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1 IntroductionProperty Testing (cf., [13, 9]) is a general formulation of computational tasks in which one is todetermine whether a given object has a predetermined property or is \far" from any object havingthe property. Thus, property testing captures a natural notion of approximation, where the measureapproximated is the object's \distance" to having the property. Typically one aims at performingthis task within complexity smaller than the size of the object, while employing a randomizedalgorithm and given oracle access to a natural encoding of the object (as a function). Thus, we aretalking of determining with high probability whether a function, to which we have oracle access,belongs to some class or is \far" from this class (i.e., one needs to modify the function value atmany places so to obtain a function in the class).Much work in this area was devoted to testing algebraic properties of functions such as linearity(e.g., [5, 1, 4, 3]) and low-degree properties (e.g., [5, 7, 13, 12, 2]). Recently, some attention was givento testing combinatorial properties of functions; �rstly, for functions representing graphs [9, 10, 11],and more recently for functions per se [6, 8]. The most natural combinatorial property of functionsis monotonicity, and indeed [8] focuses on testing monotonicity. The basic problem studied thereis the following. Given a distance parameter � and oracle access to a function f : f0; 1gn 7! f0; 1g,determine whether f is monotone or is \�-far" from being monotone. Monotonicity is de�ned in thenatural manner: One considers the standard partial order � on binary strings (i.e., x1x2 � � � xn �y1y2 � � � yn i� xi � yi for every i and xi < yi for some i), and f is said to be monotone if f(x) � f(y)for every x � y. The de�nition extends naturally to functions de�ned on the standard partial orderof strings over an arbitrary alphabet, �, and having an arbitrary range �. That is,De�nition 1 (monotone functions and testing): Let � and � be sets with total order �� and��, respectively. We consider the partial order, �, de�ned on equal-length strings over � byx1x2 � � � xn � y1y2 � � � yn i� xi��yi for every i and xi 6= yi for some i.� A function f : �n 7! � is monotone if f(x)��f(y) holds for every x � y.� A relative distance of f : �n 7! � from the class of monotone functions, �M(f), is the minimumover all monotone functions g : �n 7! � of dist(f; g) def= jfx 2 �n : f(x) 6= g(x)gj = j�jn.� A function f : �n 7! � is �-far from monotone if �M(f) � �.� A probabilistic oracle machine M is said to be a tester of monotonicity ifProb[Mf (�; n) = 1] � 23 for any monotone function f , (1)Prob[Mf (�; n) = 0] � 23 for f which is �-far from monotone. (2)Note that all notions are de�ned w.r.t. � and �, and so at times we prefer terms which explicitlymention this dependence.The main result of [8] is a tester of monotonicity for the case � = � = f0; 1g having query and timecomplexities of the form poly(n)=�. Speci�cally, the analysis of the query complexity in [8] yieldsa bound of ~O(n2=�), and it was also shown that 
(n=�) is a lower bound on the query complexityof their algorithm. For general � and �, the bounds obtained in [8] were proportional to j�j2 � j�j.Here we improve both the algorithm and the analysis in [8] to obtain the following.1



Theorem 1 (main result): There exists a tester of monotonicity with query complexityq(�; n) def= O�n � (log j�j) � (log j�j)� � :The tester works by selecting independently q(�; n)=2 pairs of n-long strings over �, and comparingthe two f -values obtained for the elements of each pair.1Thus, the global feature of being monotone or far from it, is determined by a sequence of manyindependent random local checks. Each local check consists of selecting a pair, (x; y), so that(w.l.o.g) x � y, according to some �xed distribution and checking whether f(x)��f(y). If weever �nd a pair for which this does not hold (i.e., local violation of monotonicity), then we reject.Otherwise we accept. Thus, we never reject a monotone function, and the challenge is to analyzethe dependence of rejection probability on the distance of the given function from being monotone.The only thing left unspeci�ed in the above description of the testing algorithm is the distri-bution by which the pairs are selected. In case � = f0; 1g there seems to be a very natural choice.Uniformly select i 2 [n] def= f1; :::; ng, independently and uniformly select z1; : : : ; zi�1; zi+1; : : : ; zn 2f0; 1g, and set x = z1 � � � zi�10zi+1 � � � zn and y = z1 � � � zi�11zi+1 � � � zn. Our improvement over [8],in this case (where � = � = f0; 1g), comes from a better (and in fact tight for � = f0; 1g) analysisof this test: Let �M(f) denote the fraction of pairs (x; y) as above for which f(x) > f(y). We showthat �M(f) � �M(f)=n improving on the bound �M(f) � �M(f)=n2 log(1=�M(f)) in [8] (whereasby [8] there exist functions f for which �M(f) = 2�M(f)=n).In case of non-binary � = f1; : : : ; dg there seem to be several natural possibilities: Even if werestrict ourselves (as above) to select only pairs of strings which di�er on a single coordinate i,there is still the question