A preliminary version of this paper appearsAdvances in Cryptology — EUROCRYPT Q®cture Notes in Computer
Science Vol. 5479, pp. 371-388, A. Joux ed., Springer-ge&809. This is the full version.

Salvaging Merkle-Damayd for Practical Applications
YEVGENIY DoDIS* THOMAS RISTENPART! THOMAS SHRIMPTON ¥

January 2009

Abstract

Many cryptographic applications of hash functions are analyzed in ti@ora oracle model. Unfortunately, most
concrete hash functions, including the SHA family, use the iterative @gtiened) Merkle-Danéyd transform applied to
a corresponding compression function. Moreover, it is well known tiia resulting “structured” hash function cannot
be generically used as a random oracle, even if the compression fustassumed to be ideal. This leaves a large
disconnect between theory and practice: although no attack is knownéeny concrete applications utilizing existing
(Merkle-Damgrd based) hash functions, there is no security guarantee eithehyeidealizing the compression function.

Motivated by this question, we initiate a rigorous and modular study of dewvglanew notions of (still idealized)
hash functions which would be (a) natural and elegant; (b) sufficmanguing security of important applications; and
(c) provably met by the (strengthened) Merkle-Damttransform, applied to a “strong enough” compression function. In
particular, we show that a fixed-length compressing random oracleelbas the currently used Davies-Meyer compression
function (the latter analyzed in the ideal cipher model) are “strong eridogthe two specific weakenings of the random
oracle that we develop. These weaker notions, described belowpéeengtural and should be interesting in their own
right:

e Preimage Aware Functions Roughly, if an attacker found a “later useful” outpubf the function, then it must
“already know” the corresponding preimage We show that this notion works well with the Merkle-Daangd
transform (unlike fixed-length random oracles), and has many afiplisa Most notably, it yields a variable-length
random oracle, when composed with a fixed-length random oracle.itidwllly, (compressing) preimage aware
functions considerably generalize collision-resistant hash functiomsedfer, we show that existing block-cipher-
based hash functions, originally only shown collision-resistant in the @plér model, are in fact preimage aware.

e Public-Use Random Oracles Roughly, these objects are indifferentiable from ordinary randorolesabut only
when they are never evaluated on secret inputs. We show that suatyeoracles are enough to argue security of
most hash-based signature schemes, including Full Domain Hashadrshamir signatures. Moreover, the Merkle-
Damgard transform preserves this notion. As a result, all “public-use” agiitios of random oracles are still secure
with existing hash functions (assuming a strong enough compressioticiunsuch as a fixed-length random oracle
or the Davies-Meyer function).

Keywords: hash functions, random oracle model, indifferentiability framework

*Dept. of Computer Science, New York University. 251 Mercer Sfew York, NY 10012, USA. Email:dodis@cs.nyu.edu . URL:
http://www.cs.nyu.edu/ dodis

TDept. of Computer Science & Engineering 0404, University afiférnia San Diego, 9500 Gilman Drive, La Jolla, CA 9209384USA. Email:
tristenp@cs.ucsd.edu . URL: http://www.cs.ucsd.edu/ tristenp

¥ Dept. of Computer Science, Portland State University, Rod&@, TForth Avenue Building, 1900 SW 4th Avenue, Portland ORI
USA and Faculty of Informatics, University of Lugano Via Buffi3, CH-6900 Lugano, Switzerland. Emailteshrim@cs.pdx.edu,
thomas.shrimpton@unisi.ch . URL: http://www.cs.pdx.edu/ teshrim, http://www.inf.unisi. ch/

Contents

1

o O w >

Introduction

1.1 Preimage Aware Functions
1.2 Public-Use RandomOracles

Preliminaries

Preimage Awareness

3.1 Relationships between PrA, CR,and RandomOracles
3.2 Weak Preimage Awareness v v i it i e e a

Merkle-Damgard as an FIL-RO domain extender

Building Preimage-Aware Functions

5.1 CR compression functions from PGV are preimage-aware
5.2 Shrimpton-Stam compression function is preimage-awar
5.3 Dodis-Pietrzak-Puniya compression function is preieaaware
5.4 Mix-Compressis preimage-aware v i i e .

Indifferentiability for Public-Use Random Oracles

6.1 Publiccuse ROsandPROs.un
6.2 Public-use guarded ROsandPROs

Constructing Public-use Random Oracles

7.1 lteration preserves beingapub-PRO
7.2 Type-llPGVarepub-GPROS e

Proof of Theorem 3.2
Preimage Awareness of Iteration without Strengthening
Group-2 PGV schemes are PrA in the iteration

Alternative Formulation for Preimage Awareness

_bo.)

10

15
16
17
19
20

21
22
22

23
23
27

34

34

35

36

1 Introduction

The primary security goal for cryptographic hash functibas historically been collision-resistance. Conseqygntiuse
hash functions, such as the SHA family of functions [30], eveéesigned using the (strengthened) Merkle-DamddMD)
transform [18, 29]: the input messadé is suffix-free encoded (e.g. by appending a message blodkioorg the length
of M) and then digested by the cascade construction using amlyindefixed-input-length (FIL) compression function.
The key security feature of the strengthened MD transfaonas that it iscollision-resistance preserviri@8, 29]. Namely,
as long as the FIL compression function is collision-resistthe resulting variable-input-length (VIL) hash fuoatwill
be collision-resistant too.

RANDOM ORACLE MODEL. Unfortunately, the community has come to understand thiision-resistance alone is insuf-
ficient to argue the security of many important applicatiohbBash functions. Moreover, many of these applications. (e.
Fiat-Shamir [24] signatures or RSA [4] encryption) are stltdt no standard model security assumption about the hash
function appears to suffice for proving security. On the ottend, no realistic attacks against these applications hagn
found. Motivated in part by these considerations, Bellaré Rogaway [4] introduced the Random Oracle (RO) model,
which models the hash function as a public oracle implemgragirandom function. Using this abstraction, Bellare and Ro
gaway [4, 5, 6] and literally thousands of subsequent wor&eaged to formally argue the security of important schemes.
Despite the fact that a proof in the RO model doesalways guarantee security when one uses a real (standarel)mod
hash function [13], such a proof does provide evidence ti@astheme is structurally sound. Moreover, many important
in-use cryptographic schemes only have provable secuwidyamtees in the RO model.

IS MERKLE-DAMGARD A GOOD DESIGN? Given the ubiquity of MD-based hash functions in practioe] the success of
the RO model in provable security, it is natural to wonderMR-based hash functioff is reasonably modeled as a RO, at
least when the compression function is assumed to be idaakw@n without formalizing this question, one can see that t
answer is negative. For example, the well-knaxtension attackllows one to take a valug () for unknownz, and then
compute the valuél (z, (¢), y), wherel is the length ofc andy is an arbitrary suffix. Clearly, this should be impossible fo
a truly random function. In fact, this discrepancy leadsinapte attacks fonatural schemes proven secure in the random
oracle model (see [17]).

Consequently, Coron et al. [17] adapted the indiffereiittgframework of Maurer et al. [28] to define formally what
it means to build a secure VIL-RO from smaller (FIL) ideatizomponents (such as an ideal compression function or ideal
cipher). Not surprisingly, they showed that the strengéieD transform does not meet this notion of security, evearwh
applied to an ideal compression function. Although [17{aaveral subsequent works [2, 3, 27]) presented straigvefd
fixes to the MD paradigm that yield hash functions indifféi@ble from a VIL-RO, we are still faced with a large disconhe
between theory and practice. Namely, many applicationg @mjoy proofs of security when the hash function is modeled
as a “monolithic” VIL-RO, while in practice these applicatis use existing MD-based hash functions which (as we just
argued) are demonstrably differentiable from a monoliR@x(even when compression functions are ideal). Yet degpge
gap,no practical attacks on the MD-based design (like the externsitack) seem to apply for these important applications.

“SALVAGING” M ERKLE-DAMGARD. The situation leads us to a question not addressed pribistavbrk: given a current
scheme that employs aiD-based hash functiof/ and yet does not seem vulnerable to extension-type atteaksye
prove its security (at least if the compression functiaa assumed to be ide&l)The most direct way to answer this question
would be to re-prove, from scratch, the security of a givepliaption when an MD-based hash function is used. Instead,
we take a more modular approach consisting of the followtegs

(1) Identify a natural (idealized) property that is satisfied by a random oracle.

(2) Argue thatX sufficedor proving the security of a given (class of) applicatign(siginally proved secure wheH is
modeled as a monolithic RO.

(3) Argue that thestrengthened MD-transform satisfiég as long as its compression functigrsatisfies some related
propertyY.

(4) Conclude that, as long as the compression funcfisatisfiesY’, the given (class of) application(s) is secure with an
MD-based hash functiofi.

Although this approach might not be applicable to all scesawhen itis applicable it has several obvious advantages over
direct proofs. First, it supports proofs that are easieretive, understand, and verify. Second, proving that a hasttion
satisfyingX alone is enough (as opposed to being like a “full-blown” R@)d given application elucidates more precisely
which (idealized) property of the hash function is esséfaissecurity. Third, if the property is natural, itis interesting to

study in its own right. Indeed, we will show several applicas of our notions which are quite general and not necdgsari
motivated by salvaging the MD transform. Finally, due tor@#), it suffices to argue/assume “only” that the comp@ssi
function f — a smaller and much-better-studied object — satisfies setated propertyy”. Typically, if Y corresponds to
being FIL-RO, it would be easy to conclude that the MD-transf satisfiesX, which will already be quite useful. In our
examples, however, we will be able to derive this conclustorconsiderably weakepropertiesY’, which corresponds to
awider classof “admissible” compression functions For example, most in-use compression functigrege built from
a block cipherE via the Davies-Meyer transfornmy(c,) = E.(c) @ c. It was shown in [17] that this constructionnst
indifferentiable from a FIL-RO, even if/ is assumed to be an ideal cipher. Despite this, in our exanvpéewill be able
to argue, in the ideal cipher model, that the Davies-Meyemm@ssion function satisfies the propertysufficient to prove
that the iterated hash functidi satisfiesX. As a result, the resulting applications we considerpozably secure with
existing block cipher-based hash functidimsthe ideal-cipher model).

So which properties (andY)? We introduce two:preimage awarenesand indifferentiability from apublic-use
random oracle For preimage awareness, the corresponding properll also be preimage awareness, which means that
the Merkle-Dam@rd transform igproperty-preservingor this new notion. For public-use random oracles, the ertyp
Y will be evenweakerthan public-use random oracles, which not only implies proppreservation, but will allow us
to justify the use of the Davies-Meyer compression functishich is differentiable from a public-use random oraclet b
satisfies this weaker notion). We detail these new notioftbe

1.1 Preimage Aware Functions

A function being Preimage Aware (PrA) means, informallwttti an attacker can output a range pajrand subsequently
produce a preimage for y, then in fact the attacker “already knew”when it outputy. To get an idea of how we
formalize this, consider a hash functiéh built using some ideal primitivé” (which could model a compression function
or a block cipher). Then the PrA security experiment is Ibosefined as follows. An attacker, using oracle access to
P, first outputs a range point Then a deterministic algorithm called artractoris run ony and the transcript of the
attacker’s interaction wittP (the queries and their associated responses); it outpuimaid pointz’. The attacker wins

if it can (using further access 1) output a domain point # 2’ such that () = y. Intuitively, this definition captures
that producing a preimage-image pair undérequires actually evaluatingg on the preimage in a manner that reveals
it to anyone observing the attacker’s oracle calls. Ouramoi$ very similar in spirit to the notion of plaintext awas=s
for encryption schemes [4, 1] and the notion of extractgbftr perfectly one-way functions [11, 12]; we discuss thes
similarities in more detail, below.

