
Lower Bounds for Oblivious Transfer RedutionsYevgeniy Dodis� Silvio MialiyMarh 3, 2001AbstratWe prove the �rst general and non-trivial lower bound for the number of times a 1-out-of-n ObliviousTransfer of strings of length ` should be invoked so as to obtain, by an information-theoretially seureredution, a 1-out-of-N Oblivious Transfer of strings of length L. Our bound is tight in many signi�antases and holds even in the honest-but-urious model.We also prove the �rst non-trivial lower bound for the number of random bits needed to implementsuh a redution whenever the reeiver sends no messages to the sender. This bound is also tight inmany signi�ant ases.The novel aspet in deriving these lower bounds is a strong usage of lassial information theory.1 Introdution and Our ResultsThe Oblivious Transfer. The Oblivious Transfer (OT) is a fundamental primitive in seure protooldesign, whih has been de�ned in many di�erent ways and ontexts (e.g., [27, 16, 15, 3, 6℄) and has foundenormously many appliations (e.g., [2, 27, 15, 18, 21, 10, 26, 1, 22, 17℄, to name just a few).The OT is a protool typially involving two players, the sender and the reeiver, and several parameters.In the most used form, the �N1 �-OTL, the sender has N binary serets of length L, and the reeiver getsexatly one of these strings, the one he hooses, but no information about any other seret (even if he heats),while the sender (even if she heats) gets no information about the seret learned by the reeiver. The mostbasi and ommonly used type of OT orresponds to the sender having just 2 bits (i.e., N = 2 and L = 1),and is denoted �21�-OT.Also important is the notion of a weak Oblivious Transfer1, a relaxation of the traditional OT. The onlydi�erene in a weak �N1 �-OTL is that a heating reeiver is allowed to obtain partial information aboutseveral serets, but at most L bits of information overall.Redutions between different OTs. Protool redutions failitate protool design beause they en-able one to take advantage of implementing ryptographially only a few, arefully hosen, primitives.Information-theoreti redutions are even more attrative, beause they guarantee that the seurity of aomplex onstrution automatially oinides with that of the hosen primitive, one the latter is imple-mented ryptographially.But to be really useful, redutions must be eÆient. In partiular, beause even the best ryptographiimplementation of a hosen primitive may be expensive to run, it is ruial that redutions all suh primitivesas few times as possible.Beause of the importane of OT, numerous redutions from \more omplex" to \simpler" OT appear inthe literature (e.g. [5, 11, 3, 9, 12℄). Partiular attention has been devoted to reduing �N1 �-OTL to �n1�-OT`,where N � n and L � `. Typially, these redutions are information-theoretially seure if the simpler OTis assumed to be so seure.�Department of Computer Siene, MIT, Cambridge, MA 02139 (yevgen�theory.ls.mit.edu).yDepartment of Computer Siene, MIT, Cambridge, MA 02139 (silvio�tia.net).1Weak OT is losely related to generalized OT of [3℄, and is a speial ase of universal OT of [6℄.1



The best known results about suh redutions appeared in the paper of Brassard, Cr�epeau and S�antha [5℄(who extend the results of Brassard, Cr�epeau and Robert [4℄), who showed a simple redution of �N1 �-OT`to �21�-OT` using (N � 1) invoations of �21�-OT`. It is not hard to see (and we show it in Setion 4) thatthis protool easily generalizes to a redution from �N1 �-OT` to �n1�-OT` using (N � 1)=(n� 1) invoations.Improving upon the ideas of [4℄, Brassard et. al. also showed an elegant redution from �21�-OTL to �21�-OT (whih is the most basi and ommonly used type of OT) using O(L) invoations of �21�-OT, whihagain easily generalizes to a redution from �N1 �-OTL to �N1 �-OT` with O(L=`) invoations. Combining thetwo results, we get that the best known redution of �N1 �-OTL to �n1�-OT` uses O( L̀ � N�1n�1 ) invoations of�n1�-OT`.We notie that in all the known OT redutions of the above form, the reeiver never sends any messagesto the sender. An attrative feature of suh redutions is that they immediately imply that the sender getsno information about the reeiver's index. We all suh redutions one-way.Our questions. So far, researhers have been fousing on improving the upper bounds of these redutions,that is, the number of times one alls �n1�-OT` in order to onstrut �N1 �-OTL. However, little is knownabout the orresponding lower bounds. Indeed,What is the minimum number of times that the given �n1�-OT ` must be invoked so as to obtain thedesired �N1 �-OTL?Lower bounds were previously addressed in the ontext of very spei� redution tehniques, and for veryspei� OTs. For instane, in [5℄ simple lower bounds are derived for redutions of �21�-OTL to �21�-OT1 thatare bound to use zigzag funtions in a spei� way.Another natural resoure of a redution of �N1 �-OTL to �n1�-OT` is the amount of needed randomness.That is, an OT protool is neessary probabilisti, butWhat is the minimum number of random bits needed in a information-theoretially seure redution of�N1 �-OTL to �n1�-OT `?To the best of our knowledge, no signi�ant results have ever been obtained about this ruial aspet.Our results. In this paper we provide the �rst general lower bounds for suh information-theoreti OTredutions, and prove that these bounds are tight in signi�ant ases. Namely, we prove that� In any information-theoretially seure redution of (even weak!) �N1 �-OTL to �n1�-OT`, the latterprotool must be invoked at least L̀ � N�1n�1 times.� The lower bound is tight for weak �N1 �-OTL.� The lower bound is tight for (\strong") �N1 �-OTL when L = `.� The lower bound is always tight up to a small onstant fator (at most 5).� The lower bound holds even in the honest-but-urious model, where both parties are assumed to followtheir presribed protool.We also prove the �rst general lower bound for the amount of randomness needed in a one-way OT redution.Namely,� In any one-way redution of (even weak!) �N1 �-OTL to �n1�-OT`, the sender must ip at least L(N�n)n�1oins.� The lower bound is tight for weak �N1 �-OTL.� The lower bound is tight for (\strong") �N1 �-OTL when L = `.2