of how to select the corresponding pair of symbols. We study severalnatural possibilities of randomly selecting pairs (k; `) 2 �� �.1. Distribution p0: Select uniformly a pair (k; k + 1) with k 2 f1; : : : ; d� 1g.2. Distribution p1: Select uniformly a pair (k; `) from a particular subset of size O(d log d) ofthe set of all pairs.3. Distribution p2: Select uniformly a pair (k; `) with k < `.A key result of this work is the reduction of the analysis of testing algorithms as above for anyn and �, and for � = f0; 1g, to their behavior in the special case of n = 1 (where we simply selectpairs (k; `) according to one of the above distributions and check the order between f(k) and f(`)).Using this reduction we derive the following theorem.Theorem 2 (Monotonicity Testing of Boolean functions): There exist e�ciently samplable dis-tributions on pairs (x; y) 2 �n � �n with x � y so that for every function f : �n 7! f0; 1g thefollowing holds:1. If (x; y) is drawn according to one distribution (derived from p1) thenProb[f(x) > f(y)] = 
� �M(f)n � (log j�j)� :1Since the algorithm is comparison-based, its complexity depends only on the size of the image of the function.Thus, one may replace � in the above bound by �f = ff(x) : x 2 �ng. In particular, log j�f j � n � log j�j, so ourbound is never worse than O(n2 � (log j�j)2=�). 2



2. If (x; y) is drawn according to another distribution (derived from p2) thenProb[f(x) > f(y)] = 
��M(f)2n2 � :We note that the �rst item of the theorem can also be derived by applying our reduction andusing an alternative distribution on pairs in �2 which was previously suggested in [6], and analyzedfor the case n = 1. The second item leads to an algorithm having query complexity O(n2=�2).It is possible to obtain an algorithm having complexity O((n=�) log2(n=�)) if the algorithm is notrequired to select independent pairs of strings. The alternative algorithm, suggested by Noga Alon,works by picking i 2 f1; : : : ; ng uniformly, and then querying f on O(1=�) strings that di�er onlyon the ith coordinate. The analysis of this algorithm can also be shown to reduce to the n = 1 case(using analogous claims to those presented here).The reader may be tempted to say that since our algorithm is comparison-based, the analysisshould also hold for non-boolean functions. However, this is false. For example, by Item (2) above,boolean functions over � may be tested for monotonicity within complexity independent of j�j. Incontrast, a lower bound in [6] asserts that arbitrary functions over � (e.g., with � = �) cannotbe tested for monotonicity within complexity independent of j�j (but rather require complexity
(log j�j) for some �xed distance parameter � > 0). Thus, a natural question arises: Under whatconditions and at what cost can results regarding testing of monotonicity of boolean functions betransformed to results for testing monotonicity of arbitrary functions? Our most general result isthe following.Theorem 3 (Monotonicity Testing { Range Reduction): Consider the task of testing monotonic-ity of functions de�ned over any partially ordered set S (with p.o. �S). Suppose that for somedistribution on pairs (x; y) 2 S � S with x �S y and for every function f : S 7! f0; 1gProb[f(x) > f(y)] � �M(f)C ;where C depends on S only. Then, for every � and every function f : S 7! � for pairs selectedaccording to the same distributionProb[f(x) > f(y)] � �M(f)C � log2 j�j :Theorem 1 follows by combining Part 1 of Theorem 2 and Theorem 3 with C = O(n � log j�j).Organization:We start with some preliminaries in Section 2. In Section 3 we show how the analysis of ouralgorithm in the boolean-range case for arbitrary n and �, reduces to the case n = 1. Thealgorithms for the case n = 1 (each corresponding to a di�erent distribution on pairs in ���), areprovided in Subsection 3.3, and the proof of Theorem 2, in Subsection 3.4. Finally, in Section 4 weprove a general reduction from an arbitrary range to the boolean range, and derive Theorem 3.2 PreliminariesLet � and � be sets with total order �� and ��, respectively. We consider the partial order, �,de�ned on equal-length strings over � as in the introduction, and shorthand �� by �.3



For any pair of functions f; g : �n 7! �, we de�ne the distance between f and g, denoteddist(f; g), to be the fraction of instances x 2 �n on which f(x) 6= g(x). As in the introduction,we let �M(f) denote the minimum distance between f and any monotone function g : �n 7! �.Let us formally de�ne the algorithmic schema studied in this paper. The schema uses an arbitraryprobability distribution p : �� � 7! [0; 1]. Without loss of generality, we assume that the supportof p is restricted to pairs (k; `) with k < `. The function t referred to below, depends on p.Algorithmic schema: Given parameters �; n;�;�, and oracle access to an arbitrary functionf :�n 7!