We notice that random oracles are clearly PrA. In fact, pagjenawareness precisely captures the spirit behind a
common proof technique used in the RO model, often refemedstextractability making it an interesting notion to
consider. We also show that preimage awareness is a natteagithening of collision-resistance (CR). That preimage
awareness lies between being a RO and CR turns out to be gefid:uinformally, a PrA function is “strong enough” to be
a good replacement for a RO in some applications (where Cisisficient), and yet the notion of preimage awareness is
“weak enough” to be preserved by strengthened MD (like CR).

MERKLE-DAMGARD PRESERVES PREIMAGE AWARENESS We show that théstrengthened) MD transform preserves
preimage awarenessn stark contrast to the fact that it doest preserve indifferentiability from a RO [17]. Thus, to
design a variable-input-length preimage aware (VIL-Pu)dtion, it is sufficient to construct a FIL-PrA function, even
better, argue that existing compression functions are &rén when they are not necessarily (indifferentiable fr@njiom
oracles The proof of this is somewhat similar to (but more involvédrt) the corresponding proof that MD preserves
collision-resistance.

APPLICATION: DOMAIN EXTENSION FORROs. A PrA hash function is exactly what is needed to argue sedoneain
extension of a random oracle. More precisely, assumiiga FIL-RO, andH is a VIL-PrA hash function (whose output
length matches that of the input bj, thenF'(z) = h(H (z)) is indifferentiable from a VIL-RO. Ironically, whe# is just
CR, the above construction éf was used by [17] to argue that CR functions are not sufficientddmain extension of a
RO. Thus, the notion of PrA can be viewed simultaneously asatrivial strengthening of CR, which makes such domain
extension work, while also a non-trivial weakening of RO jethmakes it more readily achieved.

RECIPE FOR HASH DESIGN The previous two properties of PrA functions give a genezaipe for how to construct hash
functions suitable for modeling as a VIL-RO. First, investraust as needed to construct a strong FIL funchigne. one
suitable for modeling as a FIL-RO.) Evervifis not particularly efficient, this is perhaps acceptablease it will only be
called once per message (on a short input). Second, speaddifieient construction of a VIL-PrA hash function built fro
some cryptographic primitivé’. But for this we use the fact that MD is PrA-preserving; hentcis sufficient to focus on

constructing a FIL-PrA compression functigifrom P, and this latter task could be much easier than building ffoam
object indifferentiable from a FIL-RO.

Adopting our more modular point-of-view, several existimgsh constructions in the literature [17, 2, 3, 32, 21] enjoy
an easier analysis. For example, the NMAC construction of fecomes an example of our approach, where the auter
and the inneyf are both implemented to be like (independent) FIL-ROs. W [tlis argued directly, via a difficult and long
argument, that the innegf can be replaced by the Davies-Meyer construction (in thalidpher model), despite the fact
that Davies-Meyer isiotitself indifferentiable from a FIL-RO. We can instead jusbye that Davies-Meyer is PrA (which
requires only a few lines due to the existing proofs of CR []) and then conclude.

LIFTING FROM CR TO PrA. Another important aspect of preimage awareness is filvatmany important constructions,

it gives a much more satisfactory security target than giolti resistance. Indeed, there exists a large body of wdrkq3

25, 26, 34, 35, 33, 21] building FIL-CR hash functions froreatized blockciphers and permutations. On the one hand, it
seems very hard to prove the security of such schemes inghdastd model, since there exists a black-box separatign [36
between collision-resistant hash functions and standerdel block ciphers (which are equivalent to one-way floms).

On the other hand, it seems quite unsatisfactory that omes stéith such a “powerful” idealized primitive (say, an idea
cipher), only to end up with a much “weaker” standard modelrguatee of collision resistance (which is also insufficient
for many applications of hash functions). The notion of prage awareness provides a useful solution to this preditame
We show thaall the FIL constructions proven CRin [7, 35, 33, 21] are proy&hlA. This is interesting in its own right, but
also because one can now use these practical constructitms aur aforementioned recipe for hash design. We believe
(but offer no proof) that most other CR ideal-primitive-bdgunctions, e.g. [25, 26, 34], are also PrA.

We note that it is also possible to prove that a VIL-CR haslefion is PrA even if the underlying compression function
is not. Of course, in this case we must step outside of our faodypproach (point (4), in particular). As an example, in
Appendix C we show that the Group-2 blockcipher-based cesgion functions from [7, 31] (which are not even CR) do
yield a PrA-hash when iterated.

OTHER APPLICATIONSCONNECTIONS? We believe that PrA functions have many more applicatibas the ones so far
mentioned. As one example, PrA functions seem potentiagful for achieving straight-line extractability for vaus
primitives, such as commitments or zero-knowledge prodfese, in turn, could be useful in other contexts. As already
mentioned, preimage awareness seems to be quite relathd twtion ofplaintext awarenesg public-key encryption
schemes [5, 1], and it would be interesting to formalize gatential connection. PrA functions are also very relatesiat
calledextractable hash function&XT) recently introduced by Canetti and Dakdouk [11, 12wéver, there are some
important differences between EXT and PrA, which appear a@arour respective results inapplicable to each other: (a)
EXT functions are defined in the standard model, while PrAcfioms in an idealized model; (b) EXT functions are keyed
(making them quite different from in-use hash functiong)jlesPrA functions can be keyed or unkeyed; (c) EXT functions
do not permit the attacker to samglry“unextractable” imagey, while PrA functions only exclude imaggswhich could

be later “useful” to the attacker; (d) EXT functions allovetextractor to depend on the attacker, while PrA functiossin

on a universal extractor.

1.2 Public-Use Random Oracles

Next, we consider applications that never evaluate a hasttifun on secret data (i.e. data that must be hidden from ad-
versaries). This means that whenever the hash functioralsiaed on some input by an honest party, it is safe to
immediately giver to the attackerd. We model this by formalizing the notion offaublic-use random oracléub-RO);
such a RO can be queried by adversaries to reveal all sasaiegl messages. This model was independently considered,
under a different motivation, by Yoneyama et al. [39] usihg hame leaky random oracle. Both of our papers observe
that this weakening of the RO model is actually enough toesgcurity of many (but, certainly, not all) classical sckem
analyzed in the random oracle model. In particular, a vagoritg of digital signature schemes, including Full Domain
Hash (FDH) [4], probabilistic FDH [16], Fiat-Shamir [24]L5 [10], PSS [6] and many others, are easily seen secure in
the pub-RO model. For example, in the FDH signature scheinthgtRO H is only applied to the message supplied by
the attacker, to ensure that the attacker cannot invertathe ¥ (m) (despite choosing:). Other applications secure in the
pub-RO model include several identity-based encryptidrestes [9, 8], where the random oracle is only used to hash the
user identity, which is public.

We go on to formalize this weakening of ROs in the indiffei@nility framework of Maurer et al. [28]. This allows us
to define what it means for a hash functiéh(utilizing some ideal primitiveP) to be indifferentiable from @ublic-use
random oracle. We call such a hash function a public pseandora oracle (pub-PRO).

MERKLE-DAMGARD CONSTRUCTS PUBLIGUSE ROS. As our main technical result here, we argue that the MD foains

preserves indifferentiability from a pub-RO, even thougloies not preserve general indifferentiability from a (deg) RO.

To get some intuition about this fact, it is instructive t@aaxne the extension attack mentioned earlier, which wasabie

of the problem with MD for general indifferentiability. Theone worried about adversaries being able to infer the hash
output on a message with unknown prefix. In the public-usingethis is not an issue at all: the security of a public-use
application could never be compromised by extension adtatice all messages are known by the attacker.

PUBLIC-USE COMPRESSION FUNCTIONS Our modular approach allows us to dig deeper, investigatie suitability

of various compression function designs for use within MObtdld hash functions that enjoy indifferentiability from a
pub-RO. It is clear that a FIL RO or FIL pub-RO would suffice. fohunately, widely-used compression functions are
not suitable for modeling as even pub-ROs, because theyasedion block ciphers. (Briefly, that ciphers are invertible
obviates hope of such compression functions being indifféable from a pub-RO.) This is doubly unfortunate sinceely
used hash functions, such as the SHA family, are construtied) such compression functions. We therefore formalize a
further-restricted variant of a pub-RO for compressiorcfions: a public-usguardedRO. Informally, this is an FIL RO
that is used by honest parties only within the confines of tietfMnsform. (Dishonest parties can use the RO in arbitrary
manners.) We go on to strengthen our preservation resutdiay MD above to show that MD applied to any (object
indifferentiable from a) public-use guarded RO results fiulapublic-use RO. Further, we go on to show that all of the
PGV type-2 compression functions applied to an ideal ciginerindifferentiable from public-use guarded ROs. Noté tha
this approach is still entirely modular, allowing indepentl(and simpler) analyses of compression function andfwoam.

DiscussioN Our results, combined with the composition theorem of [28]e a plethora of new, important provable
security results. Namely, for any scheme only proven seicutiee RO model and whose security is unaffected by public
dissemination of hashed messages, our results giviirsheverproofs of security (in the ideal cipher model) when using
hash functions such as SHA-2. Since SHA-2 (and even SHA{Lbw&in use for many years to come, these positive results
importantly help explain when such hash functions are setmuuse.

2 Preliminaries

When S is a set,x +s S means to sample uniformly fromsi and assign the resultant valueato We write DT for the set
({0,1}9)*. We writez «s A to denote running algorithm with fresh random coins and assigning its output-toFor
M € {0,1}*, we write My, ..., M, <~ M to denote (1) let = ||M]|/d], (2) let M; be assigned thé" d-bit substring of
M forl <i</{—1,and (3)letM, be the lastM| mod d bits of M if |M| mod d # 0 and letM, be the lastl bits of M
otherwise. For sef, we write S < s to denoteS — S U {s}.

For any algorithmf that accepts inputs froom C {0, 1}*, we write Time(f, m) to mean the maximum time to run
f(z) for any inputz € Dom such thafz| < m. Whenf is a function with domaiDom C {0, 1}*, we defineTime(f, m)
to be the minimum, over all prograni§ that implement the mapping, of the size ofl’; plus the worst case running time
of Ty over all elements € Dom such thatz| < m. In either case, when we suppress the second argumentgyuist
Time(f), we mean to maximize over all strings in the domain. Runnimgs are relative to some fixed underlying RAM
model of computation, which we do not specify here.

