes a conversation which follows
the specified distribution. The entropy calculation in (2) follows from the fact that, for each value of
PK,HELP there are pn(m−1) possible values for SK, each of which is equally likely. 2
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Proof of Theorem 4.3. First we show (perfect) completeness. We notice that

pk∗ =
t∏

i=1

pk[ri]
(ei−1) =

m∏

j=1

g
(x∗

j )

j

and so (pk∗, sk∗ = (x∗
1, . . . , x

∗
m)) is a valid Okamoto key-pair. Hence, by the completeness of Okamoto,

the conversation (a, c∗, z) is accepting. Also,

σ∗ =
t∏

i=1

σ[ri]
(ei−1) =

(
pk∗

t∏

i=1

H(ri)
(ei−1)

)s

and so (u, v = us, (pk∗
∏t

i=1 H(ri)
ei−1

), σ∗) is a DDH tuple. Therefore both verification conditions are
always satisfied and the verifier always accepts an honest proof.

For security, assume that there is an adversary A which runs in time t (including the run-time of

the queries for Oλ,ℓ
sk (·)) and has advantage ε in the game IDPREλ

ℓ (A). Consider the following rewinding
process. First the game IDPREλ

ℓ (A) is first run to completion. Assume that, during this run, A received
the challenge c1 = (r1, . . . , rt, e, c

∗
1) in the impersonation stage. Then, A is rewound and given a new

challenge c2 = (r1, . . . , rt, e, c
∗
2) for a fresh c∗2, chosen uniformly at randomly from Zp (but the other

components remain the same in c1, c2). Let

(a, c1 = (r1, . . . , rt, e, c
∗
1), (z

(1), pk∗1, σ
∗
1)) , (a, c2 = (r1, . . . , rt, e, c

∗
2), (z

(2), pk∗2, σ
∗
2))

be the two received conversations produced by A during this rewinding process. Let E1 be the
event that both conversations are accepting (meaning that that they satisfy properties (I),(II) defined
in Figure 3) and that c∗1 6= c∗2. Then, following the same analysis as in the proof of Claim 4.1, the
probability of E1 is at least ε′ where ε′ ≥ ε2−1/p. We define pk∗, sk∗ = (x∗

1, . . . , x
∗
m), σ∗ to be the values

corresponding to an honest conversation, which would be produced by an honest prover P(pk, sk) on
challenges of the form (r1, . . . , rt, e, ·). Let E2 be the event that (pk∗1)

c∗1/(pk∗2)
c∗2 6= (pk∗)c

∗
1−c∗2 . Then

either Pr[E1 ∧ E2] ≥ ε′/2 (case A) or Pr[E1 ∧ ¬E2] ≥ ε′/2 (case B). We break up the rest of the
analysis by these two cases. For both cases we use the fact that, if condition (I) holds, then:

a(pk∗1)
c∗1 =

m∏

j=1

g
z
(1)
j

j , a(pk∗2)
c∗2 =

m∏

j=1

g
z
(2)
j

j =⇒
(pk∗1)

c∗1

(pk∗2)
c∗2

=

m∏

j=1

g
z
(1)
j

−z
(2)
j

j (2)

Case A: We show that the adversary A can be used to break the CDH problem. Let B be a CDH
adversary, which receives, as a challenge, the description of a group G of order p and (random) elements
u, v = us, g in G. Then B chooses system parameters by sampling gj = gγj for γj ← Zp. It sets
params = (p,G, g1, . . . , gm, u), pk = v. The secret database sk = (sk[1], . . . , sk[n]) is chosen by setting
(pk[i], sk[i]) ←R Gen(). Lastly, the helper values help = (σ[1], . . . , σ[n]) are chosen by programming
the random oracle H(i) := uβi/pk[i] for a random βi ←R Zp and setting σ[i] := vβi = (H(i)pk[i])s

for i = 1, . . . , n. Then B gives the parameters params, and the keys (pk, sk, help) to A and runs the
rewinding process. Since all values chosen by B come from the same distribution as in the original
process, the event E1 ∧ E2 occurs with probability ε′/2 . If this is the case, then property (II) holds
for both received conversations, as well as the honest values pk∗, σ∗, sk∗ (which are known to B) and
so

σ∗ = (pk∗w)s, σ∗
1 = (pk∗1w)s, σ∗

2 = (pk∗2w)s where w =

t∏

i=1

H(ri)
ei−1

.