�, repeat the following steps up to t(�; n; j�j; j�j) times:1. Uniformly select dimension i 2 [n], pre�x � 2 �i�1, and su�x � 2 �n�i.2. Select (k; `) according to p. Let x = � k �, y = � ` �.3. If f(x) > f(y) (i.e., (x; y) witnesses that f is not monotone), then reject.If all iterations were completed without rejecting then accept.We focus on the analysis of a single iteration of the above test. Such an iteration is fully speci�edby the distribution, denoted Dnp : �n � �n 7! [0; 1], by which pairs (x; y) are selected. That is,Dnp (x; y) = p(k;`)n�j�jn�1 if x = � k � and y = � ` �, for some �; �, and Dnp (x; y) = 0 otherwise. Observethat Dnp (x; y) > 0 only if x � y. Let Detect(f;Dnp ) be the probability that a pair (x; y) selectedaccording to Dnp witnesses that f is not monotone; that is,Detect(f;Dnp ) def= Prob(x;y)�Dnp [f(x) > f(y)] (3)(where the above de�nition can of course be applied to any distribution D on pairs x � y). Ourgoal is to �nd distributions Dnp (determined by the distributions p) for which Detect(f;Dnp ) is\well" lower-bounded as a function of �M(f). If Dnp is such that Detect(f;Dnp ) � �(�; n; j�j; j�j)for any f :�n 7!� with �M(f) � �, then setting t(�; n; j�j; j�j) = �(1=�(�; n; j�j; j�j)) yields a testerfor monotonicity.The partial order graph: It will be convenient to view the partial order over �n as a directed(acyclic) graph, denoted Gn�. The vertices of Gn� are the strings in �n and directed edges correspondto comparable pairs (i.e. (x; y) is an edge i� x � y). An edge (x; y) is said to be violated by f iff(x) > f(y). We denote by Viol(f) the set of violated edges of f . We remark that most of thede�nitions in this section naturally extend to any partially ordered set S in place of �n.3 Dimension Reduction for Boolean FunctionsIn this section we restrict our attention to boolean functions f : �n 7! f0; 1g. Without lossof generality assume � = f1 : : : dg, so j�j = d. In what follows we reduce the analysis of theperformance of our algorithmic schema for any n and � (and � = f0; 1g) to its performance forthe case n = 1 (the \line"). In Subsection 3.3 we describe and analyze several algorithms for theline. Recall that by our algorithmic schema any such algorithm is determined by a probabilitydistribution p on pairs (k; `) 2 � � �. We conclude this section by combining the reduction withthese algorithms to derive Theorem 2. 4



3.1 A Sorting OperatorWe begin with a few de�nitions. For any i 2 [n], we say that a function f is monotone in dimensioni, if for every � 2 �i�1, � 2 �n�i, and k; ` 2 � such that k < `, f(�k �) � f(� ` �). For a setof indices T � [n], we say that f is monotone in dimensions T , if for every i 2 T , the function fis monotone in dimension i. In what follows we describe sort operators which can transform anyboolean function over �n into a monotone function (as we prove below).De�nition 2 For every i 2 [n], the function Si[f ] : �n 7! f0; 1g is de�ned as follows: For ev-ery � 2 �i�1 and every � 2 �n�i, we let Si[f ](� 1�),: : :, Si[f ](� d�) be assigned the values off(� 1�); : : : ; f(� d�), in sorted order.For every i 2 [n] and every pair (k; `) 2 �2 so that k < `, let�i;(k;`)(f) def= f(x; y) 2 Viol(f) : 9 � 2 �i�1 ; � 2 �n�i s.t. x = � k � ; y = � ` �g: (4)Thus, Si;(k;`)�i;(k;`)(f) is the set of all violated edges of f that di�er in a single coordinate. Theseare the only violated edges of f that can be potentially detected by our algorithmic schema. In thenext lemma we show that by sorting in one dimension we do not increase the number of violationsin any other dimension.Lemma 4 For every f : �n 7! f0; 1g and j 2 [n], we have:1. If f is monotone in dimensions T � [n] then Sj[f ] is monotone in dimensions T [ fjg;2. For every i 2 [n] n fjg, and for every 1 � k < ` � dj�i;(k;`)(Sj[f ])j � j�i;(k;`)(f)j:Proof: The important observation is that in order to prove both items we may consider thefunction f restricted at all dimensions but the two in question. Furthermore, proofs of both itemsboil down to asserting claims about sorting zero-one matrices.Item 1. Let i be some index in T , and assume without loss of generality that i < j. We �xany � 2 �i�1, � 2 �j�i�1 and  2 �n�j, and consider the function f 0 : �2 7! f0; 1g de�ned byf 0(��) def= f(�� � � ). Clearly, f 0 is monotone in its �rst dimension (as f is monotone in dimensioni). We need to show that so is S2[f 0] (as by de�nition of S2 we have that S2[f 0] is monotone indimension 2). Our claim thus amounts to saying that if one sorts the rows of a d-by-d zero-onematrix which is column-sorted then the columns remain sorted (the matrix we consider has its(�; �)-entry equal to f 0(� �)).Let M denote a (d-by-d zero-one) matrix in which each column is sorted. We observe that thenumber of 1's in the rows of M is monotonically non-decreasing (as each column contributes a unitto the 1-count of row k only if it contributes a unit to the 1-count of row k + 1). That is, if we letok denote the number of 1's in the kth row then ok � ok+1 for k = 1; :::; d� 1. Now suppose we sorteach row of M resulting in a matrix M 0. Then the kth row of M 0 is 0d�ok1ok , and it follows thatthe columns of M 0 remain sorted (as the k + 1st row of M 0 is 0d�ok+11ok+1 and ok � ok+1).Item 2. Fixing i; j; �; �;  and de�ning f 0 as above, here we need to show that j�1;(k;`)(S2[f 0])j �j�1;(k;`)(f 0)j. The current claim amounts to saying that for any 2 � d zero-one matrix, if we sortthe rows of the matrix, then the number of unsorted columns cannot increase. Note that the claim5