As a small abuse of standard notation, we wteX) to hide absolute constants that are dominated by the argukhen

INTERACTIVE TMS. An Interactive Turing Machine (ITM) accepts inputs via aput tape, performs some local compu-
tation using internal state that persists across invogatiand replies via an output tape. An ITM might implementouss
distinct functionalitiesf1, f», ... that are to be exposed to callers. Aterfaceof an ITM specifies that writing one of a
certain subset of possible strings on the input tape invakgarticular functionality. For example, writind| s (where the
number; is suitably encoded as a string) results in execufingn s. When we writeP = (fi, f2,...), this means that
ITM P implements the functionalitie§, f», . . . using some fixed interface semantics. We wifte= (f1, f2,...) for an
ITM implementing fi, f2,---. When functionalitiesf;, f; (say) do not share state, we say tlfiaand f; areindependent
functionalities; these will be explicitly noted. We willl{ghtly abusing notation) writef; to refer to accessing an ITM via
interfacef;.

We sometimes distinguish betweprivate interfaceandpublic interfaceqfollowing terminology from [28]), writing
P = ((f1, f2y--.),(f1, f5,...)) to denote the ITMP that has private interface§, fa, ... and public interfacegi, f3,
(Looking ahead, private interfaces will be used exclugisl honest parties while public interfaces will be used byead
saries and simulators.) We wrilg” if an ITM M has access to the private interface$aind writeM Fee if A/ has access
only to the public interfaces aP. If P does not have distinguished public and private interfaibes) the public interfaces
are just the private interfaces. We writé” "2+ to denote)M having access to multiple (independent) ITIg P,

Implicitly this means one defines a single ITM = (Py, P»,...) with interfaces for the independent functionalities and
then giveM unfettered access 0.

IDEAL PRIMITIVES. We sometimes use the monikdeal primitiveto refer to an ITM; this is to emphasize the use of an
ITM as building block for some larger functionality. For rempty setd)om, Rng, a random oracle is the ideal primitive
Fpom,rng With @ single interface that consistently maps input®inn to range points randomly chosen frdgmg. When

Dom = {0,1}¢ andRng = {0, 1}" for somed, r we write 7, ,,. We write 7 whenDom and Rng are clear from context.
Letx,n > 0 be integers. A block cipher is a mdp: {0,1}* x {0,1}" — {0, 1}" such thatE(k, -) is a permutation for

all k € {0,1}". LetBC(k,n) be the set of all such block ciphers. An ideal cipher is thaligeimitive C,. ,, = (E, D)

with two interfaces implementing a cipher chosen randomdynfBC,; ,, and its inverse, respectively. We wrifewhens

andn are clear from context. (Note that in both cases all int@$aare private, and so accessed both by honest parties and
adversaries alike.)

HASH FUNCTIONS ANDMERKLE-DAMGARD. Let Dom C {0, 1}* be a non-empty set of strings, aRag be a non-empty
set (typically{0,1}" for some integer. > 0). A hash functioris an algorithm that computes a map: Dom — Rng.
We will be concerned with hash functions that use (oraclessdo) an underlying ideal primitive®. We write H”
when we want to make this dependency explicitPlhas both private and public interfaces, then we use the otiove
that H” meansH uses the first private interface. When the primitive is cleamf context, we will sometimes suppress
reference to it. When computinGime(H, -), calls to P are unit cost. Similar to our definition dfime(H,m), we write
NumQueries(H, m) for the minimum, over all prograniy that computeH, of the maximum number of queries 10
required to computé/” (z) for anyx € Dom such thatz| < m.

For integersy, d > 0, we call a hash functiofi” : {0,1}" x {0,1}¢ — {0, 1} acompression functiofusing idealized
primitive P). Letwvy = I'V be a fixedn-bit string. Then the iteration of”, denoted bylitr[f], is the algorithrh that on
input M € D first setsmy, - -- ,my <= M, then computes; < £ (v;_1,m;) iteratively for each € [1..¢], and returns
ve. Letsfpad: {0,1}* — DT be asuffix-free paddindunction which returns a suffix-free encoding &f. A suffix-free
encoding has the property that for aiy, M’ such thafM| < |M’| the string returned bgfpad(M) is not a suffix of
sfpad(M’). (For example, pad an appropriate amount and append aniegafdhe length of the message.) Let SID]
be the algorithm that on input/ runssfpad(M) and then appliekr[f] to the result.

COLLISION RESISTANCE OF HASH FUNCTIONS Fix setsDom C {0, 1}* andRng and letA be an adversary that outputs
a pair of stringse, 2’ € Dom. Let P be an ideal primitive. To hash functiai” : Dom — Rng and adversaryl we
associate the advantage relation

Adv§; p(A) =Pr[(z,2) s A" : H(2) = H (2') Na # 2|
where the probability is over the coins usedAwnd primitive P.

THE INDIFFERENTIABILITY FRAMEWORK. We make extensive use of the indifferentiability framekvof Maurer, Renner,
and Holenstein [28], however we follow more closely the fatizations of it appearing in [17, 2, 3]. Léf be some
cryptographic scheme (e.g. a hash function) that utilizesdaal primitive P. Let @) be a second ideal primitive. A
simulator, typically denoted by, is just an ITM revealing some number of interfaces. Infdiynave say thatH is
indifferentiable from@) if there exists an efficient simulatdt with an interface for each interface &, such that for all
“reasonable” adversarie$ outputing a bit it is the case that

Pr | Explifl 1} —Pr [Expg?gﬂjg’ = 1}
is “small” where the probabilities are taken over the coiasdithe experiments shown in Figure 1. In the indiéxperi-
mentH uses access to the (first) private interfacéaf/hile the adversaryl has access to the public interfacegbfin the
indiff-0 experiment the adversary has accesg®private interfaces whil& has access tQ's public interfaces. Note that
a crucial aspect of the framework is that the simulator, evable to query),u itself, doesnot get to see the queries made
by the adversary tQ)pyiy.
We shall formalize several security notions, based on tfererce primitive) that the scheme is compared against

(e.g. see below). A key benefit of using indifferentiabilisythe composition theorem detailed in [28], which states th
(intuitively) one can securely ugé” instead ofQ in applications.

PSEUDORANDOM ORACLES Fix non-empty set®om, Rng. Let P be an ideal primitive and |€Epom, rne e a random

1This construction is sometimes referred to as the Merkle-Gachgansform, seemingly due to [29, 18], however its use fiigmitly predates these
papers. See e.g. [20].

Figure 1: Experiments used in the indifferentiability frawork for schemdd, adversary4, and ideal primitives” and@.

e]
b - AHP’Ppub b - AQ’SQPUb
Retb Retb

ExXPlrp g4 oracle P(m): oracle Ex(2):
7 s APEX C < P(m) Q[Z} —1

P a—all (m,c) V[z] — E(z, @)
@ H () Retc Retv|[z]
Ret(z # V[z] AQ[z] = 1)

Figure 2: (Left) Experiment for defining preimage awareness (PrA) for hasletion H, extractor€ and adversanA.
(Center,Right) Description of the oracles used in the PrA experiment. Thigiglly empty) advice stringy, the (initially
empty) array, and the (initially everywhere) arrayQ are global.

oracle. We define the pro advantage of an adverdamgainst a functiot/ © mapping fromDom to Rng by

Advi% s(A) =Pr [Expi}}c’“}g:j = 1} —Pr {Expi}n{igﬁ =1

3 Preimage Awareness

Supposé€ is a hash function built from an (ideal) primitive. We seek to, roughly speaking, capture a notion which states
that an adversary who knows a “later useful” outpaf H must “already know” (be aware of) a particular correspogdin
preimagex. We can capture the spirit of this notion using a determimialgorithm called arextractor Consider the
following experiment. An adversary outputs a range point, possibly after interacting with an oracle fBr The extractor

is then run on two inputsz and anadvice stringa. The latter contains a description of all dfs queries so far t@> and

the corresponding responses. The extractor outputs a yvatughe domain of/. ThenA continues and attempts to output

a preimager’ such thatd ”(z') = z butz # 2’. Informally speaking, if no adversary can do so with highkadaility,

then we considef! to be preimage aware. We now turn to formalizing a notion thasethis intuition, but which allows
multiple, adaptive attempts by the adversary to fool theagkor.

Fix setsDom C {0,1}* andRng, and letA be an adversary that outputs a stringe Dom. In the preimage aware-
nesqpra) experiment defined in Figure 2, the adversary is peaVidith two oracles. First, an oradiethat provides access
to the (ideal) primitiveP, but which also records all the queries and their respomsas iadvice stringv. (We assume
that whenP is providing an interface to multiple primitives, it is clefaom the advice string to which primitive each query
was made.) Second, axtraction oracleEx. The extraction oracle provides an interface toeatractor £, which is a
deterministic algorithm that takes as input a pairt Rng and the advice string, and returns a point iDom U { 1 }.

For hash functiorf?, adversary4, and extracto€, we define the advantage relation

Advl o (A) =Pr {Exp%aP e = true

where the probabilities are over the coins used in runniegettperiments. We will assume that an adversary never asks
a query outside of the domain of the queried oracle. We usedheention that the running time of the adversdrgoes

not include the time to answer its queries (i.e. queries arecost). When there exists an efficient extradosuch that
Adv‘;}f‘},’g(A) is small for all reasonable adversariéswe say that the hash functidif is preimage aware (PrA). (Here
“efficient”, “small”, and “reasonable” are meant informgal}l

REMARKS. As mentioned, the above formalization allows multipleajgti’e challenge queries to the extraction oracle.
This notion turned out to be most convenient in applicatic@se can instead restrict the above notion to a single query
(or to not allow adaptivity) resulting in a definition withightly simpler mechanics. In Appendix D we discuss such an
alternative formulation of preimage awareness.

3.1 Relationships between PrA, CR, and Random Oracles

Our new notion preimage awareness is an interesting miax jm the continuum between objects that are CR (on one end)
and those that are random oracles (on the other). More forsgaking, we will show momentarily that a PrA function is
also CR, and that a random oracle is PrA. The second poinirig éovious, but the first is quite interesting. In partiagl

we will see in Section 4 that a PrA function is a secure domziareler for fixed-input-length random oracles, unlike CR
functions [17]. (This already suggests that CR does notssacay imply PrA.). Preimage awareness is consequentiyya v
useful strengthening of CR, not to mention that it providgsento the folklore intuition that CR functions are insuf@nt

for this application due to a lack of extractability. What ism, the MD transform preserves preimage awareness. This is
in stark contrast to the fact that MD (even if one uses streghg) doesiot preserve indifferentiability from a random
oracle (i.e. PRO-Pr)

Let us begin with the formal results. One can view preimagaramess as a strengthening of collision resistance in
the following way. Say that queries 1@ allow the adversary to compute distinct domain points’ such thatf © (z) =
HP(2') = 2. The adversary can make an extraction query cend then succeed in the PrA game by returning whichever
of x andz’ is not extracted fronfz, «) by the extractor.

Theorem 3.1 [PrA=-CR] Let P be an ideal primitive and/” : Dom — Rng be a hash function. Lef be an arbitrary
extractor. Letd be a CR adversary against asking a total ofj, queries toP. Then there exists a PrA adversdsysuch
that

Advy(A) < Advis ¢(B) .