This implies
(σ∗

1)
c∗1

(σ∗
2)

c∗2
=

(
wc∗1−c∗2

(pk∗1)
c∗1

(pk∗2)
c∗2

)s

, (σ∗)c
∗
1−c∗2 =

(
wc∗1−c∗2(pk∗)c

∗
1−c∗2

)s
.
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Dividing the two equations by each other, the adversary B produces a value σ̂ such that:

σ̂ =

((
(pk∗1)

c∗1

(pk∗2)
c∗2

)(
1

(pk∗)c
∗
1−c∗2

))s

=




m∏

j=1

g
z
(1)
j

−z
(2)
j

−x∗
j
(c∗1−c∗2)

j




s

where z
(1)
j , z

(2)
j , x∗

j are all known to B. Now, using the fact that B knows γj such that gj = gγj , B
can rewrite the above equation as σ̂ = (gω)s for some known value ω. Moreover, the event E2 implies
that ω 6= 0. Therefore, B can efficiently compute (σ̂)1/ω = gs and thus solves the CDH problem with
probability at least ε′/2.

Case B: We show how to use A to construct an adversary B, which, on input (p,G, g1, . . . , gm)

computes (pk∗, sk∗, ˆsk∗) such that (pk∗, sk∗), (pk∗, ˆsk∗) ∈ R and sk∗ 6= ˆsk∗. As shown in Lemma 4.1,
this is equivalent to solving DL (and hence CDH). The adversary B chooses an element u ←R G and
sets params = (p,G, g1, . . . , gm, u). It then runs the rewinding process with the parameters params and
following everything else as specified: (1) choosing (pk, sk, help)← KeyGen(), (2) running as P(pk, sk)

and as Oλ,ℓ
sk (·) with A, (3) rewinding to get two conversations with different challenges c∗1, c

∗
2. Assume

that the event E1 ∧ ¬E2 occurs. Then (pk∗)c
∗
1−c∗2 =

∏m
j=1 g

z
(1)
j

−z
(2)
j

j by equation (2). Therefore, B can

efficiently compute the values x̂∗
j

def
= (z

(1)
j − z

(2)
j )/(c∗1 − c∗2) and the witness ˆsk∗ = (x̂∗

1, . . . , x̂
∗
m) for pk∗.

We call this the extracted witness. However, B also has the honest witness sk∗ for pk∗, which it can
compute from sk. Let E3 be the event that ˆsk∗ = sk∗.

Claim B.2. The probability of E3 is at most Pr[E3] ≤ 2−Ω(λ).

Proof. Let E1 be the experiment in which a predictor is given the value PK,HELP and oracle access
to Oλ,ℓ

SK(·), P(PK,SK). Then (reusing the same analysis from Claim 4.2) we get H̃∞(SK | E1) ≥

H̃∞(SK | PK) − ℓ ≥ n(m − 1) log(p) − ℓ. We can think of the rewinding process as an experiment
E2, where the predictor first runs E1, and then is given a random value R over

(
[n]t × Zp

)
(i.e. a

random variable for the values (r1, . . . , rt, e)). We want to show that it is unlikely that a predictor
can outputs SK∗ in this experiment, where SK∗ is the compressed key. Here we use one of our
entropy preservation analysis from Appendix A, where we analyze exactly the compression function
called CompDirProd such that SK∗ = CompDirProd(SK, R). In particular, Lemma A.5 shows that

H̃∞(SK | E1) ≥ n(m−1) log(p)− ℓ implies that H̃∞(SK∗ | E2) ≥ min(λ, log(p)−log(t)−1
2 ) = Ω(λ) when

ℓ ≤ (1− δ)nm log(p). Therefore Pr[E2] ≤ 2−H̃∞(SK∗ | E2) ≤ 2−Ω(λ).

2

Therefore, the probability of E1 ∧ ¬E2 ∧ ¬E3 is at least ε′ − 2−Ω(λ) and, with this probability, the
adversary B solves the discrete logarithm problem. 2

B.6 Theorem 5.1

Proof of Theorem 5.1. We begin by proving the theorem for the pre-impersonation leakage case.
Given an s-entropic forger A = (A1,A2) which has advantage ε in EUGλ

ℓ we construct an ID scheme
attacker B which has probability polynomial in ε at breaking the security of the ID scheme.