We note that, in a one-way redution, the amount of randomness used by the sender neessarily oinideswith the total amount of randomness needed by both parties.We point out the interesting speial ase when n = 2 and ` = 1, i.e. reduing �N1 �-OTL to �21�-OT, thesimplest possible 1-out-2 Oblivious Transfer. We obtain that we need at least L(N�1) invoations of �21�-OTand, for a one-way OT redution, at least L(N � 2) random bits. In other words, the number of invoationsand the amount of extra randomness are roughly equal to the size of N strings held by the sender, so thesender essentially has to perform an extra 1-out-2 Oblivious Transfer and ip and extra oin for eah bit ofhis information.Lower bounds via information theory. No general lower bound for OT redution would be provablewithout very preisely and generally de�ning what suh a redution is. Fortunately, one suh de�nitionwas suessfully given by Brassard, Cr�epeau, and S�antha [5℄ based on information theory, and in partiularthe notion of mutual information. This framework is very useful sine it allows one to de�ne preiselysuh intuitive (but hard to apture formally) notions as \learn at most k bits of information" or \learn noinformation other than ...".We point out, however, that information theory is muh more useful than merely de�ning the problem.Indeed, we shall demonstrate that its powerful mahinery is essential in solving our problem, for example,in proving our L̀ � N�1n�1 lower bound on the number of invoations. Only the trivial bound of L̀ appears tobe provable without information theory. But getting the additional N�1n�1 fator in the lower bound (whihis essential when L = `) requires expliit or impliit use of information theory.We believe and hope that information theory will prove useful for other types of lower bounds in protoolproblems.Organization. In Setion 2 we de�ne the information-theoreti notions that we will use, as well as theformal de�nitions of Oblivious Transfer and Oblivious Transfer redutions. Setion 3 is devoted to provingthe lower bounds on the number of invoations and the number of random oins needed. Setion 4 will showthe mathing upper bounds. Finally, Setion 5 will have the onluding remarks.2 Preliminaries2.1 Information Theory BakgroundLet X;Y; Z by random variables over domains X ;Y ;Z . Let us denote by PX (x), PXjZ(xjz), PX;Y (x; y) theprobability distribution of X , onditional probability distribution of X given Z, and joint distribution of Xand Y respetively.De�nition 1� The entropy H(X) = �Px PX(x) log2 PX (x).The entropy of a random variable X tells how many truly random bits one an extrat from X, i.e.how muh \unertainty" is in X.� The onditional entropy H(X jZ) is the average over z of the entropy of the variable Xz distributedaording to PXjZ(xjz) (denoted H(X jZ = z)), i.e.H(X jZ) =Xz PZ(z)H(X jZ = z) = �Xz PZ(z)Xx PXjZ(xjz) log2 PXjZ(xjz)H(X jZ) measures how muh unertainty X still has when one knows Z.� The joint entropy of X and Y is the entropy of the joint variable (X;Y ), i.e.H(X;Y ) = �Xx;y PX;Y (x; y) log2 PX;Y (x; y)3



� The mutual information between X and Y is I(X ;Y ) =H(X)�H(X jY ).� The mutual information between X and Y given Z is I(X ;Y jZ) =H(X jZ)�H(X j(Y; Z)).The mutual information between X and Y (given Z) tells how muh \ommon information" is betweenX and Y (given Z), i.e. by how muh the unertainty of X (given Z) dereases after one learns Y .The following easily veri�ed lemma summarizes some of the properties we will need (for the proof andfurther referene in information theory, see [8℄).Lemma 11. H(X;Y ) = H(X) +H(Y jX) = H(Y ) +H(X jY ).2. I(X ;Y ) = I(Y ;X) =H(Y )�H(Y jX) = H(X)�H(X jY ) = H(X) +H(Y )�H(X;Y ).3. I(X;Z;Y ) = I(X ;Y ) + I(Z;Y jX).4. H(X jY ) = 0 i� X is a deterministi funtion of Y .5. H(X jY ) � H(X) with equality i� X and Y are independent.