B runs in time that ofd plusO(q,) + Time(H), asks at mosg, primitive queries, and one extraction query]

Proof: The PrA adversary starts by runningd, using its oracld® to answerA'’s oracle queries. Eventually halts with
output of two messages), x1. When it does, lez computez — H (x(). Then letB make the single query’ «— Ex(z).
If 2/ = 2o thenB outputsz;, otherwise it outputs. I

On the other hand, it is not hard to see that a RO is a PrA fumcfibe following theorem captures this, and its proof is in
Appendix A.

Theorem 3.2 [ROs are PrA.JFix Dom C {0, 1}* andn > 0, let P = RF po , Then the hash functioB (z) = P(z) is

preimage-aware. Specifically, there exists an extrattrch that for all adversarie$ making at most. queries toP and
q. extraction queries

2

Advi(4) < ey T

Moreover, the running time of the extractor®®q) . O

3.2 Weak Preimage Awareness

Our proofs of preimage-awareness will be aided by considedi related notion that we calleak preimage awareness
(WPrA) We define WPrA simply by modifying the pra experiment aji¥e 2 so that the extractor, when queried on an
imagez, can return a set of potential preimages (instead of justgesipreimage). The adversary wins if it can output a
preimager such thatH (z) = z yetx is not in the set returned by the extractor. While this weakgmif PrA no longer
implies CR, it will be useful for evaluating functions aldgaproven CR.

Fix setsDom and Rng. A multi-point extractor€ ™ is a deterministic algorithm that takes input a point Rng and

outputs a se’ C Dom. Formally, letExp} , o , work exactly likeExp%;”, .. , except that the last line of the pra

experiment (see Figure 2) is changed to “Rett V[z] A Q[z] # L)”. Then we associate to any hash functidnadversary
A, and set extractaf the advantage relation

Advype(A) = Pr [Exp‘ﬁ?rg&A = true} .

We say that a multi-point extractér™ is honestf for any z € Rng and advice string it is the case that
Pr(VeeX HP(z)=2: X —EF(z,0)] =1
where the probability is taken over the coins usedhyVe will sometimes restrict attention to honest multi-p@xtractors.

Note that this is not, in general, without loss, siricdoes not have oracle accessito However it will be easy to verify
that extractors we construct are honest.

We can simplify some of our proofs with the following easyt bigeful, results. First, WPrA when allowing only
a single query (denotettWPrA) implies WPrA with many queries. The proof (omitted) i &traightforward hybrid
argument. Second, and more interestingly, we give a lemmaisg that any function that is both CR and WPTrA is also
PrA. These lemmas greatly simplify some of proofs, becaogether they reduce the task of showing a CR function fully
preimage-aware to showing that it meets the WPrA definitiorafsingle extraction query.

Lemma 3.3 [I-WPrA = WPrA] Let P be an ideal primitive andf” : Dom — Rng be a hash function. Lef™ be a
multi-point extractor. Letd be an adversary making at mastextraction queries and running in timeThen there exists
an PrA adversary3, asking at most one extraction query, such that

Advvaﬁ;’?ﬁ (4) < qe'AdVVIYII,);ﬁ(B) .

B runs in time at most + O(q. - Time(€™)) and makes the same numberfdfjueries queries a4. O

Lemma 3.4 WPrA + CR = PrA] Let P be an ideal primitive andf” : Dom — Rng be a hash function. Lef* be
an arbitrary honest multi-point extractor. Then there tsx&n extracto€ such that for any pra-adversary making ¢,
extraction queries there exists wpra-adverdargnd cr-adversarg' such that

Advirp ¢(A) < Advigp o (B) + Advi p(C) .

B makes the same number of queriesfaand runs in time that ofA plus O(q.). C asksg, queries and runs in time
t + ge- Time(ET). € runs in the same time &". [

Proof: Let £ be the extractor that, on inp(t, a) runsX < £7(z, «) and outputs the first element.ti. Let B be a WPA-
adversary that works as follows. It ruds just forwarding oracle queries # and&™, returningP-responses directly td
and simulating using the responses 6f". Let B output whateverd does.

In the event space defined Iﬁ;pcp%ap’&A let Coll denote the event th&t™ outputs a set of size larger than one. Then its

clear thatPr[Coll] < Adv{;(C) for the natural adversary’ because& ™ is honest. Note that until evefoll occurs the

execution ofExp';’, . , is identical that ofExp',, ., . Therefore,

Pr [Expgfp)g’A = true} <Pr {Expgapf+ 5= true} + Pr[Coll

implying the theorem statementd

4 Merkle-Damgard as an FIL-RO domain extender

In this section we develop a main result: that an MD-hash isalglomain extender for an FIL random oracle. We do this
in two steps. First, in Theorem 4.1 we prove a generic rebattany PrA function is a good domain extender for an FIL
random oracle. This is interesting in itself, because mativ no property weaker than being a PRO is known to be sufficien
for extending the domain of an FIL-RO; in particular, CR ig sofficient [17]. In the second step, Theorem 4.2, we prove
that Merkle-Dam@rd (with strengthening) yields a VIL-PrA hash function wttbe underlying compression function is a
FIL-PrA function.

Theorem 4.1 [RO domain extension via PrA]Let P be an ideal primitive and/” : Dom — Rng be a hash function.
Let R be an ideal primitive with two interfaces that implemeniddépendent functionalitieB andR = RF gy, rng. Define
FR(M) = R(HF(M)). Let F = RFpom rug- Let & be an arbitrary extractor fol. Then there exists a simulator
S = (81, 82) such that for any PRO adversafymaking at mos{qo, ¢1, g2) queries to its three oracle interfaces, there
exists a PrA adversar# such that

Advhy s(A) < Adviyp (B) .

SimulatorS runs in timeO(q1 + g2 Time(€)). Let4,,.. the the length (in bits) of the longest query madebto it’s first
oracle. Adversanp runs in time that ofd plusO(qo - Time(H, {ynaz) + @1 + g2), makesgy + go-NumQueries(H, £,)
primitive queriesg, extraction queries, and outputs a preimage of length at st |

Proof: Let £ be an arbitrary extractor faif. ThenS = (S1,S2) works as follows. It maintains an internal advice string
« (initially empty) that will consist of pair$u, v) corresponding tol’s queries toP (via S;). WhenA queriesu to S; the
simulator simulates, < P(v) appropriately, seta < « || (u, v), and returns. For a queny}” to S, the simulator runs

10

X «— &(Y,a). If X = L then the simulator returns a random point. Otherwise itigeeéf < F(X) and returnsZ to the
adversary.

Consider the experiments of the PRO definition, that imteracting with oracle interface®)y, O, 05) = (F, P,R) or
(Og, 01,0) = (F,S1,S2). Informally, there exist only a few events that adversdrgan cause that force the two sets of
oracles to behave differently. These are:

(i) if A makes a query),(Y) and the extractor outputs when run onf(Y, «). Later A queriesOy(X) such that
HP(X)=Y;
(i) if A first makes a quer@y(X) with Y = HP(X) and laterA queriesO,(Y), yet£(Y, «) outputs a value that does
not equalX;
(iii) if A first makes a querg),(Y), the extractor outputs a poitk, and laterA queriesOy(X') such thatX £ X’ but
HP(X')=Y;or
(iv) if A queriesOy(X)andOy(X’) suchthatX # X' butH"(X) = HP (X").

Furthermore, each case implies tiahas forced a situation that leads to contradicting the prgarawareness af.

To formalize these observations, we utilize the five gameésaalversaryB shown in Figure 3 and Figure 4. We will justify
that

AdvRL(A) = Pr[AN=1]-Pr[4°=1] ()
= Pr(Af =1]-pPr[4°=1])
= Pr[A®=1]-Pr[A% =1] ®)
< Pr[A® setsbad | (4)
= Pr[A% setsbad | (6)
= AdVI;Ir,aP,s(B) . (6)

Game RO implements the oracleB, P, R) using a table to simulate the random oracle. Note that the simulation is
such that none of the oracle procedures query each othekduhe obvious implementation d@f, P, R). Included in RO

is some extra “book-keeping” code, such as a tabkX tracking mappings between range points undeaind preimages,
usage of the extractor in handlid®, queries, etc. This extra code will be useful in future garbasin RO it does not affect
the computation of responses to queriesdyThus, Pr[Exppy 4 = 1] = Pr[AR = 1].

Game R1 implements the same functionality as RO, but usinfjesaht way of simulatingR. Specifically, the tabl@ is
relegated to only handle poinis that are queried t@, and for which the extractaf outputs bottom. These table entries
are only later potentialy used in the handling o®a query. (Note that repeat queries@@ are pointless, and therefore
disallowed.) Other points are handled by a new tabla exactly the same manner as done before in game RO. Thus
Pr[ARO = 1] = Pr[AR! = 1].

Game GO (boxed statements included) is the same as R1 eke¢ptd now indeXr with preimages off associated to
pointsY. To ensure consistency of the simulation with R1, the t&btX is used to keep track of whai, Y pairs have been
seen thus far. If ever there are are two valifeassociated to a singlé value, therF is indexed via the first encounteréd
used. This provides behavior consistent with game R1. TPijgiR! = 1] = Pr[A%0 = 1]

Game |1 implements the oraclé®, S;,S2) using a tableF to simulate the random oracle. Note that the simulation is
such that none of the oracle procedures query each othéguhé obvious implementation gf, S;, S»). Like in RO there
is extra book-keeping code that does not affect responsteﬂs,frr[Exp'};‘fgf"g = 1] = Pr[A"% = 1].

Game G1 (boxed statements excluded) is the same as |1 ercéme Setting obad and replacingZ with R[Y'] in O,. Both

do not affect query responses because the boxed statememsidted. ThusPr[A'” = 1] = Pr[A®! = 1]. We have so
far justified Equations (1), (2), and (3). Since GO and G1 deatical-untilbad, we can apply the fundamental lemma of
game-playing [2] to justify Equation (4).

In game GL1 the setting dhd does not affect query responses. We therefore defer thiegseftbad until Finalize in game
G2. To do so, we record a transcripbf information related t@, and®, queries. We also replace the settingRoh O,

with the setting of a variabl&. Each entry records which oracle was queried along with aadomointX (or 1) and a
range poinfy” (in Oy this is set tol because we will wait untiFinalize to compute it). Procedur€inalize iterates over
the resultant transcript, computing the misskigralues, filling out the table¥toX andR, and determining ibad is set.