We now show that the probability that B convinces verifier V during the Impersonation Stage is
polynomially related to the advantage of A. For an execution of A let S be the event that A outputs
a signature (â, ẑ) of a new message m. Then by definition, for a random real world execution we have
that Pr[S] = ε is exactly the advantage of A in the signature attack game.
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Reduction B

The attacker B gets input (params, pk, help) and oracle access to the leakage oracle Oλ,ℓ
sk (·) and to a prover

P(pk, help, sk). Its goal is to win the IDPREλ
ℓ (B) attack game (see Definition 4.1).

1. Let q be an upper bound on the number Random Oracle queries made by A. B selects a random
index ρ← [q]. B interacts with P(pk, help, sk) using uniformly random challenges ci to obtain a larger
number of conversations of the form (ai, ci, zi). After this point there is no more interaction with P .
B initializes A1 with input (params, pk, help). Eventually B also passes the hint v from A1 to A2.

2. B simulates the oracles Ssk(·),O
λ,ℓ
sk (·) as well as the Random Oracle H for A as follows:

Random Oracle Queries (expect query ρ): For each Random Oracle query x if H(x) has al-
ready been defined, output it. Otherwise interpret x = (a, m) and see if list of conversations
includes one of the form (a, cj , zj). If so then define H(x) := cj , associate the conversation
(a, cj , zj) with x and remove it from the list. Output cj . If no conversation matches a then
select a random response c, define H(x) := c and output c.

Signature Queries: On input m take the next conversation (a, c, z) from the list and check if
H(x = (a, m)) is defined. If so there must be a conversation (a, c′, z′) associated with x.
Respond with signature (a, z′). Otherwise define H(x) := c, associate conversation (a, c, z)
with x, remove (a, c, z) from the list and output signature (a, z).

Random Oracle Query ρ: When the ρ-th Random Oracle query x = (a, m) is made, if H(x)
has already been defined then B outputs abort-1 and terminates. Otherwise B enters the
impersonation stage of ID attack game IDPREλ

ℓ and loses access to the leakage oracle. It starts
a fresh interaction with the honest verifier V(pk). B interprets x as x = (a, m) and sends a to
V(pk) receiving c in response which it outputs as the response to it’s ρ-th query.

Leakage Queries Queries: If a leakage query is made after the ρ-th Random Oracle query then B
outputs abort-2 and terminates. Otherwise it forwards the leakage query to it’s leakage oracle
and outputs the response.

3. Eventually A2 outputs a message m and signature (a, z). If the signature is valid and (a, m) was the
ρ-th Random Oracle query then B sends z to V(pk) and terminates.

Figure 5: Reduction from Sig attacker to ID attacker.

For an execution of A let S1 (occurring with probability ε1) be the event that S occurs and, at
some point, A queries the random oracle on x̂ = (â,m). Suppose event S occurs but event S1 does
not, then with overwhelming probability the conversation (â,H(x̂), ẑ) is not an accepting conversation
since otherwise A could be used to break the soundness of the ID scheme. (In particular A, on input
only the public key, could generate a valid third flow message for a first flow of it’s choosing without
even seeing the challenge from the verifier.) Therefore we have that ε1 ≤ ε− negl for some negligible
function negl in λ.

In an execution where S1 occurs let ρ′ be the index of the first Random Oracle query of the
form (·,m). Consider an execution of A emulated exactly as in the real world except that B first
guesses ρ ← [q]. Let S2 (occurring with probability ε2) be the event that S1 occurs and B guesses
ρ = ρ′. Since the view of A is independent of the value of ρ which is chosen uniformly we have that
ε2 = ε1/q = (ε− negl)/q.

Now consider an execution of A emulated by B as described in Figure 5. Let S3 (occurring with
probability ε3) be the event that S2 occurs and B does not output abort-2 and let S′

3 be the event
that S2 occurs but B does output abort-2. Then Pr[S2] = Pr[S2 ∧ S3] + Pr[S2 ∧ S′

3] = Pr[S3] + Pr[S′
3].

If event S3 occurs then the ρ-th query must have been made by A1 since A2 can not make leakage
queries. Because A is an s-entropic adversary this can happen with at most probability 2−s. Thus we
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have that we have ε2 ≤ ε3 + 2−s.
Further we argue that in such an emulation, conditioned on event S3 occurring, the view of an

adversary A is identically distributed to a real world execution. This follows from two observations.
First, all Random Oracle queries in the emulation are answered consistently with uniformly random
and independent responses. Further these are also consistent with the responses to the signature oracle.
The second observation is that the responses to A’s signature queries have the same distribution as
in a real world execution. In particular the values of a and z used in the signatures are selected
independently of the message and according to the honest provers algorithm for a fresh random
challenge.