(Thus, I(X ;Y ) � 0 with equality i� X and Y are independent.)6. I(X ;Y ) � H(X) � log2 jX j.7. I(X ;Y ) � I(X ;Y jZ) +H(Z).8. H(Un) = n, where Un is the uniform distribution over n-bit strings.Items 1. and 3. are alled \the hain rule" of entropy and mutual information, respetively. Item 2.shows that the mutual information is symmetri in X and Y . Item 4. says that X has no unertainty given Yif and only if it an be determined from Y . Item 5. says that onditioning an only redue the unertaintly,so extra-information \never hurts". In partiular, the mutual information is always non-negative and is zeroonly if X and Y are independent. Item 6. says that one annot have more ommon information betweenX and Y than there is unertainty in X , whih in turn is no more than log jX j. In fat, equality an beahieved only by the uniform distribution on X . In partiular, the uniform distribution over n-bit stringshas n bits of unertainty, as expeted (item 8.). Finally, Item 7. says that extra-information Z an dereasethe mutual information between X and Y by at most the amount of unertainty that Z has (and an reveal).2.2 Information-Theoretially Seure OT RedutionsWe an now formally de�ne (1) protools with an ideal �n1�-OT` and (2) information-theoretially seureredution of �N1 �-OTL to �n1�-OT`. Despite the di�erene in presentation, the following de�nition is asimpli�ation of that of [5℄. For instane, we simplify it by ignoring the additional ondition of awarenessthat is not going to a�et our lower bound in any way. Another di�erene is that [5℄ de�ne �N1 �-OTL \byitself", rather than in the ontext of having a \built-in" blak-box for �n1�-OT`. While seemingly moreelegant, this de�nition is vauous on its own, sine no two-party protool an atually implement ObliviousTransfer with information-theoreti seurity.Interative Turing Mahines (ITMs). A pair of interative Turing mahines (ITMs) is a pair of twoprobabilisti Turing mahines, eah of whih has a speial ommuniation tape. The joint omputationproeeds in phases. In eah phase only one mahine is ative. It an perform an arbitrary omputation,at the end of whih it sends some string s to the other mahine by plaing s on its ommuniation tape.In the next round the other mahine beomes ative, and reeives the string s by having it written on itsommuniation tape. At the end of omputation both mahines ompute their loal outputs. (See [20℄ fora more detailed exposition.)Protools with ideal �n1�-OT`. Let us denote by a n-sender a probabilisti ITM having n speialregisters, and by a n-reeiver is probabilisti ITM having a single speial register. Let A be a n-sender and4



B a n-reeiver. We say that (A;B) is a protool with ideal �n1�-OT ` if, letting a be a private input for A andb be a private input for B, the omputation of (A;B) proeeds as that of pair of ITMs, exept that it onsistsof three (rather than the usual two) types of rounds: sender-rounds, reeiver-rounds and OT-rounds, whereby onvention the �rst round always is a sender-round and the last is a reeiver-round. In a sender-round,only A is ative, and it sends a message to B (that will beome an input to B at the start of the nextreeiver-round). In a reeiver-round, only B is ative and, exept for the last round, it sends a message toA (this message will beome an input to A at the start of the next sender-round). In an OT round,(1) A plaes for eah j 2 [n℄ an `-bit string �j in its j-th speial register, and(2) B plaes an integer i 2 [n℄ in its speial register, and(3) �i will beome a distinguished input to B at the start of the next reeiver-round. A will obtain noinformation about i.At the end of any exeution of (A;B), B omputes a distinguished string alled B's output.Messages and Views. Let (A;B) be a protool with ideal �n1�-OT`. Then, in an exeution of (A;B), werefer to the messages that A sends in a sender-round as A's ordinary messages, and to the strings that Awrites in its speial registers in an OT-round as A's potential OT messages. For eah OT-round, only oneof the n potential messages will be reeived by B, and we shall refer to all suh reeived messages as B'satual OT messages. Realling that both A and B are probabilisti, in a random exeution of (A;B) wherethe private input of A is a and the private input of B is b, let us denote by VIEWA[A(a); B(b)℄ the randomvariable onsisting of(1) a, (2) A's oin tosses, and (3) the ordinary messages reeived by A;and let us denote by VIEWB [A(a); B(b)℄ the random variable onsisting of(1) b, (2) B's oin tosses, and (3) all messages (both the ordinary and the atual OT ones) reeived byB.Redution of �N1 �-OTL to �n1�-OT`. Denote by W the set of all N -long sequenes of L-bit stings and,given w 2 W , let wi be the i-th string of w. Denote by W the random variable that selets an element ofW with uniform probability; by I the random variable seleting an integer in [N ℄ with uniform probability;and let A be an n-sender and B be an n-reeiver. We say that (A;B) is an information-theoretially seureredution of �N1 �-OTL to �n1�-OT` if the following three properties are satis�ed:(P1) (Corretness) 8w 2 W and 8i 2 [N ℄, and 8 exeution of (A;B) where A's private input is w and B'sprivate input is i, B's output is wi;(P2) (Reeiver Privay) 8 sender A0 and 8 string a0,I(VIEWA0 [A0(a0); B(I)℄ ; I) = 0; (1)(P3) (Sender Privay) 8 reeiver B0 and string b0, 9 a random variable ~I 2 [N ℄ independent of W s.t.I(W ; VIEWB0 [A(W ); B0(b0)℄ j W~I) = 0: (2)In the ontext of a redution of �N1 �-OTL to �n1�-OT`, we shall sometimes say that we are given �n1�-OT` asa blak-box.The Corretness Property states that when A and B are honest, B will always obtain the string he wants.The Reeiver Privay Property states that no maliious sender A0 an learn any information about the indexof the honest reeiver B. Finally, the Sender Privay Property states that a maliious reeiver B0 an learninformation about at most one of N strings of the sender A. Moreover, the index ~I of this single stringannot depend on W (e.g. we don't want B0 to learn the �rst string in W that starts with 10). In otherwords, both A and B do not gain anything by not following the protool.5