11

procedure Oy(X):

Y — HF (X)

YtoX[Y] — X

If R[Y] # L then ReR[Y]
RetR[Y] <s Rng

procedure Oy (u):

v— P(u); a — al| (u,v); Retv

procedure O (Y):

X —&(Y,a)

YtoX[Y] — X

If R[Y] # L then ReR[Y]
RetR[Y] <s Rng

Game RQ | procedure Oy (X):

Y HP(X)

If R[Y] # L then ReR[Y]
YtoX[Y] — X

If FIY] # L then RefF[Y]
RetF[Y] < Rng

procedure O (u):

v Pu); a+— o (u,v); Retv

procedure O (Y):

X — &Y,)

If X = 1 then ReR[Y] s Rng
YtoX[Y] — X

If FIY] # L then RefF[Y]
RetF[Y] <s Rng

Game R1

procedure Oy(X):

Y — HP(X)

YtoX[Y] «— X

If F[X] # L then RefF[X]
RetF[X] «<s Rng

procedure O (u):

ve— P(u); a —al| (u,v); Retv

procedure O (Y):

X — &(Y,a)

YtoX[Y] «— X

If X = 1 then RetZ <s Rng
If F[X] # L then ReF[X]
RetF[X] <s Rng

Game |1 | procedure Oy (X):

Y — HP(X)

If R[Y] # L thenbad < true| ; RetR[Y]

If YtoX[Y] # L A YtoX[Y] # X then
bad < true| ; RetF[YtoX[Y]] |

YtoX[Y] «— X

If F[X] # L then RefF[X]

RetF[X] <s Rng

procedure O (u):

v P(u); a — «a| (u,v); Retv
procedure O (Y):
X — &Y, a)

Figure 3: The five games RO, R1, I1, GO, and G1 used in the pifobheorem 4.1. In each game, initially all tables are

everywherel .

If X = L then ReR[Y] «—s Rng

If YEoX[Y] # L A YtoX[Y] # X then
bad « true| ; RetF[YtoX[Y]] |

YtoX[Y] — X

If F[X] # L then RefF[X]

RetF[X] <s Rng

Game Gl

12

procedure Oy(X):

i—i+1;7«—7](0,X,1)
If F[X] # L then RefF[X]
RetF[X] <s Rng

procedure O (u):

v P(u); a— o (u,v); Retv

procedure O (Y):

X —&(Y,a)
i—i+1;7—7|(2X,Y)
If X = 1 then RetZ «s Rng
If F[X] # L then RefF[X]
RetF[X] <s Rng

procedure Finalize(b):
(v, X1, Y1), ooy (00, X3 Vi) = 7
Forj =1toido
If Y; = L thenY; «— HP(X;)
If v; = 0 AR[Y;] # L thenbad « true
If v; =2A X; = LthenR[Y]] 1
Else
If YtoX[Y;] # L A YtoX[Y]] # X, then
bad « true
YtoX[Y;] — X;

Game G2 | adversary B”Fx:

Run A%0:02:03 answering queries by:
query Op(u):

01 i«—i+1;7—7|(0,X, 1)
02 If F[X] # L then ReF[X]

03 RetF[X]«<s Rng

query O (u):
10 RetP(u)

query Oz(Y):

20 X « Ex(Y)

21 i—i+1;7—7|(2,X,Y)
22 If X = 1 then RetZ «s Rng
26 If F[X] # L then ReF[X]

27 RetF[X] «<s Rng

When A halts with outpub:
30 (717X17Y1)7"‘7(’7i7X’L’7YYi)<_T
31 Forj=1toido

Figure 4: The game G2 and adversatysed in the proof of Theorem 4.1. Initially= 0 and all tables are everywhete

32 If Y; = L thenY; — HP(X})

33 If 7; = 0 AR[Yj;] # L then OutputX;
34 If v; =2AX; = LthenR[Y;] — 1
35 Else

36 If YtoX[Y;] # L A YtoX[Y;] # X, then
37 k —T[Y;]

38 If v; = 2 then OutputX,

39 If v, = 2 then OutputX;

40 X* — Ex(Y;)

41 If X* = X, then OutputX;
42 If X* = X; then OutputXj
43 YtoX[Y;] « X

“ I

13

Procedurdinalize is written so thaPr [A®! setsbad | = Pr [A®? setsbad |, justifying (5).

We bound the probability ofad being set in game G2 by building a PrA adversatagainsti. The adversanB is
detailed in Figure 4. It execute$®?, except that the ideal primitiv® is replaced by queries tB’s primitive oracleP,
usage of is replaced by queries t8's extraction oraclé&x, and settingad is replaced by outputing a domain pointgt
Note that since all extraction queries are finished by the #imalize is executed, calculating the missikgvalues does
not affect the advice strings used by the extractor. We wilV finish by justifying Equation (6).

By construction settinggad in G2 corresponds t@ outputting a non-bottom domain point. Thus we must justifyttany
time B outputs a domain point, it wins in the PrA game. We do so viasa eamalysis:

e Line 33: This case corresponds to event (i) discussed above. Thitiooral on line33 ensures that there exists a
previous transcript entrty,, X, Y3) with &£ < j such thaty, = 2 and X, = L. (This is becausel[Y;] is defined.)
But this implies thaEx was queried oY}, = Y; with return L and thatH”’(X;) = Y; = Y. Thus outputtingX;
causes3 to win the PrA game.

e Line 38: This case corresponds to event (ii) discussed above. Tinditmmal on line 36 implies that there exists a
k < j such that transcript entriyy,, X, Y,) was such that), = Y; but X;, # X;. Sincey; = 2, this meansX,
was first queried t@), and thenY; = Y}, was later queried t@®,, but the query tdx(Y},) did not outputX;,. Thus
outputting X, causes3 to win the PrA game.

e Line 39: This case corresponds to event (iii) discussed above. CEss is exactly like the last: the first query was
made to0, on Yy, the queryEx(Y}) output a valueX, and a later query; to Oy was such that/ ¥ (X ;) = Y; = Y},
yet X; # Xj,. Thus outputtingX; causes3 to win the PrA game.

e Lines41,42: These cases corresponds to event (iv) discussed abovejuBtiesX, X; to Oy resulted inH (X ;) =
Y; =Y, = HP(X}). The adversary queries; to the extraction oracle and outputs whicheverXgf, X; is not
returned. This results i winning the PrA game.

In all cases we see th&k succeeds, justifying (2).1

Theorem 4.1 shows that preimage awareness is a strong enotigh to provide secure domain extension for random
oracles. At the same time, the next theorem shows that it &akivenough to be preserved by SMD. We consider SMD
based on any suffix-free padding functisipad : {0,1}* — ({0, 1}%)* that is injective. Further we assume it is easy to
strip padding, namely that there exists an efficiently cotaiple functionunpad: ({0,1}¢)* — {0,1}* U {L} such that
2 = unpad(sfpad(z)) for all z € {0, 1}*. Inputs tounpad that are not valid outputs afpad are mapped td_ by unpad.

Theorem 4.2 [SMD is PrA-preserving]Fix n, d > 0 and letP be an ideal primitive. Lek” : {0, 1} x{0,1}¢ — {0,1}"
be a compression function, and 6t = SMD[L”]. Let &, be an arbitrary extractor for the PrA-experiment involviing
Then there exists an extract8y; such that for all adversarie4 making at mosty, primitive queries and, extraction
gueries and outputting a message of at nigst. > 1 blocks there exists an adversdsysuch that

Adv%rip’ e, (A) < Advﬁf; . (B) .

Ep runs in time at most, .. (Time(&,) + Time(unpad)). B runs in time at most that oft plus O(g.l.q.), Mmakes at
MOStly,q, - NumQueries(h, {142) + g, ideal primitive queries, and makes at mggt,, .. extraction queries. O

Proof: We start by defining the adversaB), the extracto€y is implicit in its description.

adversary BPEX(¢):

m* —s AP,SimEx

subroutine SIMEX(z, «):

1 1; v 2

mj ---mji <= sfpad(m*) ; vy, — IV
Fori = ¢ down tol do

vi = WP (i, m])

If Q[v;] = 1 andE[v;] # (v;,,,m;) then Ret(v}, , m])
Ret L

While i < 4,4, dO
(Ui+1, mz) — EX(Ui7 a)
Qvs] < 15 E[v] < (vig1,m;)
If v;11 = L then RetL
m <« unpad(m; - --my)
If v;iqy = IV andm # | then Retmn
1—1+1
Ret L

AdversaryB answersA’s primitive queries by forwarding to its own oradRe It answersA’s extraction queries using the
subroutineSimEx (which makes use aB’s extraction oracle). For the line of code;, 1, m;) «— Ex(v;, «) is executed

14

with the oracle returning., then bothv;; andm; are assigned.. The codem; ---m; <= sfpad(m*) means take the
output ofsfpad(m*) and parse it intd d-bit blocksm;, ..., m}. The tablef} andE, which record if a value was queried
to Ex and the value returned by the query, are initially everywher

The extracto€y works exactly the same as the codeSafEx except that queries tBx are replaced by directly running
&y, and the tableq andE can be omitted. Loosely, extractéy;, when queried on a challenge imagaisest;, to compute
(backwards) the preimages of each iteratiomdéading toz. When a chaining variable equal 10/ is extracted, the
functionunpad is applied to the extracted message blocks. If it succekds,the result is returned.

Note that we reverse the (usual) order of indices for mesbbmks and chaining variables (starting high and counting
down, e.gm; - - - mj) for both the extractor an## due to the extractor working backwards.

To lower boundB’s advantage by the advantageAfwve first point out that, by construction 6f;, the values returned by
the simulatedsimEx are distributed identically to the values returned durixgoaition ofExpﬂ;f"P)gHAA. Thus we have that
Advy e, (A) = Pr[m* satisfies] where the eventri* satisfies”, defined over the experimedxp}, 7, ., 5, occurs
when the message* satisfies the conditions of winning fot. Namely thatH” (m*) was queried t&SimEx and the
reply given was not equal ta*. We callm™* a satisfying preimage fad. We will show that whenevemn* is a satisfying
preimage ford, with mj - - - m} <= sfpad(m*), there exists & with 1 < k& < ¢ for which adversaryB returns(v;, |, m})
and this pair is a satisfying preimage fBr(i.e. one that wins the PrA experiment agaihgor B). This will establish that

Pr[m” satisfies | < Adv}'g, (B) .)

Consider the querimEx(H” (m*)) necessarily made by. Let (v;41,;),..., (v2,21) be the sequence of values re-
turned by theEx queries made byimEXx in the course of responding td’s query. Necessarily < j < /4, and
1 S 4 S gmaz .

We will show that there existsfasuch thafl < k < min{yj, ¢} and(vi41, 2x) # (vi,1, my). (This includes the possibility
thatviy., = L andz, = L.) First we use this fact to conclude. Sinke< j it means that; was queried tdEx. If
v = v = HY (v, m}) we are done, because thef, ,,m} is a satisfying preimage faB. Otherwiseu;, # vj and
we can repeat the reasoning for- 1. At £ = 1 we have that, necessarily, = v;, since this was the image queried By
Thus there must exist a satisfying preimage, justifying (7)

We return to showing the existence/obuch thatl < & < min{j, ¢} and(vi,1,xx) # (v, m}). Assume for contra-
diction that no suclt exists, meaning thdw;, ,,m;) = (vi11,2;) for 1 < i < min{j, ¢}. If j > ¢, then sincey; = IV
andm;j ---mj = me---m; we have a contradiction because in such a situation the l&mEx would have halted at
iteration?. If j = ¢, then havingmj ---mj = myg---my andvey1 = vy, = IV would imply thatSimEx returned
m = m*, contradicting thatn* is a satisfying preimage fot. If j < ¢, then the loop irSimEx must have stopped iterating
because; 1 = IV (if v;11 = L we would already have contradicted our assumption reggwdimndz # L. But by
assumption we have that; - --mj = m; ---m; and so there exist two strings andm* for which sfpad(m) is a suffix

of sfpad(m*). This contradicts thatfpad provides a suffix-free encodingl

Recall that if a compression functidnis both CR and hard to invert for range point thié, then the iteration of is a
CR function [18, 22]. We prove an analogous theorenitfgk] and preimage awareness in Appendix B. This is particularly
useful in our context, because for the compression funstvea will consider (e.g. a FIL random oracle or an ideal cipher
based compression function) it is easy to verify that it fialilt to invert a fixed range point. Note that this extra pedy
on h (difficulty of inverting 7V') is, in fact,necessaryor iteration (without strengthening) to provide preimayeareness
(analogously, collision-resistance).