Therefore we can conclude that A behaves exactly as in real world executions which implies ε3 ≥
ε2−2−s = ε1/q−2−s = (ε−negl)q−2−s which is polynomial related to ε for s ≥ λ. Note that emulated
executions where event S3 occurs correspond exactly to the executions of B when it convinces V during
the Impersonation Stage of the ID attack game. Thus the proof for security with pre-impersonation
leakage is complete.

The only difference in the proof of security with any-time leakage is that in the reduction B we
remove the condition for outputting abort-2. That is leakage queries are always forwarded to the
leakage oracle regardless of when they occur. (Recall that in the attack game for any-time leakage B
retains access to the leakage oracle even during the Impersonation Stage.) Therefore the only change
to the above analysis is that the probability of event S′

3 is 0 and so we can bound ε3 ≥ ε1/q which is
also polynomial in ε. 2

C Authenticated Key Agreement

In this section we give a definition for authenticated key agreements secure against side channel leakage
which is derived from the notion of SK-security of Canetti and Krawczyk in [CK01] by simplifying the
presentation of the model for our needs while augmenting the adversaries capabilities with calls to an
appropriate side channel oracle which can be evaluated on the long-term secret of players. Next we
give a construction eSIG-DH and prove it secure.

Communication Model & Sessions: We prove security in the unauthenticated-links (UM) model
of [CK01]. That is we consider an internet like setting with PKI setup; an asynchronous network of n
players {P1, . . . ,Pn} with multiple concurrent sessions where players are message driven probabilistic
Turing Machines. The PKI is a public file associating players with keys.4 Each time a player par-
ticipates in a new instance of a key agreement (KA) protocol it creates a new session of which it is
the owner. Each such session is associated with a unique session ID sid and a peer (the player with
whom the owner intends to agree on a key). For a given session the owner is assigned one of two roles:
initiator or responder. An important notion for defining security of KA protocols is that of a matching
sessions.5 A pair of sessions S0 and S1 are called matching if:

1. The sid are equal.

2. The role of the owner of S0 is different from the role of the owner of S1.

3. The peer of the owner of S0 is the owner of S1 and vice versa.

Following [Kra05], remaining consistent with [CK01], we make the following two simplifying assump-
tions.

4In particular this is the weakest form of PKI where no properties of the keys including knowledge of the secret key
are verified by the registration server.

5Intuitively, the security of a session key derived during a particular KA protocol can not be guaranteed for one player
if the other has been corrupted.
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1. Sessions are initiated at a player by an unspecified higher level protocol which provides the
intended peer and role. (This is called the “pre-specified peer model“ in [CK02])

2. sid’s will take the form (Â, B̂, Out, In) where Â is the owner’s identifier, B̂ is the peer’s identifier,
Out are the outgoing messages and In the incoming messages.

A session can be marked as complete at which point the owner outputs the session-key and deletes all
session specific state from memory. Finally, a complete session can be marked as expired which means
that the session-key is deleted as well. Intuitively, if security for the session key is guaranteed after
it has expired even if the long-term secret was subsequently given to the attacker then this captures
perfect forward secrecy (PFS ).

Adversarial Model and Exposures: The adversary in the UM is a classic ”man-in-the-middle“
adversary. More precisely a KA-adversary A is an active adversary with full control over the routing
and scheduling of messages. A initiates all session’s and may at any point launch a session exposure
attack against a specified session which is then called exposed. A session exposure attack may be any
one of the following types:

state-reveal query: These are attacks are launched against incomplete sessions and result in the adver-
sary learning all session specific internal state of the owner. This does not include long-term
secrets.

session key query: These attacks are launched against complete sessions and result in the adversary
learning the value of the owner’s seesion-key.

corrupt player: These attacks are launched against a specified player and result in the adversary learn-
ing all secrets of that player. In particular A learns all session-keys of unexpired sessions, internal
states of incomplete sessions, and long-term secrets. Further the owner is called corrupted, all fu-
ture actions of that player are assumed to be under the control of the adversary and all unexpired
sessions of that owner are also exposed.