Redution of weak �N1 �-OTL to �n1�-OT`. We all (A;B) an information-theoretially seure redutionof weak �N1 �-OTL to �n1�-OT` if all the properties of the redution of �N1 �-OTL to �n1�-OT` hold exept(Sender Privay) is relaxed to the following:(P30) (Weak Sender Privay) 8 reeiver B0 and string b0I(W ; VIEWB0 [A(W ); B0(b0)℄) � L: (3)This property says that we allow a maliious reeiver B0 to obtain partial information about possibly severalstrings, provided he learns no more than L bits of information overall. To emphasize the di�erene, we willsometimes refer to the (regular) redution between �N1 �-OTL and �n1�-OT` as reduing strong �N1 �-OTL to�n1�-OT`. To justify this terminology, we showLemma 2 If (A;B) is a redution of (strong) �N1 �-OTL to �n1�-OT `, then it is a redution of weak �N1 �-OTLto �n1�-OT `.Proof: By Lemma 1 (equations 7 and 6) and Sender Privay (P3)I(W ; VIEWB0 [A(W ); B0(b0)℄) � I(W ; VIEWB0 [A(W ); B0(b0)℄ j W~I ) +H(W~I)= H(W~I ) � jW~I j = L3 Lower BoundsTo simplify our notation, we do not worry about \oors" and \eilings" in the rest of the hapter, assumingthat (N � 1) is divisible by (n � 1) and that L is divisible by ` (handling the the general ase presents nosigni�ant diÆulties). We will also refer to the sender as Alie and to the reeiver as Bob.Throughout, let � be the number of OT-rounds (invoations of �n1�-OT`) needed to redue (weak) �N1 �-OTL to �n1�-OT`. Sine we onentrate on the worst possible number of OT-rounds, we an assume w.l.o.g.that � is a �xed number and that the sender and reeiver always perform exatly � OT-steps. We start witha sharp lower bound on �, and then show a bound on the amount of randomness in a one-way redution.3.1 Lower Bound on the Number of InvoationsLet us �rst give the informal intuition behind out lower bound: � � L̀ � N�1n�1 . We know by the (weak) senderprivay ondition that Bob an learn at most L (out of total NL) bits of information about W . However, ifin eah of the OT rounds Bob was somehow able to obtain all n strings that Alie put as her loal inputsto this OT round (rather than getting only one of them), Bob should be able to learn all (NL bits) of W .Indeed, if Bob ould not annot learn some Wi with ertainty, Alie will know that Bob's index is not i (ifit was i, honest Bob should be able to get Wi with probability 1 by the orretness property). But thiswould ontradit the reeiver privay ondition as Alie learns some information about Bob's index. Hene,�n` � n` = �`(n � 1) bits that Bob did not get from the OT rounds, \ontain information" about theremaining at least NL� L = L(N � 1) bits of W that Bob did not learn. The bound follows. Let us nowturn this intuition into a formal proof.Theorem 1 Any information-theoretially seure redution of weak2 �N1 �-OTL to �n1�-OT ` must have� � L̀ � N � 1n� 1 (4)2Sine we are proving a lower bound, it learly applies to (strong) �N1 �-OTL as well.6



Proof: Let P , P = (Alie; Bob), be an information-theoretially seure redution of �N1 �-OTL to �n1�-OT`that uses � invoations to �n1�-OT`. First, we need the following simple lemma.Loal Lemma: For any input w = w1; : : : ; wN , any random tape RA for Alie, any distint i; i0 2 [N ℄ andany random tape tape R0B for Bob, there exists a tape RB for Bob suh that the sequene of messages,M , reeived by Alie(w;RA) from Bob(i0; R0B) oinides with the sequene of messages that Alie(w;RA)reeives from Bob(i; RB).Proof: Assume that RB does not exist. Then, exeuting with Bob(i0; R0B), we get that Alie(w;RA) willdetermine for sure that Bob's index is not i. Thus, when Bob's index is i0, with non-zero probabilityover Bob's random string, Alie(w;RA) would obtain information about Bob's index (that it is not i),ontraditing the reeiver privay ondition. 2To derive our lower bound for �, we de�ne the following two notions: that of a speial exeution of Pand that of a pseudo-exeution of P .Speial exeution. A speial exeution of P is an exeution of P in whih Alie's input is a sequeneof N randomly seleted strings of length L, Alie's tape onsists of randomly and independently seletedbits, Bob's index is 1, and Bob's tape is the all-zero string, ~0. In other words, we �x the behavior of Bobby �xing his index and the random string. With respet to a speial exeution of P , de�ne the followingrandom variables:� W | Alie's N L-bit strings, W =W1; : : : ;WN ;� R | Alie's random tape;� Ms | the ordinary messages sent by sender Alie;� Mr | the ordinary messages sent by reeiver Bob;� V | Alie's potential messages (an �n`-bit string, that is, for eah of the � invoations of �n1�-OT`,the n `-bit strings that are Alie's loal inputs in the invoation).� Vr | the atual messages reeived by Bob in the OT-rounds, (an �`-bit string, that is, for eah of the� invoations of �n1�-OT`, the `-bit string that Bob reeived depending on his loal index during thatinvoation).Pseudo-exeution. Let �Ms be a sequene of messages, let �V be a sequene of � sequenes of n strings oflength ` eah, let �i be an index in [N ℄, and let �RB be a bit-sequene. A pseudo-exeution of P with inputs�Ms, �V , �i, and �RB , denoted by �P ( �Ms; �V ;�i; �RB), is the proess of running Bob with index �i and oin tosses�RB , letting the k-th message from the sender be the k-th string of �Ms, and by letting the sender's input tothe j-th invoation of �n1�-OT` to be the j-th n-tuple of `-bit strings in �V . In other words, we pretend to beAlie and see what Bob will do in this situation on some partiular index and random string.Our lower bound for � immediately follows from the following two laims.Loal Claim 1: I((V;Ms) ; W ) = NL.Proof: By the de�nition of mutual information, we haveI((V;Ms) ; W ) = H(W )�H(W j (V;Ms)):Beause W is randomly seleted, H(W ) = NL. Therefore, to establish our laim we must prove thatH(W j (V;Ms)) = 0. We do that by showing that W is omputable from V and Ms by means of thefollowing algorithm.1. Run �P (V;Ms; 1;~0) and let Mr be the resulting \ordinary messages sent by Bob".(Comment: Bob's view and Bob's messages sent in this pseudo-exeution are distributed exatly as ina speial exeution.)2. For i = 1 : : :N ompute Wi as follows: 7