5 Building Preimage-Aware Functions

The results of Section 4 allow us to more elegantly and mabjyteove that a hash function construction is a pseudorando
oracle (PRO). Particularly, Theorems 4.1 and 4.2 mean tieatask of building a PRO is reduced to the task of building
a compression function that is PrA. For example, in the chaethe compression function is itself suitable to model
as an FIL-RO, then it is trivially PrA and so one is finished. wéwer, even if the compression function has some non-
trivial structure, such as when based on a block ciphergtiligrelatively) straightforward to prove (suitable cpnession
functions) are PrA. In the rest of this section we show thast@R functions built from an ideal primitive are, in factAPr

Are there applications of preimage awareness beyond asalf/fash functions? We believe the answer is yes. For
example, one might explore applications of CR functionstead analyzing these applications assuming a PrA function
(As one potential application, the CR-function using statally hiding commitment scheme of [19] conceivably avieis

15

straight-line extractability given instead a PrA functipWe leave such explorations to future work.

PrA FOR CR CONSTRUCTIONS There is a long line of research [31, 7, 25, 26, 34, 35, 33,021puilding compression
functions (or full hash functions) that are provably cadiisresistant in some idealized model, e.g. the idealariphodel.
We show that in many cases one can generalize these ressltewing the constructions are also PrA. In the rest of this
section we show that the Davies-Meyer and other so-callealify1” PGV compression functions [31, 7] are not only CR
but PrA. We also give bounds on the PrA-security of the ShtamiStam compression function [35], the Dodis-Pietrzak-
Puniya compression function [21], and the first two stepshefMCM construction [32]. Previously these constructions
were only known to be CR.

5.1 CR compression functions from PGV are preimage-aware

Let us begin with block-cipher-based compression funsti®ixty-four schemes, including Davies-Meyer and MMO,aver
considered by Preneel et al. [31], and twelve of these weee faoven to be optimally collision-resistant and preieag
resistant (in the ideal-cipher model) by Black et al. [7Egk were labeled as “group-1". Another group of eight “gr8lp
compression functions were found to be optimally collisiesistant in the iteration (and preimage resistant in #ratiton

up to the birthday bound) despite not being collision or ip@ge resistant themselves. Subsequently, Stam [37] gave
an alternative classification of these schemes based on@geoeral analysis of rate-1 block-cipher-based commessi
functions. He considered compression functions that, potia chaining variable € {0,1}" and message block €
{0,1}4, operate as follows:

(k,x) «— C™™(v,m); y — E(k,z); Retw «— C""(v,m,y)
whereC™™ : {0,1}" x {0,1}¢ — {0,1}¢ x {0, 1} andC™°T: {0,1}4¢ x {0,1}" x {0,1}"™ — {0, 1}" are functions called
preprocessing and postprocessing, respectively. He alfioed an auxillary post-processing functioi’ : {0, 1}¢ x
{0,1}™ x {0,1}" — {0,1}". Davies-Meyer, for example, h&"**(v,m) = (m,v) andC***"(v,m,y) = v @y and
C**(k,z,y) = x ® y. Stam called a scheme “Type-I" iff
(1) C'®"is bijective,
(2) forall v, m the mappingC*°%* (v, m, -) is bijective, and
(3) forall k,y the mapping”*"*(k, -, y) is bijective.
When they exist, we leC' """ denote the inverse af™*, C'~"°%"(v,m,-) denote the inverse of"**" (v, m,-), and
C~2%%(k,-,y) denote the inverse af“"*(k,-,y). As it turns out, the twelve “group-1" compression functaare also
“Type-1”. We leverage Stam'’s results here to show that tleeigrl/Type-1 PGV compression functions are preimage aware

In Appendix C we discuss the group-2 PGV functions, showhwmse build preimage aware hash functions when used
within an iteration. (There too we leverage Stam’s geneedlframework and results.)

Theorem 5.1 [The Group-1/Type-lI PGV schemes are PrAFix x,n > 0, letC,. , = (E, D) be an ideal cipher and let
HC be a Type-I block-cipher-based compression function. &leists an extractadt such that for any adversary making
at mosty, queries taC andg. extraction queries we have

+1)

AdvPre A) < Gedp + Qp(Qp

H’C’g()< 2" —qp 22" — qp)

where€ runs in time at mosO (g, (Time(C~""") 4+ Time(C"*5"))). O

Proof: We will prove that any such compression functiorn i8/PrA-secure, and then use Lemmas 3.3 and 3.4 to give the
final bound. We note that Theorem 5 of [37] upperbounds thiésizmi-finding advantage oft by ¢, (g, + 1)/2(2™ — g,),
yielding the second term above.

Let us define the extractdras follows:

algorithm &(z, a):
L0
Parse(kl, x1, y1)7) (kmxrayr) o
Fori =1tordo
(Ui, ml) — C_PRE(k‘i, J)l)
If C*O5T(v;,my,y;) = z thenl < (v;, m;)
If £ # () then ReturnC else ReturnL

16

Note that becaus€”™* is a bijection, a paifv;, m;) is uniquely determined by a pdik;, z;). Intuitively, £ simply iterates
over the query-response triples and searches for ideléciueriesk, x, y) that would produce under the compression
function. Upon finding them, it adds the corresponding (uejocompression function inpgt, m) to the preimage list.
Thus all preimages of that can be determined from the query lisare returned, and il wins thel-WPrA experiment,
it must find find a new preimage af Then one can straightforwardly adapt Stam’s results (Bpaity, the proof of [37,
Th. 6]) to show that the probability of this occuring is at m@s&(2" — q). |

5.2 Shrimpton-Stam compression function is preimage-awar

Next we show that it is possible to build a PrA compressiorfiam fromnon-compressingandom function& In particular,
we examine the compression function recently designed biynton and Stam [35]. They proved that their compression
function is nearly optimally collision resistant (i.e. teetbirthday bound), and we will now show that it is also PrA.

Theorem 5.2 [Shrimpton-Stam is PrA]Fix n > 3. Let f1, f», f3 be three independent random oracfes,. Define a
compression functiodl /1:72:/3 (¢, m) = f3(f1(m) @ f2(c)) @ f1(m). Then there exists an extractBrsuch that for any
adversaryd makingg, queries to each of;, f2, f3 andg. extraction queries, we have

(n+3)gpge = (Bn+13)g. ¢a(1+4n%) +1
+ +
2n 2n 2n
where the extractor runs in tin@(q?). O

pra
Adeyfl,fz,fzs,f(A) =

Before proving the theorem, we first remark that this bourmbisservative in several ways as it uses a hybrid argument
and several upperbound approximations to facilitate tleforWith additional effort it is possible that, in partieu) the
third term in the bound can be tightened a bit.

Proof: We proceed by reasoning about the single-extractor-quemA&iperiment, and then applying Lemmas 3.3 and 3.4
and the collision resistance bound from [35] to get the fiealft. For convenience, we writeeverywhere forg, (this
should cause no confusion as we assume only one extractawg)qu

We will assume that the advice string has the format

a={r),(ar,u1),...,(ar,), {(s), (b1,v1),..., (bs,vs){t), (x1,91)s .-, (T¢, Y1)

whereu; = fi1(a;), v; = f2(b;) andy; = f3(x;), with ¢ over the indicated indices in each case. We now define the=@tipn
multi-point extracto€ ™. Let £; and L, be initialized to the empty set.

algorithm £ (z, a):
Parsevas(r), (ai,u1), ..., (ar, ur), (s), (b1,v1), ..., (bs,vs), (&), (X1,91),- .., (¢, Y1)
Fori=1totdo
Letuw, =2y,
If 35 such that, = u; thenly «— L1 U {(z4,u;)}
Forall (z;,u;) € £y
if 3k such thate; ® u; = vi thenly — Lo U {(a;,bi)}
if Lo = () then returnL else returnC,

We note that by construction the extractor retufhs(i.e. not L) only when all(a,b) € L, are preimages of; thus the
extractor is honest. Moreover, this extractor returns idipages ot that can be computed from the advice string. Bor
to win the WPrA experiment, it must find a new (possibly firsiiprage forz. Without loss, we assume thatoutputs
a new preimage as soon as one can be computed. Thus thereegredbes to consider, namely ths winning (final)

query is tofy, f2 or fs.

20ne can view a block cipher as a compressing primitive, sinedétss + n bits and produces bits.

17

f1 query. Consider the case that the winning query isftpand letu* be the returned value for that query. Since this
is the last query, we can assume thatfaland f3; queries have already been made. Iebe the list off; responses. Let
F'3 be the list of f3 query-pairs(z;,y;), and for convenience leX andY be the lists ofx; andy;, respectively (order
maintained relative to the order in3). If u* is one of the; — 1 previously returnedf; values, then we can assume without
loss thatA has found a new preimage of (This follows because this is assumed to be the final andimgngquery.) But
this happens with probability at mogi — 1)/2™. So we proceed under the assumption tiiadoes not collide with a
previousf; response. Consider the multiset® Y = {u* @ y;: y; € Y}. Foru* to be winning forA, the target: must
appear in this multiset, and this will happen for apy= z @ u*. For any fixed: € {0, 1}", the probability that there are at
leastn stringsy € Y (which areq uniform, independent strings) such that z @ c is at most2—". This follows from a
Chernoff bound under the assumption that n2" /6, which is at leas2™/? for all n claimed by the theorem. So under the
assumption thag < 2"/2, we can assume that there are at mopRirs(x;,y;) such thaty; = z @ u*, this holding except
with probability at mos2~". (The upperbound oqwill ultimately be dropped as the collision-resistanceiduand hence
the PrA bound, will be vacuous fgr> 2"/2.)