Leakage: We now diverge from the original model of [CK01] and introduce a fourth type of at-
tack modeled by giving the adversary access a the leakage oracle for each player. In particular an
ℓ-KA-adversary A is a KA-adversary such that for every player P with secret key sk, A has access to

the leakage oracle Oλ,ℓ
sk (·). A can then launch the following additional attack:

leak query: At any time, for any player P where P has secret key sk, A can submit a query Oλ,ℓ
sk (·).

Any currently incomplete sessions where owner = P are subsequently marked as exposed.

Secure KA Protocols Analogously to [CK01] we can now define security for KA protocols as the
inability of any efficient ℓ-KA-adversary A to distinguish the session-key from a random key for any
complete test-session of it’s choosing amongst all complete unexposed unexpired sessions.

At any point during it’s execution A can select a test-session (i.e. the challenge session) from
amongst all currently complete but unexposed and unexpired sessions. The challenger selects a random
bit b and if b = 0 it hands the session-key v0 to A. Otherwise it selects a fresh random and independent
session-key v1 from the same distribution as that generated by the protocol and hands this to A. After
receiving vb, A continues execution (with the restriction that it can not expose the test-session) until
it finally outputs a guess bit b′. We call the quantity

∣∣Pr[b = b′]− 1
2

∣∣ the advantage of A and call as
test-session winning if b = b′.

Definition C.1. Let A be an efficient ℓ-KA-adversary. A KA protocol π in the UM model is called
ℓ-SK-Secure with PFS if for all such A running against π we have that:
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Completeness: If two uncorrupted parties complete matching sessions then they both output the
same key.

Privacy: The advantage of A is a negligible function in λ.

C.1 Construction

We now give the protocol eSIG-DH in figure Figure 6 constructed from an entropically-unforgeable
signature scheme Sig = (KeyGen,Sign,Verify) with leakage ℓ and Diffie-Hellman key agreement (along
the lines of the SIG-DH protocol in [CK01]).

Public Parameters: G = (g, G, p) a DDH group with generator g and order p.
Common Input: signature verification keys (verki, verkj)

Initiator Pi(sigki) Responder Pj(sigkj)

a←R Zp, α = ga

register session (Pj , α) Pi, α
−−−−−−−−−−−−−−−−−−−−→

Pj , β, σj

b←R Zp, β = gb

σj = Signsigkj
(Pi,Pj , α, β)

register session (Pi, α, β)
←−−−−−−−−−−−−−−−−−−−−

σi = Signsigki
(Pj ,Pi, α, β)

output peer = Pj, sid = (α, β),
output session key γi = βa

delete a
Pi, σi

−−−−−−−−−−−−−−−−−−−−→

mark session complete output peer =Pj, sid =(α, β)
output session key γi = βa

delete b
mark session complete

Sanity Checks:

1. If σj is not a valid signature of (Pi,Pj, α, β), under verkj then Pi ignores the message. Similarly for
σi and Pj .

2. If Pi receives a round-2 message σi of (Pi,Pj , α, β) but has not registered a session (Pj , α) then ignore
the message. Similarly Pj and σj .

Figure 6: Protocol eSIG-DH

For completeness we restate the Theorem 6.1 bellow.

Theorem (6.1). Let Sig be an entropically-unforgeable signature scheme with leakage ℓ, then eSIG-DH
is an ℓ-SK-secure KA protocol with PFS in the UM under the DDH assumption.

Proof of Theorem 6.1. To see that eSIG-DH is complete consider a pair of uncorrupted parties Pi and
Pj which have completed matching sessions. As the sessions match they have the same sid = (α, β).
Therefore the session keys were computed as γi = βa by Pi and αb = γj by Pj . Thus we have that
γi = γj .

The proof that eSIG-DH is private is more involved. Assume that the ℓ-KA-adversary A can break
privacy of eSIG-DH with non-negligible probability. A can be one of two types of adversary. In the
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following, for an execution of A against a set of players, we call a signature σ under player P’s key
new if P has not been corrupted and has never produced a signature of m.

T1: There is a non-negligible probability that in a winning test-session the owner receives a new
signature for σi or σj.

T2: There is negligible probability that in a winning test-session the owner receives a new signature.