� Find a string Ri suh that, when exeuting �P (V;Ms; i; Ri), the sequene of messages sent by Bobequals Mr.(Comment: The existene of at least one suh Ri follows from the Loal Lemma with i0 = 1,R0B = ~0, w = W and RA = R. Further notie that, beause Mr, W and R totally determineAlie's behavior, the messages and "potential" messages that Alie(W;R) sends to Bob(1;~0) andto Bob(i; Ri) are exatly V andMs in both ases. Hene, any Ri that produesMr in the pseudo-exeution �P (V;Ms; i; Ri), implies that Alie(W;R) would produe messages Ms and \potential"messages V when ommuniating with Bob(i; Ri).)� Let Wi be Bob's output in �P (V;Ms; i; Ri).(Comment: By the orretness property of our redution, Bob(i; Ri) would orretly output Wiwhen talking to Alie(W;R). And as we notied, Alie(W;R) would produe Ms and V whenommuniating with Bob(i; Ri), so running pseudo-exeution �P (V;Ms; i; Ri) indeed makes Bobto produe the orret Wi). 2Loal Claim 2: I((V;Ms) ; W ) � L+ �`(n� 1).Proof: By Lemma 1 (equation 3), we haveI((V;Ms) ; W ) = I((Vr ;Ms) ; W ) + I((V nVr) ; W j (Vr ;Ms)):Now, beause P implements weak �N1 �-OTL, and beause (Vr;Ms) onsists of Bob's view in a (speial)exeution of P , we have by (P30) that I((Vr ;Ms) ; W ) � L. Also, by Lemma 1 (equations 5 and 6),I((V nVr) ; W j (Vr ;Ms)) � jV nVrj = �`(n� 1):The laim follows. 2By ombining Loal Claims 1 and 2, we have NL � L+ �`(n� 1), from whih the desired lower boundfor � immediately follows.Notie from the proof of Theorem 1 that the bound on the number of invoations of �n1�-OT` holds even inthe honest-but-urious model, i.e. even if we want the sender and the reeiver privay to hold only for honestAlie and Bob. Indeed, all the arguments within the proof had Alie and Bob follow the presribed protool.Thus, even if we trust the partiipants to follow the protool, we need at least this many invoations toensure privay.We also remark that Maurer [23℄ isolated the properties of Oblivious Transfer used in establishing The-orem 1 and de�ned slightly more general forms of �N1 �-OTL and �n1�-OT` for whih the same proof goesthrough. These generalizations do not seem to be very natural, but make the proof slightly learer bydistilling the essential properties of the OT that we use.3.2 Lower Bound on the Number of Random BitsLet us now prove the lower bound on the number of random bits needed by the sender in a one-way redution.Theorem 2 In any information-theoreti one-way redution of weak3 �N1 �-OTL to �n1�-OT ` the sendermust ip at least L(N�n)n�1 random oins.Proof: Let P , P = (Alie; Bob), be an information-theoretially seure one-way redution from weak�N1 �-OTL to �n1�-OT`. As before, let W be the random input of Alie, R be her random tape, Ms be herordinary messages sent to Bob and V be her \potential" messages. We notie that sine the redution isone-way, the distribution of V and Ms does not depend on Bob's index and his random string. Let Vj ,j = 1 : : : n, be an �-tuple onsisting of string number j taken from eah of the � invoations of �n1�-OT`. Wesee that V is the disjoint union of V1; : : : ; Vn.3Again, same result applies to (strong) �N1 �-OTL as well. 8



As before, we proeed by expanding the mutual information between W and (V;Ms) in two di�erentways. I((V;Ms);W ) =H(W )�H(W j (V;Ms)) = NL� 0 = NL (5)Here we used the fat that W is determined from V and Ms. Indeed, sine V and Ms do not depend onBob's input or random string, Alie should make sure that honest Bob an retrieve any Wi with probability1 (if his input is i).On the other hand, it is a possible behavior for a (maliious) Bob to read string number j in all theOT-rounds, i.e. to obtain Vj . By the weak sender privay ondition, I((Vj ;Ms);W ) � L, and, therefore, forany j 2 [n℄ we have (using Lemma 1, equations 5 and 6)I((V;Ms);W ) = I((Vj ;Ms);W ) + I(V nVj ;W j (Vj ;Ms)) � L+H(V nVj j Vj)Combining this with Equation (5), we getH(V nVj j Vj) � L(N � 1); 8j 2 [n℄ (6)Sine V is a disjoint union of Vj 's, we get from the above equation (for j = n) and Lemma 1 (equations1 and 5) that L(N � 1) � H(V nVn j Vn) � Pn�1j=1 H(Vj j Vn). Hene, there is an index j 2 [n � 1℄ s.t.H(Vj) � H(Vj j Vn) � L(N�1)n�1 . W.l.o.g. assume j = 1, i.e. H(V1) � L(N�1)n�1 . Sine for a �xed W , the onlyrandomness of V ame from R, we have by Equation (6) and Lemma 1 (equation 1)jRj � H(V j W ) = H(V;W )�H(W ) =H(V1) +H(V nV1 j V1)�NL� L(N � 1)n� 1 + L(N � 1)� LN = L(N � n)n� 1Here H(V;W ) =H(V ) asW is a funtion of V , and then we use (6) for j = 1 and our assumption on H(V1).This ompletes the lower bound proof.We notie that unlike the lower bound proof on the number of invoations, the proof above does nothold in the honest-but-urious model. Namely, it uses the fat that the sender Alie should be protetedeven