Now, for eachr; € X, define a seb; = {z; ®v: v € V}. (These were already determined at the time of the ffial
query.) LetS = | J,; Si where[is the set of indicessuch thaty; © u* = z. Clearly|S| < ng, sou* € S with probability

at mostng/2". Putting it all together, the probabilty thatwins with anf; query is at mosfg%l + 58+ QL < (";Lnl)q + 2i

f2 query. Consider the case that the winning query igtpand letv* be the returned value for that query. Again, since
this is the last query, we can assume thatfaland f3 queries have already been made. E& X andY be as in the
previous case. As before,if* collides with a previously returnef, query, then we can assume that the adversary has
found a new preimage of; this happens with probability at mos§ — 1)/2™. Now, consider the; distinct values of

v* @ X ={v* ®ux,;: z; € X}. (These are distinct because theare.) Since* is winning only if some previously defined
fi-response: is in v* & X, we will assume that for each of thestrings inv* @ X there is such a; thus, by a union
bound, we want to upperbound?_, Pr(v* & x; = y; @ z). But each probability in the sum is over the unifor so this

sum is at mosy/2". In total then, the probability that wins with an f, query is at most;-! + L < 24

f3 query. Consider the case that the winning query ig{pand lety* be the returned value for that query. As before, we
can assume that af} and f, queries have been made, and wdleandV be the corresponding multisets of responses. Let
N. be the number of times thate {0,1}™ appears in the multiséf @ V = {u®v: u € U,v € V}. We assume for the
moment that, for alk, N. < 3n except with some (small) probability that we will bound in @ament. Then the finaf;
query yields at mosin opportunities fory* @ u = z to hold, so thay™* is winning with probability at mos3n /2™.

It remains to boundr[N,. > 3n], which we do by boundind@r[N. > 3n|. Notice that the elements &f andV are
independent of adversarial choices, so this is a strictiplioatorial problem. In addition, that the elementslinare
independent of those i, so the order in which these lists are populated is irrelefram the point of view of the event
N, > 3n for any value ofc. So we assume thatelements irlJ are selected, and then we begin to filllin Let us assume
that there are nd-way collisions inU, which holds except with probability at most

4
nfa\ (1 2" (q)4 1
2 —) <= (= —
(4) (Qn) = \2n) < aon
where in the final inequality we have assumed that 2"/2. Now, under the assumption th&t contains no 4-way
collisions, each element assigneditancreasesV, by at most 3 for any: € {0, 1}™. Thus if N. > 3n for somec, it must
be the case that at leastvalues ofv increaseN,.. The probability that some value ofincreasesV,. (equivalently that
v =u @ cfor someu € U) is at mosty/2™. Thus by a union bound

Pr[3c € {0,1}" such thatV,. > 3n | no 4-way collisions ir/] < 2" (q) (q)

n) \2n

n 2\ "
< (e
- nl\27

on _ _ ,
< = (again assuming < 2"/2)

n
< 9.7.2.2..2 43 1
- 3 4 n — 2n=3 2n

18

So assuming that < 2"/2, the probability thatd wins on anfs query is at mos2 + o + 1L = 3n 4 12,

Summary. Pulling together all of our cases, the probability tlaimanages to find a new preimage foin our single-
extractor-query WPrA experiment is at most

((n+1)q 1) 29 <3n 12):(n+3)q+3n+13

on 2) o T T on on

By Lemma 3.3, we multiply through hy. to get the bound for the multiple-extractor-query casealyinwe use Lemma 3.4
and the collision resistance bound from [35]. The lattetestéhat for alln > 0 andk, ¢ > 0 the probability of finding a

2
collision is at mosig—i + &a)” 1 p, ;.. where

Pk = ((qg!k)!)rz(i» (%_,W)
q%(1)
M\ @@ -2 @ —G-1)

q2k 1 k-1
< £ (- -
= T\ k1)

Now we determine an upperbound @(as a function of:;, n) such that the last line above is at mdg2". This means

IN

IN

q2k k|2in(2n o (kj o 1))k—1

¢ < (K27 (2" — (k—1))'=

Settingk = 2n and taking logarithms (base 2),

log(2n! -1 2n-1
g(2nl) | 1, 20

™ 2 log(2™ — (2n — 1))

log(q) <

Sincenlog(n) < log(2n!) for all n, we can use the more conservative bound

log(n) -1 2n-1

I < — log(2™ — (2n — 1)).
0g(q) < == + -+ —— log((2n —1))
Now is can be shown that for > 3
log(n) -1 2n-1 2n 4
- 1 n_ _1 > 71 n
b T log(2" — (20— 1) 2 T log(2")
_ n—1
- 2

Thus ifn > 3 andlog(q) < (n — 1)/2, or equivalentlyg < 2("~1/2 we haveP, »,,, < 1/2". This yields a collision
bound ofg—i + (2;—3)2 + oo = ‘12(14“24& But in fact if ¢ = 2(*~1)/2 we can see tha%w > 1 (i.e., without the
addition of P, »,, ,), SO we can drop the restriction gnThis completes the proof

5.3 Dodis-Pietrzak-Puniya compression function is preimge-aware

Dodis et al. [21] also offer a compression function from r@mpressing primitives, this beingc, m) = f1(c) @ fa(m).
A straightforward extension of the argument in [21] shovat this function is PrA for ideaf; and f5.

Theorem 5.3 [DPP is PAJFix n > 0. Let fi, f» be independent random oracl&s ,, and letH /w72 (c,m) = fi(c) @
fa(m). Then, there exists an extractdisuch that for any adversary making at most, ¢» queries tof1, f» and makes at
mostg, extraction queries, we have

2 2
pra 195 + 2q192Ge + qe
Adviy, pe(A) < on :

19

E runsintimeO(q1¢2). O

Proof: Using Lemmas 3.3 and 3.4, it suffices to show thats CR and also WPrA fot extraction query. The former
bound was already shown in [21]: for any attackerAdv{;(C) < ¢3q¢3/2".

Next, we prove security relative to the WPrA notion for oneragtion query as per Appendix 3.2. We assume that the
advice stringy is of the forma; a; Whereq; is a list of query/response pairs madeAdyo fi; andas is the list for fo. Then
let £T be the (honest) multi-point extractor that works as showavhe

algorithm £ (2, a1 az):
Parse(chdl), BN (CT, dr) —
Parsqx17y1>7 R (xp’ yp) o
Fori =1tor do

Forj =1topdo

If d; ® Y =% thenX & (Ci,ﬂij)

If X = () then RetL
RetX

Now suppose thatl did not query at least one ¢f or f, before making the extract query(otherwise£™* would extract
it). Now, each such new quer; = ¢’ to f; can define at mosj, new valuesz, = fi(c) @ fa(z;). Sincefi(c)
is random, the chance that is equal toz is at most2~—", so the total probability thaf;(¢’) would define some value
2l = zis at mosty, /2". Symmetrically, the total probability that a new query= 2’ to f, would produce a new value

7

z; = fi(c;) ® f2(2") equal toz is at mosty; /2". Taking the union bound over all such new queries, the totzgbility
of obtaining a value: = fi(c;) & fa(x;) (for somei andj) is at most2g; g2 /2". If no such value is found, the chance
that the valug(c, z) output by the attacker is equal tois at most2=". Combining these bounds, for any attacker

AdviPE o(B) < (2q1g2 +1)/2".

Combining, we get that for anyt, AdvY% ; (A) < (6165 + 201920 + ¢e) /2" |

5.4 Mix-Compress is preimage-aware

We show that the “mix-compress” portion of the “mix-com@asix” construction from [32] is PrA as long as the compress
step is CR and relatively balanced. First we must define auneas balance. Associated to any functibn {0,1}* —
{0,1}™ is the setPreimp(4,2) = {y | y € {0,1}* A |yl =€ A F(y) = z} forall £ > 0andz € {0,1}". Thatis,
Prelmp (¢, z) contains the length preimages of underF’. We also define the function

Prelmp (¢, z)| — 2t
_ |lPreimet 2 @

related toF'. Thedr function measures how far a particular preimage set devfaten the case in whicl#' is regular.
Let Ap = max{dr (¢,)}, where the maximum is taken over all choiced@ndz. Second, we leF. . to be the ideal
primitive that, on input: € {0, 1}* returns a randomly chosen stripgz {0, 1}/#1+7.

5F(€,Z)

Theorem 5.4 [Mix-Compress is PrA.JFix 7,n > 0, let F': {0,1}* — {0,1}" and letF. , be the ideal primitive defined
above. LetH” (m) = F(F(m)) be the hash with minimum accepted message lengthn — 7 if n > 7 andv > 7 if
n < 7. There exists an extractérsuch that for any pra-adversafymakingg, primitive queries and. extraction queries
there exists a CR adversaBysuch that
ra 1 Ccr
Advigy ¢(A) < qeap(5; + Ar) + Advy £ p(B)
€ runs in time at most)(g,,). B runs in time at most that o plusO(qg,). O

The restricted domain in the theorem statement (inheritad {32]) ensures that inputs # have size at least bits.

Proof: We prove the WPrA notion for one extraction query and thenyahpimmas 3.3 and 3.4. L&t™ be the (honest)
multi-point extractor that works as shown below.

20

algorithm £ (z, a):
Parsqx1>y1>7 T (xmyr) o
Fori =1tor do

If z = F(y;) thenX < x;
If X = () then RetL
RetX

Assume that before the single extractor query no previoesygio 7 by the adversary led to a poigtin the preimage set
(underF) of the challenge point (otherwise the extractor will have succeededAprThen we must bound the probability
that a new query tdF results in a pointy for which F(y) = z. If F for each message length is regular then any new
random valuey has probability2~—" of being mapped ta underF', and so we could finish with boung /2™. Instead we

do something slightly more general using the definitionBPi@mg, 5, andA r defined above. Choodec N (such that

¢ — 7 > v, the minimum message length &f) andz € {0, 1}" to maximize|Prelmg(¢, z)|. Then the optimal strategy
for A is to first queryz to its extraction oracle and only make queriesR®f length? — 7. (Primitive queries before the
extraction query will only lowerd’s advantage, since any successful ones will be known toxtraator.) The result of

these queries ig, random¢-bit strings, call thesg, .. ., y,,. Then we have that
Pr[3i.F(y;)=2] = Pr[Jy;.y; €Prelmp(L,2)]

< > Prly; €Preimgp((,2)]

1<i<qp
|Prelmpg (¢, z)|
1<i<qp
2[—n

— o (T o) ©
dp

S 27 + Qp'AF

where the events are defined in the natural manner. In dgragaality (9) we apply (8) (ignoring the absolute valuescsi
|Prelmz(¢, z)| > 2™ due to our maximization). Then applying Lemma 3.3 gives ofag, to the right hand side of this
bound. We apply Lemma 3.4 and this gives our theorem statenden

6 Indifferentiability for Public-Use Random Oracles

In numerous applications, hash functions are applied anjyublic messages. Such public-use occurs in most signature
schemes (e.qg. full-domain-hash [4], probabilistic FDH][Eat-Shamir [24], BLS [10], PSS [6]) and even some endoypt
schemes (e.g. a variant of Boneh-Franklin IBE [14] and BeBehen IBE [8]). It is easy to verify that the provable setyiri

of such schemes is retained even if all hashed messageveatekto adversaries. We introduce the notion of a pulsde-u
random oracle (pub-RO). This is an ideal primitive that esgstwo interfaces: one which performs the usual evaluation
of a random oracle on some domain point and a second whichlsezk so-far evaluated domain points. All parties have
access to the first interface, while access to the latterfage will only be used by adversaries (and simulators).

A wide class of schemes that have proofs of security in thadtioamal random oracle model can easily be shown secure
in this public-use random oracle model. Consider any schamdesecurity experiment for which all messages queried
to a RO can be inferred from an adversary’s queries (and tesponses) during the experiment. Then one can prove
straightforwardly the scheme’s security in the pub-RO nhodsing an existing proof in the full RO model as a “black
box”. For example, these conditions are met for unforgéghinder chosen-message attacks of signature schemessthat
the RO on messages and for message privacy of IBE schemassthéie RO on adversarially-chosen identities. All the
schemes listed in the previous paragraph (and othershfaltihese categories.