In the proof of Claim C.1 we describe efficient reductions B1 from adversaries of type T1 to the
entropic-unforgeability of Sig. In the proof of Claim C.2 we give an efficient reduction B2 from a type
T2 adversary which breaks the DDH. Thus a reduction B which selects uniformly between each of these
three strategies can either break the signature scheme or break the DDH proving theorem Theorem 6.1.

It remains to show the two claims.

Claim C.1. There is a efficient reduction from a type T1 attacker to the entropic-unforgeability of
Sig with leakage ℓ.

Proof. Let A be a type T1 attacker and l be an upper bound on the number of sessions started by
A. We construct a reduction B1 = (C1, C2) to the entropic-unforgeability of Sig.
B1 emulates a run of A against n players internally in two phases. B1 begins with C1 which guesses

which session will be the test-session in the emulation of A. Once it receives α for that session it’s
passes the current state of the emulation to the second half C2. C2 then selects a random challenge
α (or β) and continues the emulation until σi (or σj) has been sent for that session. We describe the
details of B1 strategy in Figure 7.

We argue that for a type T1 attacker A, the probability of B1 forging is polynomially related to
the probability ε that A forges a signature during eSIG-DH. Further let δ be the probability that in a
winning test-session A delivers a signature of a new message to the owner. For an execution of A let
event S1 (occurring with probability ε1) be the event that A that the execution is winning and that A
delivers a signature of a new message to the owner of the test-session. By definition, for a real world
execution we have that ε1 ≥ εδ.

Now consider an execution of A emulated by B1 completely honestly (i.e. exactly as in the real
world) with the exception that before starting B1 selects a random r← [l] and a random player index
i ∈ [n]. Let the even S2 (occurring with probability ε2) that S1 occurs and that r-th session is the
test-session and that the peer for that session is Pi. Since the view of A is independent of both r and
i we have that ε2 = ε1

ln .
Consider an execution of A emulated by B1 as described in Figure 7. We note that the view of

A in such an emulation is indistinguishable to it’s view in a real world execution as the signing and
leakage oracles are used to answer any queries pertaining to sigk and all other operations are performed
exactly as in the real world. In particular the value of β̂ is computed (by C2) exactly as would be done
by Pi. Therefore A will behave exactly as in a real world execution and we have that Pr[S2] = ε2 also
for the emulation.

For such an emulation let event S3 (occurring with probability ε3) be the probability that S2

occurs and that C2 does not performs a leak query against P. By definition, for event S3 to occur
so must event S1 which implies that the execution was winning. By definition of a ℓ-SK-security this
implies that no leak query was launched against P after the test-session was initialized and before it
was marked complete. However C2 is run by B1 exactly in this window and so by assumption C2 could
not have made such a query. Therefore we have that Pr[S3] = ε2.

Note that emulations where S3 occurs are exactly the emulations where B1 wins the signature
attack game EUGλ

ℓ . Further we argue that B1 is an λ-entropic adversary. If the r-th session is marked
complete it must be that the signature supplied to the owner by A was accepted. If P is the initiator
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Reduction B1 = (C1, C2)

1. Forger C
Ssigk(·),O

λ,ℓ

sk
(·)

1 takes input verk and has access to the signature and leakage oracles. It select
a random player P ∈ {P1, . . . ,Pn} and a random session r ← [1, l] (guessing that this will be the
test-session and P will be the peer).

2. Forger C1 runs A internally against honest players {P1, . . . ,Pn} with the caveat that rather then
generating a fresh signature key pair for P , C1 uses verk as P ’s public key. It signs all signatures
of P are with calls to Ssigk(·) and any leak query is answered with Oℓ,λ

sigk(·). Besides that P follows
the honest algorithm until the r-rth session. Once the r-th session is initialized there are two cases
depending on the role of P :

P is the initiator: In this case B will attempt to forge using σi.

(a) Once the round-1 message (Pi = P , α̂) has been received by Pj C1 outputs the entire state

of the current emulation encoded in string v. This is given to C
Ssigk(·)
2 which gets a fresh

random tape r from the EUGλ
ℓ challenger and resumes the emulation at the same point

where C1 left off. It replaces the random tape of Pj with r and continues the emulation

faithfully. (Note that β̂ the value of β chosen by Pj for the round-2 message of the r-th
session depends only on r.) Signature queries to P are answered with calls to the signing
oracle.

(b) Once the round-3 message (Pi, σi) is received return signature σi and message (Pj ,Pi, α̂, β̂)
to the challenger in EUGλ

ℓ (B1) and terminate.