refers only to rows k and ` in the d-by-d matrix considered in Item 1, and that �2;(1;`) is the set ofunsorted columns.Let Q be any 2-by-d zero-one matrix, and let o1 (resp., o2) denote the number of ones in the�rst (resp., second) row of Q, and let Q0 be the matrix resulting from sorting the rows of Q. Ifo1 � o2, then Q0 has no unsorted columns and we are done. Otherwise, Q0 has exactly (o1 � o2)unsorted columns. But then if we look at the o1 columns of Q that have 1 in the �rst row, at mosto2 of them can be sorted, so Q should have at least (o1 � o2) unsorted columns as well.3.2 Dimension ReductionWith Lemma 4 at our disposal, we are ready to state and prove that the analysis of the algorithmicschema (for any n) reduces to its analysis for the special case n = 1. Let A denote one iterationof the algorithmic schema, p be any distribution on pairs (k; `) 2 �� � such that k < `, and Dnpbe the corresponding distribution induced on edges of Gn�. The dimension reduction lemma upperbounds �M(f) and lower bounds Detect(f;Dnp ) by the corresponding quantities for n = 1.Lemma 5 (Dimension Reduction for Boolean Range) Let f : �n 7! f0; 1g. Then there ex-ist functions fi;�;� : � 7! f0; 1g, for i 2 [n], � 2 f0; 1gi�1 and � 2 f0; 1gn�i, so that the followingholds (all expectations below are taken uniformly over i 2 [n], � 2 f0; 1gi�1 and � 2 f0; 1gn�i):1. �M(f) � 2n � Ei;�;�(�M(fi;�;�)).2. Detect(f;Dnp ) � Ei;�;�(Detect(fi;�;�; p)).We prove the lemma momentarily, but �rst consider its implication on the relatively simple caseof � = f0; 1g. First observe that in this case there is only one possible distribution p { the oneassigning all weight to the pair (0; 1). Also, for any f 0 : f0; 1g 7! f0; 1g, Algorithm A rejects withprobability exactly 2�M(f 0). Thus, the lemma implies that in the binary (domain and range) case,for any f : f0; 1gn 7! f0; 1g,Ei;�;�(Detect(fi;�;�; p)) = Ei;�;�(2 � �M(fi;�;�))= 2n �Xi E�;�(�M(fi;�;�))� 1n � �M(f)and we obtain a testing algorithm whose query complexity is O(n=�). Note that the algorithm isvery simple { it uniformly picks an edge whose endpoints di�er in exactly one coordinate. Let usnow prove the lemma.Proof: For i = 1; : : : ; n + 1, we de�ne fi def= Si�1 � � � S1[f ]. Thus, f1 � f , and by Item 1 ofLemma 4, we have that fn+1 is monotone. It follows that�M(f) � dist(f; fn+1) � nXi=1 dist(fi; fi+1): (5)Next, for i = 1 : : : n, � 2 f0; 1gi�1 and � 2 f0; 1gn�i, de�ne the function fi;�;� : � 7! f0; 1g, byfi;�;�(x) = fi(�x�), for x 2 �. Throughout the proof, P�;� refers to summing over all (�; �)'s in6



�i�1 � �n�i, and E�;� refers to expectation over uniformly distributed (�; �) 2 �i�1 � �n�i. Weclaim that dist(fi; fi+1) � 2 � E�;�(�M(fi;�;�)): (6)This inequality is proven (below) by observing that fi+1 is obtained from fi by sorting, separately,the elements in each fi;�;�. (The factor of 2 is due to the relationship between the distance of avector to its sorted form and its distance to monotone.) We have,dn � dist(fi; fi+1) = X�;� jfx 2 � : fi(�x�) 6= fi+1(�x�)gj= X�;� jfx 2 � : fi;�;�(x) 6= fi+1;�;�(x)gj= X�;� jfx 2 � : fi;�;�(x) 6= Si[fi;�;�](x)gj� X�;� 2d � �M(fi;�;�) = 2dn �E�;�(�M(fi;�;�))where the inequality is justi�ed as follows. Consider a vector v 2 f0; 1gd, and let S(v) denote itssorted version. Then S(v) = 0z1d�z, where z denotes the number of zeros in v. Thus, for somee � 0, the vector v has e 1-entries within its z-pre�x and e 0-entries in its (d � z)-su�x. So thenumber of locations on which v and S(v) disagree is exactly 2e. On the other hand, consider anarbitrary perfect matching of the e 1-entries in the pre�x and the e 0-entries in the su�x. To makev monotone one must alter at least one entry in each matched pair; thus, �M(v) � e=d.Combining Eq. (5) and (6), the �rst item of the lemma follows:�M(f) � nXi=1 dist(fi; fi+1) � 2 � nXi=1 E�;�(�M(fi;�;�)) = 2n �Ei;�;�(�M(fi;�;�)):In order to prove the second item, we use the de�nition of algorithm A, and for any event E,let �(E) = 1 if E holds and �(E) = 0 otherwise.Detect(f;Dnp ) = 1n � dn�1 nXi=1X� ; �Prob(k;`)�p[f(� k �) > f(� ` �)]= 1n � dn�1 nXi=1X� ; �X(k;`) p(k; `) � �[f(�k �) > f(� ` �)]= 1n � dn�1 nXi=1X(k;`) p(k; `) �X� ; � �[f(�k �) > f(� ` �)]= 1n � dn�1 nXi=1X(k;`) p(k; `) � j�i;(k;`)(f)jUsing Item 2 of Lemma 4, we havej�i;(k;`)(f)j � j�i;(k;`)(S1[f ])j � � � � � j�i;(k;`)(Si�1 � � �S1[f ])j = j�i;(k;`)(fi)j7



Unwinding steps (7)-(7) with fi in place of f and recalling the de�nition of fi;�;�, we getDetect(f;Dnp ) � 1n � dn�1 nXi=1X� ; �Prob(k;`)�p[fi(� k �) > fi(� ` �)]= Ei;�;�(Detect(fi;�;�; p));and the lemma follows.3.3 Testing Monotonicity on a Line (the n = 1 case)In this section we design algorithms for the case n = 1, for any � and �. In accordance withour algorithmic schema, the design of such algorithms amounts to the design of a probabilitydistribution p : �2 7! [0; 1] (with support only on pairs (k; `) with k < `).Note that for n = 1, we have Dnp � p. We present three such distributions, denoted p0, p1, andp2, and provide bounds on Detect(f; pj), for each j.The following lemma2, which relates �M(f) to Viol(f), will be used in our analysis of variousalgorithms. Recall that a matching of a graph is a collection