against the maliious reeiver Bob. This is not surprising sine no randomness is needed in the honest-but-urious model. For example, to redue �N1 �-OTL to �n1�-OT` we ould use NL=(n� 1)` invoations of�n1�-OT`, where eah of these invoations will have a zero-string in the �rst position, and the remainingpositions are �lled with NL \data"-bits greedily split into `-hunks (where L=` huks from eah wi are indi�erent OT's). We simply trust Bob to read L=` huks of wi, and to read the all-zero string from theremaining OT's.4 Upper BoundsThough our main ontribution is establishing the lower bounds in Setion 3, we now touh upon the upperbounds to demonstrate the tightness of Theorems 1 and 2. This is done by means of a single one-wayredution of weak �N1 �-OTL to �n1�-OT` that simultaneously ahieves both the lower bounds for the numberof invoations of �n1�-OT` and the number of random bits needed by the sender. This protool is a simplegeneralization of the one given by Brassard, Cr�epeau and S�antha [5℄ and Brassard, Cr�epeau and Robert [4℄for the ase L = `, n = 2. For ompleteness purposes, we also inlude the proof that this protool works.Though a similar proof ould be derived from [5℄, the one inluded here is more diret beause our de�nitionof a redution is slightly simpler.4 Note that the same protool also proves that our lower bounds are tightfor redution of (strong) �N1 �-OT` to �n1�-OT` (i.e., L = `). At the end of this setion we will also show thatthe bound on the number of invoations is tight up to a small onstant fator even when L > `, by slightlygeneralizing another protool of [5, 4℄.4You might notie, we embed the seurity of �n1�-OT` into the de�nition of our redution. Without doing so, one wouldhave to argue about \nested mutual information". 9



OT # Zero-String One-String1 w1 x12 w2 � x1 x2 � x13 w3 � x2 x3 � x2: : : : : : : : :N � 2 wN�2 � xN�3 xN�2 � xN�3N � 1 wN�1 � xN�2 wN � xN�2Figure 1: Speial ase of using �21�-OT`, i.e. n = 2.4.1 Reduing weak �N1 �-OTL to �n1�-OT`Theorem 3 There exists a one-way information-theoretially seure redution of weak �N1 �-OTL to �n1�-OT `suh that� it uses L̀ � N�1n�1 invoations of �n1�-OT `.� the sender uses L(N�n)n�1 random bits.Moreover, for L = `, the redution atually redues (strong) �N1 �-OT ` to �n1�-OT `.Proof: We start with L = `, i.e. a redution of (strong) �N1 �-OT` to �n1�-OT`, making � = N�1n�1 invoationsand using `(N�n)n�1 random bits for Alie. Let w = w1; : : : ; wN be Alie's N strings of length ` eah, and let ibe Bob's index.Protool P (w; i):1. Alie hooses (�� 1) random `-bit strings x1; : : : ; x��1 using `(�� 1) = `(N�n)n�1 randombits. Set x0 = 0`, x� = wN .2. Perform � invoations of �n1�-OT`, where transfer j = 0 : : : (� � 1) is:�n1�-OT` [wj(n�1)+1 � xj ; : : : ; w(j+1)(n�1) � xj ; xj+1 � xj ℄Let zj be the value Bob reads from the j-th invoation, desribed next.3. Let j0 2 f0 : : : (� � 1)g be the index of the OT box whih has the XOR-ed value of wi(b i�1n�1, if i 6= N , and (��1), otherwise). Bob reads the value zj0 = wi�xj0 from transferj0 and values zj = xj+1 � xj for all j 6= j0.4. Bob outputsLj0j=0 zj .The speial ase of n = 2 (originally onsidered in [5, 4℄ and yielding (N � 1) invoations and (N � 2)`-bit random strings) is demonstrated in Figure 1. The intuition behind this protool (for any n) is thefollowing. As long as Bob reads the \right-most" value xj+1 � xj , he does not learn anything about all thestrings wi used inside the �rst (j + 1) transfers. As soon as he learns some wi � xj instead of xj+1 � xj , helearns wi, but \misses" all the future wk for k > i as he \missed" xj+1. We now formally prove that theabove protool indeed implements (strong) �N1 �-OT`.The Corretness Property (P1) is lear sine (wi � xj0 ) � (xj0 � xj0�1) � : : : (x2 � x1) � x1 = wi. TheReeiver Privay (P2) is lear as well sine the sheme is one-way and, as we just saw, Bob an reover anywi. We now show the main ondition (P3).Let W = W1; : : : ;WN be hosen at random as well as Alie's random string R = X1; : : : ; X��1. Let Vbe the random variable ontaining all the (�n) values of the �n1�-OT` boxes. We an assume w.l.o.g. that in10



eah of the � OT boxes, Bob indeed read one entire `-bit string that he hose (he an not learn more and it\does not hurt" to learn as muh as possible). Thus, de�ne Vr to be the �-tuple of `-bit strings that Bobread, i.e. everything that Bob learned from the protool. Let t0; : : : ; t��1, where tj 2 [n℄, be the (randomvariables denoting the) indies of the � strings that Bob read.Let j0 be the smallest number suh that tj0 6= n, if it exists. Otherwise, j0 = �� 1. Thus, Bob learnedX1; X1 � X2; : : : ; Xj0�2 � Xj0�1 and some Wi � Xj0�1. Clearly, this enables him to reonstrut Wi (theexeptional ase of all tj = n falls here as well giving Bob WN ). We let ~I = i. First of all, ~I is independentfrom W . Indeed, Bob hoose to read index tj0 in the j0-th invoation of �n1�-OT` only based on his randomoins and X1; X1 � X2; : : : ; Xj0�2 � Xj0�1, whih does not depend on W . Thus, it suÆes to show thatI(Vr ;W j W~I ) = 0. But we already observed that W~I is determined from Vr. Hene, using Lemma 1(equations 4 and 3), I(Vr ; W ) = I((Vr ;W~I) ; W ) = I(W~I ; W ) + I(Vr ; W jW~I )= `+ I(Vr ; W jW~I)Thus, we only need to show that I(Vr ;W ) = `, i.e. to establish the weak property (P30). Intuitively, Bobalways learns some W~I , i.e. ` bits of information. So