P is the responder: In this case B will attempt to forge using σj

(a) Once A instructs Pi to initialize the r-th session C1 outputs the current state of the emu-

lation encoded in the string v. This is given to C
Ssigk(·)
2 which gets a fresh random tape r

from the EUGλ
ℓ challenger and resumes the emulation at the same point where C1 left off.

It replaces the random tape of Pj with r and continues the emulation faithfully. (Note that
α̂ the value of β chosen by Pj for the round-2 message of the r-th session depends only on
r.) Signature queries to P are answered with calls to the signing oracle.

(b) Once the round-2 message (Pi, σi) is received return signature σi and message (Pj ,Pi, α̂, β̂)
to the EUGλ

ℓ challenger and terminate.

—————————————————————————————
Abort Conditions

1. If A terminates during the emulation before completing the r-th session then B1 aborts.

2. If the r-th session is not the test-session then B1 aborts.

3. If for the r-th session the P is not the peer then abort.

4. If a leak query is made by A against P during the part of the emulation run by C2 then B1 aborts.

Figure 7: Forger B1 = (C1, C2)

then the message m = (Pi,Pj = P, α̂, β′) outputted by C2 is such that β′ = β̂. Further β̂ was chosen by
C2 independently of the view of C1. An analogous statement holds for α′ in the m outputted by C2 when
P is the responder. For security parameter λ we have that log(p) ≥ λ and so H̃∞(MSGC2 |ViewC1) ≥ λ
making B1 a λ-entropic adversary. Therefore it’s B1’s advantage is at least εδ

ln which, by assumption
of A being a type T1 attacker is a polynomial in ε.

This completes the proof of Claim C.1 2

Claim C.2. There is a efficient reduction from a type T3 attacker to DDH.

Proof. To prove the claim we consider two subcases. Either the test-session is selected
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We construct reduction B2 (outlined in Figure 8 which has input the tuple G = (G, α∗, β∗, γ∗).
The idea is that B2 guess the test-session and force α∗ and β∗ to be played. That way the adversary
has a non-negligible advantage at winning the session if and only if the input was a DDH tuple.

Reduction B2(G,A)

1. Select a random a random session r← [1, l].

2. Run A internally against honest players {P1, . . . ,Pn}.

3. If A terminates before finishing the r-th session then abort.

4. In round 1 of the r-th session set α = α∗ and in round 2 set β = β∗.

5. If A does not select the r-th session as the test-session then abort. Otherwise hand γ∗ to A as the
challenge key.

6. When A responds with b′ = 0 then output ”True“ otherwise output ”False“.

Figure 8: Reduction B2 to breaking the DDH.

The analysis is relatively straightforward. Let ε be the probability that a real world execution
of A is winning. Further let negl be a negligible function in λ representing the probability that in a
random execution, A sends a signature of a new message to the owner of the test-session. Let r ← [q]
be selected uniformly independently. For an execution of A let event S1 (occurring with probability
ε1) be the event that the r-th session is the test-session. Then by definition ε1 = l−1.

Now consider an emulation of A run by B2 as described in Figure 8. Note that until the challenge
key for the test-session is given to A it’s view remains independent of the value of r. Therefore also
for the emulation Pr[S1] = ε1.

Let event S2 (occurring with probability ε2) be event that S1 occurs and that the execution would
be winning if A were given the real session key with probability 1/2. Then we have that ε2 = ε1ε.
Further let S3 be the event that a new signature was generated by A for the test-session. Then we
have that Pr[S2] = Pr[S2 ∧ S3] + Pr[S2 ∧ ¬S3]. We can bound Pr[S2 ∧ S3] = Pr[S3] Pr[S2|S3] ≤ negl
and so Pr[S4 = (S2 ∧ ¬S3)] ≥ ε2 − negl = (εl−1)− negl.

Notice that conditioned on event S4 occurring we have that sid = (α̂, β̂) and so if G is a DDH
tuple then γ∗ is distributed exactly as the session key for the test-session would be. Otherwise γ∗ is a
random element from the set of all such keys. Therefore the output bit of A on input γ∗ is identically
distributed to a real world execution where event S4 has occurred. But emulations of B2 where S4

occurs are exactly the ones where B2 breaks DDH. There for B2 has advantage (εl−1)negl which is
polynomial in ε. 2

This concludes the proof of Theorem 6.1. 2
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