of edges that share no commonendpoint.Lemma 6 For any f : � 7! � the graph G0 = (�;Viol(f)) has a matching of size �M(f) � j�j=2.Proof: Recall that a vertex cover of a graph is a subset of vertices such that every edge of thegraph has at least one of its endpoints in the subset. We claim that a minimum vertex cover ofG0 has size at least �M(f) � j�j. The lemma directly follows as the size of a maximum matching isat least 1=2 of the size of the minimum vertex cover. Let U � � be any vertex cover of G0. Wenext show that by modifying the value of f only on points in U , we obtain a monotone function,implying that jU j � �M(f) � j�j, as claimed.Let T = �nU . By de�nition of U , there are no violated edges between pairs of vertices in T .Consider the following iterative process, where in each step we modify the value of f on a singley 2 U , remove y form U and add it to T . We maintain the property (which holds initially) thatfollowing each step there are no violated edges between vertices in T . The process ends when U = ;and T = �, so that the �nal function is monotone. To rede�ne the value of f on y, we consider thefollowing two subsets of T : T1 = fx 2 T : (x; y) 2 Viol(f)g and T2 = fz 2 T : (y; z) 2 Viol(f)g.By transitivity of the partial order, and the fact that there are no violated edges (x; z), for x; z 2 T ,at most one of these subsets is non-empty. If T1 is non-empty then we let f(y) = maxx2T1ff(x)g,and if T2 is non-empty, then f(y) = minz2T2ff(y)g. In case both are empty (all violated edgesincident to y have an end-point in U), the value of y may remain unchanged.We note that the size of the minimum vertex cover actually equals �M(f) � j�j. Consider any setU such that by modifying the value of f only on strings in U we can obtain a monotone functiong. Then U must be a vertex cover of G0, as otherwise there remain violated edges with respect tog.Distribution p0: This distribution is uniform over pairs (k; k+1). That is, p0(k; k+1) = 1=(d�1),for k = 1; : : : ; d� 1.Proposition 7 For any � and f : � 7! �, Detect(f; p0) � 2d�1 � �M(f).2While stated for a totally ordered set �, the result and the same proof hold for any partially ordered set S.8



The lower bound can be shown to be tight even for � = f0; 1g (by considering the function fde�ned by f(x) = 1 if x < d=2 and f(x) = 0 otherwise).Proof: If �M(f) > 0, then there exists some k 2 f1; : : : ; d � 1g so that f(k) > f(k + 1). If thereare at least two such k's, then we reject with probability at least 2=(d � 1) � 2�M(f)=(d � 1) as�M(f) � 1. Otherwise, there is a unique k that causes us to reject. In this case �M(f) � 1=2 sincewe can change either all f(i) to f(k + 1) for i � k, or all f(i) to f(k) for i > k in order to make fmonotone. Thus, we reject with probability 1=(d � 1) � 2�M(f)=(d� 1) in this case as well.We see that the above test is too \short-sighted" since it only looks at the neighboring pairsof vertices. We now describe a distribution that spots the violated edges much better. As notedbefore, an alternative distribution which meets the same bound was previously suggested andanalyzed in [6].Distribution p1: This distribution is uniform on a set P � ��� which is de�ned as follows. Theset P consists of pairs (k; `), where 0 < ` � k � 2t and 2t is the largest power of 2 which divideseither k or `. That is, let power2(i) 2 f0; 1:::; log2 ig denote the largest power of 2 which divides i.Then, P def= f(k; `) 2 �� � : 0 < `� k � 2max(power2(k);power2(`))g (7)and p1(k; `) = 1jP j for every (k; `) 2 P , and is 0 otherwise.Proposition 8 For any � and f : � 7! �, Detect(f; p1) � 1O(log d) � �M(f).Proof: We �rst show that jP j = O(d log d). This can be shown by charging each pair (k; `) 2 Pto the element divisible by the larger power of 2 (i.e., to k if power2(k) > power2(`) and to `otherwise), and noting that the charge incurred on each i is at most 2 � 2power2(i). It follows thatthe total charge is at most Pdi=1 2power2(i)+1 =Plog2 dj=0 d2j � 2j+1 = O(d log d).Since p1 is uniform over P , the value of Detect(f; p1) is the ratio between the number ofviolated edges of f in P and the size of P . Thus, it remains to show that the former is 
(�M(f) �d).In the following argument it will be convenient to view the indices 1; : : : ; d as vertices of a graphand the pairs (k; `) 2 P as directed edges. We refer to this graph as GP , and note that it is asubgraph if G1�.Claim 8.1: For every two vertices k and ` in GP with k < `, there is a directed path of length atmost 2 from k to ` in GP .Proof of Claim: Let r = dlog de, and consider the binary strings of length r representing k and `.Let k = (xr�1; : : : ; x0) and ` = (yr�1; : : : ; y0). Let j be the highest index such that xj = 0 andyj = 1. Note that xi = yi for j < i < r. We claim that the vertex s = (xr�1; : : : ; xt+1; 1; 0; : : : 0) ison a path of length 2 from k to `. This follows from the de�nition of P , since s is divided by 2j ,while both s� k = 2j �Pj�1i=0 xi2i � 2j and `� s =Pj�1i=0 yi2i < 2j . 2We now apply Lemma 6 to obtain a matching M of size m � (�M(f) � d=2) consisting of violatededges of f . By the above claim, there is path of length at most 2 in GP between every matched pair.Each edge e of GP belongs to at most 2 such paths: on at most one path it is the �rst edge, and onat most one it is the second edge (or otherwise M is not a matching). Since for every (x; y) 2M wehave f(x) > f(y) (while x � y), the length-2 path between x and y must contain a violated edge.Thus, we obtain at least m=2 � (�M(f) � d=4) violated edges in GP , and the proposition follows.9