if we show that he does not learn more than ` bitsof information, we know that the only thing he learned was that one string W~I . We proeed by showing asequene of easy laims.Loal Claim 1: W is a funtion of V , i.e. H(W j V ) = 0 (7)Proof: We already saw from orretness that V determines eah string Wi. 2Loal Claim 2: H(V nVr j Vr) = `(N � 1) (8)Proof: We show that all (�n) `-bit strings of V are totally independent when W and R are randomlyhosen. Let us view eah suh string in V as an (N + � � 1)-dimensional vetor over Z2 by taking theharateristi vetor of the equation de�ning this string. Sine all Wi and Xj are hosen randomly, ourstrings are independent if and only if the orresponding vetors are linearly independent. Assume that somelinear ombination of vetors in V is zero. This ombination annot inlude a vetor depending on some Wias there is only one suh vetor in V . And the remaining vetors X1; X1�X2; : : : ; X��2�X��1 are learlylinearly independent. And sine our disjoint split of V into Vr and V nVr does not depend on V nVr, we getthat V nVr is independent of Vr, so by Lemma 1 (equation 5 and 8),H(V nVr j Vr) = H(V nVr) = jV nVrj = `(n� 1)� = `(N � 1) 2Loal Claim 3: V nVr is determined from W and Vr, i.e.H(V nVr j (Vr;W )) = 0 (9)Proof: The knowledge of W and any string Wi � X��1 in the last �n1�-OT` box (whih we have from Vr)determines X��1. Knowing X��1, W and any string of the form z �X��2 from the next to last �n1�-OT`box (whih we have from Vr where z is either some Wi or X��1) enables one to dedue X��2. Continuingthis way, we determine X1 from the �rst �n1�-OT` box whih allows us to reonstrut the whole V nVr. 2Combining Loal Claims 1,2,3 and using Lemma 1 (equations 8, 1, 2 and 3),`N = H(W ) = H(W )�H(W j V ) = I(V ;W ) = I(Vr ;W ) + I(V nVr;W j Vr)= I(Vr;W ) +H(V nVr j Vr)�H(V nVr j (Vr ;W )) = I(Vr ;W ) + `(N � 1)Hene, I(Vr ;W ) = ` indeed. This ompletes the proof of orretness when L = `.11



For ` < L we give a trivial protool that sari�es the strong property (P3) leaving only (P30). Theprotool simply splits eah of the strings of the database into L=` disjoint parts of length ` eah, andperforms the previous protool implementing �N1 �-OT` using �n1�-OT`. It uses L̀ � N�1n�1 invoations of �n1�-OT` and L̀ � `(N�n)n�1 = L(N�n)n�1 random bits as laimed. The orretness is lear exept Alie's privay. Welearly loose the strong property (P3) as Bob an learn up to L=` di�erent bloks of length ` from di�erentstrings. However, weak property (P30) still holds as the L=` groups of boxes are totally independent, andfrom eah of them Bob an learn at most ` bits about W , i.e. a total of at most ` � L̀ = L bits.4.2 Reduing �N1 �-OTL to �n1�-OT` for L > `We just saw that the bound of Theorem 1 is tight for reduing (strong) �N1 �-OTL to �n1�-OT` when L = `.We now generalize another redution of [5℄ and [4℄ to show that the bound is always tight up to a onstantfator. For this we need to de�ne the notion of a zigzag funtion.4.2.1 Zigzag FuntionsGiven z = z1 : : : zS 2 f0; 1gS and J = fi1; : : : ; ij j i1 < : : : < ijg � [S℄, we let [z℄J = zi1 : : : zij be the bits ofz in J . Let f : f0; 1gS ! f0; 1gL be a surjetive funtion, W be hosen uniformly at random from f0; 1gL,and Z be a random pre-image of W (whih exists due to surjetivity of f).De�nition 2 A set J � [S℄ is said to bias f if [Z℄J reveals some information about W = f(Z):I(W ; [Z℄J) > 0In other words, if J does not bias f , observing [Z℄J gives no information about W .De�nition 3 A surjetive funtion f : f0; 1gS ! f0; 1gL is alled an (S;L)-zigzag funtion if for anypartition of [S℄ into disjoint subsets J1; : : : ; JN , at most one of J1; : : : ; JN biases f .Notie that it suÆes to hek the de�nition of a zigzag funtion only for N = 2, i.e. partitions of [S℄ intotwo disjoint subsets (sine if Ji and Jk bias f , then so do Ji and [S℄nJi). Aside from verifying the existeneof zigzag funtions, the objetive is to make S as small as possible, and we will soon see the reason why.A partiular nie lass of zigzag funtions are linear zigzag funtions, whih are given by an L�S binarymatrix M whih de�nes f(z) = M � z (here the operations are in GF (2)). Notie that the matrix M alsode�nes an error-orreting ode C in f0; 1gS, where the odewords are all the elements of the form u �M ,where u 2 f0; 1gL. Brassard, Cr�epeau and S�antha [5℄ showed an easily veri�ed but surprising onnetionbetween f being a zigzag funtion and the properties of C.Lemma 3 ([5℄) f(z) =M �z is an (S;L)-zigzag funtion if and only if and only if C = fu �M j u 2 f0; 1gLgis a self-interseting ode, that is every non-zero 1; 2 2 C have at least one ommon non-zero oordinate.5Self-interseting odes have been studied earlier (for instane, by [7℄). In partiular, it is known that forany  > log4=3 4 � 4:8188, a random L� L binary matrix M de�nes a self-interseting ode (or a zigzagfuntion) with probability exponentially lose to 1.6 In partiular,Theorem 4 ([7, 5℄) For any L there exist (L;L)-zigzag funtions, where  < 5.5The reason suh ode is alled self-interseting is that if we view eah non-zero odeword as a subset of f0; 1gS (by lookingat its harateristi vetor), the ondition above says that any two non-empty odewords interset.6Brassard et al [5℄ give eÆient deterministi algorithms to onstrut zigzag funtions with muh larger onstants , but weare not onerned with eÆieny or onstutiveness in order to math our lower bound.