On the Optimality of Distribution p1. We show that the result of Proposition 8 is optimal(up to a constant factor), even for � = f0; 1g. The following argument is due to Michael Krivelevich.Proposition 9 For any distribution p : ��� 7! [0; 1], with support only on pairs (k; `) such thatk < `, there exists a non-monotone f : � 7! f0; 1g so thatDetect(f; p) � 2log2 d � �M(f)Proof: Let p be a distribution on pairs as above. We de�ne� def= maxf :�7!f0;1g s.t. �M(f)>0�Detect(f; p)�M(f) �Our aim is to show that � � 2= log2 d. The key observation is that for any consecutive 2a indices,p has to assign a probability mass of at least � � a=d to pairs (k; `) where k is among the lowesta indices and ` is among the higher a such indices. This observation is proven as follows. LetL;H be the low and high parts of the interval in question; that is, L = fs + 1; :::; s + ag andH = fs+a+1; :::; s+2sg, for some s 2 f0; :::; d� 2ag. Consider the function f de�ned by f(i) = 1if i 2 L [ fs + 2a + 1; :::; dg and f(i) = 0 otherwise. Then �M(f) = a=d. On the other hand, theonly pairs (k; `) with f(k) > f(`), are those satisfying k 2 L and ` 2 H. Thus, by de�nition of �,it must hold that � � Pr(k;`)�p[k 2 L & ` 2 H]=(a=d), and the observation follows.The rest of the argument is quite straightforward: Consider log2 d partitions of the interval[1; d], so that the ith partition is into consecutive segments of length 2i. For each segment in theith partition, probability p assign a probability mass of at least 2i�1�=d to pairs where one elementis in the low part of the segment and the other element is in the high part. Since these segmentsare disjoint and their number is d=2i, it follows that p assigns a probability mass of at least �=2 topairs among halves of segments in the ith partition. These pairs are disjoint from pairs consideredin the other partitions and so we conclude that (log2 d) � �2 � 1. The proposition follows.We now describe a distribution that works well for the boolean range only.Distribution p2: This distribution is uniform over all pairs (k; `) such that k < `. That is,p2(k; `) = 2=((d � 1)d) for 1 � k < ` � d.Proposition 10 For any f : � 7! f0; 1g, Detect(f; p2) � �M(f)2=2.A slightly more careful analysis (which we omit) can extend the bound to �M(f)2, which is tight.For any integer e < d=2, consider the function f(x) = 0 if x 2 f2; 4; 6 : : : 2eg and f(x) = 1 otherwise.Then �M(f) = e=d and jViol(f)j = 1 + : : : + e � e2=2. Thus, Detect(f; p2) � (e2=2)=(d2=2) =(e=d)2 = �M(f)2.Proof: Let z be the number of zeroes in f and let 2e be the number of mismatches between f andits sorted form. Then �M(f) � 2e=d as by swapping the 2e mismatches we make f monotone. Onthe other hand, considering the e 1-entries in the z-pre�x of f and the e 0-entries in the (d � z)-su�x, we lower bound the rejection probability by e2=((d� 1)d=2) > 2(e=d)2. Combining the two,we conclude that Detect(f; p2) � 2 � (�M(f)=2)2.We remark that the restriction to boolean range in Proposition 10 is important. For anyinteger e � d=2, de�ne f : � 7! � by f(2i) = 2i � 1, f(2i � 1) = 2i for i = 1 : : : e, and f(i) = ifor i > 2e. Clearly, �M(f) = e=d, while f has only e violated edges: (2i � 1; 2i), i = 1 : : : e. Thus,Detect(f; p2) = e=(d(d � 1)=2) = 2�M(f)=(d � 1), which is much less than �M(f)2 if e is large.10



3.4 Proof of Theorem 2In this subsection we combine Lemma 5 with the results for the case n = 1 provided in Subsec-tion 3.3, and derive Theorem 2Combining Lemma 5 and Proposition 8 (applied only to � = f0; 1g), we haveDetect(f;Dnp1)) � Ei;�;�(Detect(fi;�;�; p1)) [By Part 2 of the lemma]� Ei;�;�(�M(fi;�;�)=O(log d)) [By the proposition]� �M(f)2n�O(log d) = 
( �M(f)n log d) [By Part 1 of the lemma]which establishes the the �rst item in the theorem.Combining Lemma 5 and Proposition 10, we haveDetect(f;Dnp2)) � Ei;�;�(Detect(fi;�;�; p2)) [By Part 2 of the lemma]� Ei;�;�(�M(fi;�;�)2=2) [By the proposition]� [Ei;�;�(�M(fi;�;�))]2=2 [as E(X2) � [E(X)]2]� (�M(f)=2n)2=2 = 
(�M(f)2=n2) [By Part 1 of the lemma]which establishes the second item in the theorem.As noted in the introduction, by slightly modifying our algorithmic schema, it is possible toimprove upon the algorithm implied by the second item of the theorem. Similarly to our originalalgorithm, the modi�ed algorithm reduces the the general question to the n = 1 case, where it doesthe following. It selects O(1=�) values k 2 [d], and queries the function on all these values. If aviolation of monotonicity is detected (i.e., at least one of O(1=�2) possible pairs are out of order),the algorithm rejects. It can be shown that this algorithm for n = 1 will reject a function that is �far from monotone with probability at least 2=3.For general n the algorithm performs the following procedure several times. It uniformly selectsa dimension i 2 [n], a pre�x � 2 �i�1 and a su�x � 2 �n�i. Then it performs the n = 1 test(with a possibly di�erent value of �) on f(�; �; �). It can be shown that with appropriate choice ofparameters, the complexity of this test can be made O((n=�) log2(n=�)). We note, however, thatthis test actually uses the values of f that it gets, while our test only needs to know if a given edge(x; y) is violated, ignoring the other information it gets from f(x) and f(y).4 Testing Monotonicity over General RangesWe now reduce the problem of testing arbitrary-range functions to the simpler problem of testingboolean functions, which was considered in the preceding section. This reduction works not onlyfor functions with domain �n, but more generally when the domain is any partially ordered set S.The reduction is characterized by Theorem 3, which states that a certain type of monotonicity testfor functions of the form f : S 7! f0; 1g also works well for functions of the form f : S 7! �. Here �is a �nite totally ordered set of size r, which we can regard as the integers in the interval [0; r� 1].Furthermore, for simplicity, we assume that r = 2s for some integer s. All references to "edges"are references to edges of the partial order graph, whose vertices are strings in the domain S anddirected edges correspond to ordered comparable pairs (i.e. (x; y) is an edge i� x � y).To ensure that a function far from monotone can be readily detected by our test, we lowerbound Detect(f;D) in terms of �M(f). Equivalently, we are looking for a good upper bound on�M(f) in terms of Detect(f;D). We reduce the task of obtaining an upper bound for functionswith an arbitrary range to that of obtaining such an upper bound for functions with binary range.11



The general idea of the reduction is to incrementally transform a function f into a monotonefunction, while ensuring that for each repaired violated edge, the value of the function is changedat only a few points. This transformation allows us to �nd a monotone function close to f andto upper bound �M(f) by the distance from f to that function. The transformation produces thefollowing chain of functions: f 7! f1 7! f2 7! f3; where f3 is monotone. The distance betweenany two consecutive functions in the chain is equal to the distance to monotone of some auxiliaryfunction with a smaller range. Thus, we obtain an upper bound on �M(f) in terms of the distance tomonotone of smaller-range functions. In addition, edges violated by the auxiliary functions are alsoviolated by f , and we can obtain a lower bound on Detect(f;D) in terms of the correspondingprobability for the smaller-range auxiliary functions. Using the inductive assumption for smaller-range functions and the two claims above, we �nally obtain the needed upper bound on �M(f) interms of Detect(f;D).Subsection 4.1 describes and analyzes operators squash, mon, and clear later used to de�nefunctions f1; f2, and f3 described above. Subsection 4.2 proves the range reduction lemma whichupper bounds �M(f) and lower bounds Detect(f;D) by the corresponding quantities for smallerrange functions. This section is concluded by the proof of Theorem 3 in Subsection 4.3.4.1 Operators squash, mon, and clearFirst, we introduce operators, later used for obtaining functions f1; f2; and f3 related to f .De�nition 3 The operators squash, mon, and clear each map a function f : S 7! [0; r � 1] toa related function with the same domain and the same or smaller range. In particular, mon[f ] issome arbitrary monotone function at distance �M(f) from the function f . The operators squashand clear are de�ned below; in these de�nitions a and b are elements of [0; r � 1] and a < b.squash[f; a; b](x) = 8<: a if f(x) � ab if f(x) � bf(x) otherwiseclear[f; a; b](x) = 8<: mon[squash[f; a; b]](x)if mon[squash[f; a; b]](x) 6= squash[f; a; b](x)f(x) otherwisesquash operator simply \squashes" the range of f to [a; b]. Notice that if an edge is not violatedby f , it is not violated by squash[f; a; b].Claim 11 For all f : S 7! [0; r � 1] and all a; b 2 [0; r � 1] such that a < b, the operator squashdoes not introduce any new violated edges, i.e. Viol(squash[f; a; b]) � Viol(f):clear operator �rst \squashes" the range to [a; b], then alters the resulting smaller-rangefunction at some points to obtain the closest monotone function, and �nally \unsquashes" thefunction at unaltered points to the original values. This leads to the following simple claim:Claim 12 For all f : S 7! [0; r � 1] and all a; b 2 [0; r � 1] such that a < b,dist(f;clear[f; a; b]) = �M(squash[f; a; b]):Proof: By de�nitions of the clear and mon operators:dist(f;clear[f; a; b]) = dist(mon[squash[f; a; b]]; squash[f; a; b]) = �M(squash[f; a; b]):12