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4.2.2 A Simple Protool using Zigzag FuntionsWe an now give a simple one-way redution from �N1 �-OTL to �N1 �-OT` slightly generalizing the redutions of[4, 5℄. We let f : f0; 1gS ! f0; 1gL be an (S;L)-zigzag funtion with S = O(L). Let Bj = fj`+1; : : : ; (j+1)`g,j = 0; : : : ; L=`� 1. In other words, we split [S℄ = f1; : : : ; Sg into � = S=` onseutive bloks of size ` eah.Given z 2 f0; 1gS we let [z℄j = [z℄Bj be the restrition of z to its ` bits in Bj .Protool Q(w; i):1. Alie hooses a random zi suh that f(zi) = wi, 8i 2 [N ℄.2. Perform � invoations of �N1 �-OT` where transfer j = 0 : : : (�� 1) is:�N1 �-OT` [ [z1℄j ; : : : ; [zN ℄j ℄3. Bob reads i-th value [zi℄j in eah OT, reonstruts zi and outputs f(zi).Let Jk be the union of all Bj suh that Bob read [zk℄j in the j-th OT. Then Bob learned [zk℄Jk for all k.Notie that J1; : : : ; JN form a disjoint partition of [S℄. Sine f is a zigzag funtion, at most one of Jk biasesf , say Jt. Then Bob does not learn any information about wk for any k 6= t, sine the distribution of [zk℄Jkis independent of wk. It is a trivial routine matter (muh simpler than for the protool from the previoussetion) to transform this intuition into a formal proof, and this was indeed done in [5℄.We notie that the number of �N1 �-OT` invoations is S=`, and that is why we need S to be as small aspossible. Sine S = O(L) by Theorem 4, we get:Theorem 5 There exists a one-way redution of �N1 �-OTL to �N1 �-OT ` using O(L=`) invoations of thelatter.By �nally ombining the ombining the above redution with the redution from Theorems 3 (from�N1 �-OT` to �n1�-OT`), we getCorollary 1 There exists a one-way redution of �N1 �-OTL to �n1�-OT ` using O( L̀ � N�1n�1 ) invoations of thelatter.To summarize, the bound of Theorem 1 is always tight up to a onstant fator and is exatly tight forL = ` and for the ase of weak �N1 �-OTL.5 Conluding ThoughtsTypially, 1-out-of-2 OT is onsidered as a basi primitive, and eÆient ryptographi protools have beendesigned for this ase based on various ryptographi assumptions (for example, those of [1℄ and [15℄). Thus,in order to implement general 1-out-of-N OT, the following methodology is suggested: use information-theoreti redution to 1-out-of-2 OT, and then use a ryptographi protool for every invoation of thelatter. While this methodology works and is often used, there are alternative (and often more eÆient)ways to build 1-out-of-N OT. In partiular, there are very eÆient \diret" ryptographi protools for�N1 �-OTL based on various assumptions. For example, Dodis, Halevi and Rabin [13℄ give a simple �N1 �-OTL protool based on any \blindable" enryption sheme (e.g., El-Gamal [14℄ or Goldwasser-Miali [19℄),while Naor [24℄ reently gave a very eÆient �N1 �-OTL protool based on the DiÆe-Helman assumption.Alternatively, Naor and Pinkas [25℄ gave a very eÆient \ryptographi redution" from �N1 �-OTL to �21�-OTL whih uses only logN invoations of �21�-OTL (ompare with the lower bound of (N � 1) given byTheorem 1) in addition to O(N) invoations of a pseudorandom funtion (whih are onsidered to be moreeÆient than �21�-OTL). Of ourse, this \gap" from logN to N is very arti�al and not well de�ned one weuse omputational assumptions (in partiular, we an build the omplex OT diretly), and makes sense only13



in terms minimizing the amount of work outside of performing simpler OTs (e.g., using relatively inexpensiveevaluations of a pseudorandom funtion).While these ryptographi results surpass the lower bounds we established in Setion 3 (in fat, thelower bounds do not make sense if we use ryptographi assumptions), the lower bounds are still quitemeaningful. For one thing, they show that simple but seemingly ineÆient redutions of omplex to simplerOT's are atually the best we an hope to ahieve. On the other side, they show that there are somenon-trivial information-theoreti limitations of expressing a omplex OT in terms of a simpler one, foringone to either build omplex OT's diretly, or to use \ryptographi redutions", or to settle for somewhatineÆient performane when building omplex OT's. In partiular, the attrative methodology of buildingonly �21�-OT might not be the best one in pratie.Referenes[1℄ M. Bellare and S. Miali. Non-interative Oblivious Transfer and Appliations. In Advanes inCryptology: Proeedings of Crypto '90, pp. 547{559, Springer-Verlag, 1990.[2℄ M. Blum. How to Exhange (Seret) Keys. In ACM Transations of Computer Systems, vol. 1, No.2, pp. 175{193, May 1983.[3℄ G. Brassard and C. Cr�epeau. Oblivious Transfers and Privay Ampli�ation. In Advanes in Cryp-tology: Proeedings of Eurorypt '97, Springer-Verlag, pp. 334{347, 1997.[4℄ G. Brassard, C. Cr�epeau and J. Robert. Information theoreti redutions among dislosure problems.In 27th Symp. of Found. of Computer Si., pp. 168{173, IEEE, 1986.[5℄ G. Brassard, C. Cr�epeau and M. S�antha. Oblivious Transfers and Interseting Codes. In IEEETransation on Information Theory, speial issue in oding and omplexity, Volume 42, Number 6,pp. 1769{1780, 1996.[6℄ C. Cahin. On the foundation of Oblivious Transfer. In Advanes in Cryptology: Proeedings ofEurorypt '98, Springer-Verlag, pp. 361{374, 1998.[7℄ G. Cohen and A. Lempel. Linear Interseting Codes. In Disrete Mathematis, 56:35{43, 1985.[8℄ T. Cover and J. Thomas. Elements of Information Theory. Wiley & Sons, New York, 1991.[9℄ C. Cr�epeau. Equivalene between two avors of oblivious transfers. In Advanes in Cryptology:Proeedings of Crypto '87, volume 293 of Leture Notes in Computer Siene, pp. 350-354, Springer-Verlag, 1988.[10℄ C. Cr�epeau. A zero-knowledge poker protool that ahieves on�dentiality of the players' strategyor how to ahieve an eletroni poker fae. In Advanes in Cryptology: Proeedings of Crypto '86,pp. 239{247. Springer-Verlag, 1987.[11℄ C. Cr�epeau and J. Kilian. Weakening seurity assumptions and oblivious transfer. In Advanes inCryptology: Proeedings of Crypto '88, volume 403 of Leture Notes in Computer Siene, pp. 2-7,Springer-Verlag, 1990.[12℄ I. Damg�ard, J. Kilian and L. Salvail. On the (im)possibility of basing oblivious transfer and bitommitment on weakened seurity assumptions. In Advanes in Cryptology: Proeedings of Eurorypt'99, Springer-Verlag, pp. 56{73, 1999.[13℄ Y. Dodis, S. Halevi and T. Rabin. A Cryptographi Solution to a Game Theoreti Problem, InAdvanes in Cryptology: Proeedings of Crypto '00, volume 1880 of Leture Notes in ComputerSiene, pp. 112-130, Springer-Verlag, 2000. 14
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