De�ne the interval of a violated edge (x; y) with respect to function f to be the interval [f(y); f(x)](since the edge is violated by f , f(x) > f(y)). We say that two intervals cross if they intersectin more than one point. Intuitively, if we consider f(x) � f(y) as a measure of how violated anedge (x; y) is, then we can say that clear[f; a; b] partially repairs violated edges of f whose inter-vals cross [a; b] without worsening other violated edges. The following lemma formalizes importantproperties of clear.Lemma 13 The function clear[f; a; b] has the following properties for all f : S 7! [0; r � 1] andall a; b 2 [0; r � 1] such that a < b:1. Viol(clear[f; a; b]) � Viol(f), i.e. clear does not introduce any new violated edges.2. clear[f; a; b] has no violated edges whose intervals cross [a; b].3. The interval of a violated edge with respect to clear[f; a; b] is contained in the interval ofthis edge with respect to f .Proof: For brevity, de�ne g = mon[squash[f; a; b]] and h = clear[f; a; b]. Let (x; y) be an edgeviolated by h; that is, h(x) > h(y). By its de�nition, g is monotone and takes values in [a; b]. Alsonotice that h(x) = f(x) if h(x) =2 [a; b], and h(x) = g(x) if h(x) 2 [a; b]. We consider four caseswhere each of h(x) and h(y) is either inside or outside the interval [a; b].� Case 1: h(x); h(y) 2 [a; b]. This case cannot occur: (x; y) cannot be violated by h becauseh(x) = g(x); h(y) = g(y) and g is monotone.� Case 2: h(x); h(y) =2 [a; b]. Since f and h agree on both x and y, it follows that (x; y)is violated by f and [h(y); h(x)] = [f(y); f(x)]. This proves parts 1 and 3. To show that[h(y); h(x)] does not cross [a; b], it remains to prove that the case when h(x) > b and h(y) < acannot happen. But in such a case we must have g(x) = b and g(y) = a and that contradictsthe monotonicity of g.� Case 3: h(x) =2 [a; b], h(y) 2 [a; b]. Since (x; y) is violated, h(x) > b. Consequently, f(x) =h(x) > b and, thus, g(x) = b. Since g is monotone, g(y) � g(x) = b, and hence h(y) = g(y) =b. This proves that [h(y); h(x)] intersects [a; b] in at most one point (b), establishing part 2.If f(y) = h(y) = b, then f and h agree on both x and y, and parts 1 and (3) follow. If not,then b = g(y) 6= squash[f; a; b](y). Thus, squash[f; a; b](y) < b, and hence f(y) < b = h(y).Since f(x) = h(x) > b, parts 1 and 3 follow.� Case 4: h(x) 2 [a; b]; h(y) =2 [a; b]. This case is symmetrical to Case 3.4.2 Range ReductionWe are now ready to de�ne functions in the chain f 7! f1 7! f2 7! f3; as well as auxiliary smaller-range functions f 01, f 02, and f 03. Lemma 14 de�nes these functions and summarizes their properties.The transition from f to f1 transforms violated edges with one endpoint in the lower half of therange and the other endpoint in the upper half into edges with both endpoints in the same halfof the range. Then we repair violated edges with both endpoints in the lower half of the range toobtain f2 and �nally, upper half of the range to obtain f3.13



Lemma 14 (Range Reduction) Given f : S 7! [0; r � 1], de�nef 0 = squash[f; r2 � 1; r2 ]; f 01 = squash[f1; 0; r2 � 1]; f 02 = squash[f2; r2 ; r � 1];f1 = clear[f; r2 � 1; r2 ]; f2 = clear[f1; 0; r2 � 1]; f3 = clear[f2; r2 ; r � 1]:These functions have the following properties, for any probability distribution D.1. Detect(f;D) � Detect(f 0;D)2. Detect(f;D) � Detect(f 01;D) +Detect(f 02;D)3. �M(f) � �M(f 0) + �M(f 01) + �M(f 02)Proof: All references to \parts" are references to parts of Lemma 13.(1 ) The squash operator never adds new violated edges by Claim 11. Therefore, Viol(f 0) �Viol(f), and the claim follows.(2 ) It is enough to show that Viol(f 01) and Viol(f 02) are disjoint subsets of Viol(f). First, notethat Viol(f 01) and Viol(f 02) are subsets of Viol(f) because f 01 and f 02 are constructed from f usinga sequence of clear and squash operators, which never add new violated edges by Claim 11 andpart 1.It remains to prove that Viol(f 01) and Viol(f 02) are disjoint. By part 2, there is no edge violatedby f1 whose interval crosses [ r2 � 1; r2 ]. Hence, the edges violated by f1 are partitioned into twodisjoint subsets: \low" edges with intervals contained in [0; r2 � 1] and \high" edges with intervalscontained in [ r2 ; r � 1]. The edges violated by f 01 are a subset of the low edges, since the squashoperator repairs all high violated edges and adds no new violated edges by Claim 11. The edgesviolated by f 02 are a subset of the high edges, since the clear operator used to form f2 repairs alllow violated edges by parts 2 and 3, and no new violated edges are added by Claim 11 and part 1.(3 ) First, we show that f3 is monotone. Since the function f3 is constructed from f using a sequenceof three clear operators, parts 2 and 3 imply that there is no edge violated by f3 whose intervalcrosses any of the intervals [ r2 � 1; r2 ], [0; r2 � 1], or [ r2 ; r � 1]. Therefore, f3 violates no edges at alland is monotone.Now the distance from f to the set of monotone functions is at most the distance from f to theparticular monotone function f3, and we get:�M(f) � dist(f; f3) � dist(f; f1) + dist(f1; f2) + dist(f2; f3) = �M(f 0) + �M(f 01) + �M(f 02):The last step uses Claim 12.4.3 Proof of Theorem 3In this subsection we use the results of the preceding lemma to prove Theorem 3. The proof is byinduction on s with the inductive hypothesis that for every function f : S 7! � where j�j = 2s,�M(f) � C �Detect(f;D) � s:In the base case where s = 1, the hypothesis holds by the assumption stated in the theorem.Now assume that the hypothesis holds for s � 1 to prove that it holds for s. We can reason as14
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