The pub-RO model was independently considered by Yoneyaaia[89] (there called the leaky random oracle model)
under different motivation. They directly prove some sckemmecure when hash functions are modeled msrolithic
pub-RO. They do not analyze the underlying structure oéttee hash functions.

We next utilize the indifferentiability framework of Mauret al. [28] to formalize a new notion of security for hash €on
structions: indifferentiability from a public-use RO, whiwe will call being gublic-use pseudorandom oragleub-PRO).
This new security property is weaker than that of being a AR®nevertheless enjoys the indifferentiability frameki®r
composibility guarantees [28].

21

procedure Fpq (M): procedure fgepqi(v, m):
If M ¢ Dom then Retl If o ¢ WU{IV}or(v,z) ¢ {0,1}" x {0,1}¢ then RetL
If F[M] = L then If £[v,z] = L then
F[M] «s Rng v, 2] «s {0,1}"
Qé(M’F[M]) Wﬁf[v,x]; Q&((v,m),f[v,x])
RetF[M] Retf[v, z]
procedure Feycal(): procedure f,yq():
RetQ If £[v, 2] = L thenflv,z] s {0,1}"
Q< ((v, @), £[v,2])
Retf[v, z
procedure f?"eveal():
RetQ

Figure 5: (Left) The pub-RO ideal primitiVeF pom rug = (Fevats (Fevals Frevear)). INitially F is everywherel and Q is
empty. (Right) The pub-GRO ideal primitive,, «a.n, = (fgeval, (feval, frevear)). Initially £ is everywherel andW, Q are
empty. HerelV € {0, 1}" is a fixed string.

6.1 Public-use ROs and PROs

Fix setsDom, Rng. A public-use random oracle (pub-RO) is an ideal primitigom rne = ((Fevat); (Feval, Freveal))
defined as follows. Lep be a random functiodom — Rng. The (private and public) evaluation interfaéé,.;, on
input M € Dom, first adds the pait), p(M)) to an initially-empty se© and then returng(M). The (public) reveal
interfacef,.,.. takes no input and return@ (suitably encoded into a string). Figure 5 details a pub-R@ode. We say
that Fpom rng IS @ fixed-input-length (FIL) pub-RO iDom only includes messages of a single length. We Wfitg 4.,
for the FIL pub-RO with domaibom = {0,1}" x {0, 1}¢ andRng = {0, 1}". As usual, we write jusF whenDom and
Rng are clear from context.

INDIFFERENTIABILITY FROM A pub-RO. LetH”: Dom — Rng be a hash function using an ideal primitive Let
Fpom,Rng = (Fevats (Fevats Frevear)) D€ @ pub-RO. Lef be a simulator with oracle access to (both interfacesroffhen
we associate to pub-pro adversatyprimitive P, and simulatoiS the pub-pro advantage function

Adv?}f?%ro(A) =Pr Expi}}?g’j = 1} —Pr [Expi}_ijgﬁ = 1} .
The simulator’s ability to callF,.,..;, thereby seeing all queries so-far-madedip F....;, is the crucial difference between
pub-PRO and PRO. Informally, we say that a construcfiois a pub-PRO if there exists an efficient simulator such that a
efficient adversaried have small advantage.
The composition theorem in [28] (recast to use ITMs in [1@h de applied to pub-PROs. That is, a cryptographic

scheme using a pub-PRO hash constructidhfor some ideal primitive® can have its security analyzed in a setting where
HT is replaced by a monolithic pub-R®. In this setting, adversaries attacking the scheme canmpedueries taF, c,cq;.

6.2 Public-use guarded ROs and PROs

Many “structured” compression functions are easily défarable from a FIL pub-RO. For example, consider the foilayv
attack againsbM, due to [38]. LetA againsDM” (v, m) = E,,(v) & v work as follows. It picks a random andm and
then queries its third oracle interface (in the “real” sejtthis would beE—1) onm, y. When interacting with the pub-RO
F and any simulato§, we see thaf§ would need to respond with a valuesuch thatF,,.; (v, m) = y®wv. This corresponds
to inverting 7 on some fixed range point, which is hard. (Note tHalhas not, before querying the simulator, submitted
any queries tgF.) Thus the adversary will win easily. Nevertheless briéeiion suggests that iteratimgM from a fixed
1V should result in a pub-PRO. We could try to argue this diyettlit instead we introduce another variant of ROs as a
technical tool to allow modular proofs.

Fix n,d > 0 andIV e {0,1}". A public-useguardedrandom oracle (pub-GRO) is an ideal primitiyg.q, =
(fgevats (fevais frevear)) that works as detailed in Figure 5. In words, tebe a random function fronf0, 1} x {0, 1}
to {0,1}". The (private) guarded evaluation interfagg,.; on input(v, m) returnsp(v, m) if v = IV orv is equal to a
value previously returned by the interface; it retuth®therwise. The (public) evaluation interfagg,,; returnsp(v, m).

22

The (public) reveal interface reveals all so-far (quardedat) evaluated points and their associated outputs. Taaker
version of a FIL pub-RO will still be sufficient for building pub-PRO using MD. At the same time, the weakening does
allow us to show that structured compression functionshsisdDavies-Meyers) are indifferentiable from a pub-GR@ifev
though they are not pub-PROS).

INDIFFERENTIABILITY FROM A pub-GRO. Fixn,d > 0 andIV € {0,1}". Leth?: {0,1}" x {0,1}¢ — {0,1}" be
a FIL hash function using ideal primitivB. Let f,xd.n = (fgeval, (feval, frevear)) D€ @ pub-GRO. Le§ be a simulator
with oracle access to (all interfaces ¢f) Then we associate to pub-gpro-adversary:, P, andS the pub-gpro advantage
function

Advgtlg’_gpro(A) =Pr Expi,??gf;ll = 1] —Pr [Expi?fgff;‘o =1

We stress that in the second probability experiment, whileas access only tfy...;, the simulatoS has oracle access to
Sfeva @Nd freeqi- INformally, we say that a constructidnis a pub-GPRO if there exists an efficient simulator suchahat
efficient adversaried have small advantage.

7 Constructing Public-use Random Oracles

In this section we first show that iterating a FIL public-us@ Bor public-use guarded RO) results in an object indiffer-
entiable from a monolithic public-use RO. Then we go on tonskitat common constructions of compression functions
are, in fact, indifferentiable from public-use guarded RQs particular we show that the Stam Type-Il PGV functions
are pub-GROs. Since Davies-Meyers is one such functiosethesults together imply that the structure of existindhhas
functions (such as SHA-2) is sound for public-use apploreti

7.1 Iteration preserves being a pub-PRO

We show that iteration preserves the property of being aRRO- In fact we show something slightly stronger. Given a
compression function that is (indifferentiable from) a fictuse guarded RO, iterating this compression functicults in

a pub-PRO. In the following theorem we write[f,,.;] to meanitr[g/«] whereg is defined by callingf, .., on its input
and returning the result. We note that in the computatioltrfpf/s=] the input tof ... is always either théV" or a valid
chaining value.

Theorem 7.1 [tr is pub-PRO-preserving] Fix n,d > 0 andIV € {0,1}". Let foxan = (foevals (fevals frevear)) DE
a pub-GRO and leltr[f,e,q] be the iteration offyc,q,. There exists a simulata$ = (Scyai, Srevear) SO that for any
adversaryA

(cqo+q1)* | q1(oqo+q1)

27L + 27),
whereq is the maximal number of queries byto its first oracle, these of length at maesblocks ofd bits, andg; is the
maximal number of queries by to itS fe,ai/Sevar iNterface. Letys be the number of queries by to its frevear/Sreveat
interface. Thers runs in time that ofd plus O(qoo (g1 + ¢2)) and makes at mogho + 2¢1 + g2 queries. O

Advﬁﬁ?:gro (A) <

Proof: We specify a simulatof = (Seyai, Srevear) IN Figure 6. Recall thaf must emulate only the two public interfaces
of a public-use guarded RO. To do this, it utilizes a subrmutipdaté) which usesS’s access taF, ... () to simulate a
compression function by defining chaining variables in ®eohappropriate outputs df.,.;. That is, for any sequence of
messagen queried taF ;... (Or Feyqr) parsed into message blocks . . ., my, the simulator defines compression function
input/output pairg(v;—1,m;),v;) for 1 < i < £ wherevy, = IV andv; is assigned the output 0f.,q;(m; - --m;). The
tablesv andF are used to maintain this simulation (these tables arallyittverywherel). Queries taS.,,; not associated
(via the chaining variable input) with a valid sequence ofsage blocks have random values returned as output.

Intuitively, S will succeed as long as no two outputs®f,,; collide (which would mears might fail to use the correct
sequence of message blocks when assigning a chaining ealfithe adversary queries some vatuen to S..,,,; for which
V[v] = L, yet later one of the chaining variables (an outpufof,;) is assigned the value Loosely, the first event will
happen with probability at mogtoo+q;)2 /2" while the second event will happen with probability at mastoo+q;)/2".
We now give a formal argument using the sequences of games6:-- — Gg and G — Gy ; — Gg 2. All games
include a procedur€- () which returns@ (this was not explicitly included in the pseudocode for litsgv The games

23

procedure Sqyqi (v, m): subroutine updaté):

updateé) (mlv Ul)7 ey (mp7 Up) — reveal()
If V[v] # L then Fori = plast+ 1 top do

RetFepa (V[v] || m) mi, ..., my < m'
w s {0,1}" v — IV ; V[IV] ¢
Q< ((v,m),w) Forj =1to¢; do
Retw v} — F[mj ---m}]

If vt = L then

procedure S,epeqr(): JU; — Fopm(mt - m;)
updaté) V[vi] —mi - -mi

Ret u i i i
N Q‘_ ((?j—lvmj)a”j)
Flmj -+ -m}] « vj

J
DPlast <= P

Figure 6: Simulator used in proof of Theorem 7.1. TablendF are initialized everywhere td, setQ is initially empty,
andpyast is initialized to O.

are shown in Figures 7 and 8. We assume that adversalyes not repeat a query to any of its oracles (such queries are
pointless).

THE FIRST GAME SEQUENCE We start by justifying that

Pr Expi?ﬁ}fﬁ} = 1} = Pr [AGO =1] (20)
= Pr[4% 1] (12)
< Pr[A® = 1]+Pr[A® setsbad | (12)
= Pr[A% = 1] +Pr[A® setsbad | (13)

2
< Pr[A% =]+ (qo‘;n%‘h) +Pr[A% setsbad | (14)
2
< Pr[A® = 1]+ (W;n%‘h) + Pr [A% setsbad | (15)
+q1)? +q1)2
< Pr[A% =1]+ (Q()O'Qn @) + (qo;ﬂfh) + Pr [A® setsbad | (16)
— Pr {Exp‘,?r?j;fj = 1} + M +Pr[A% setsbad | . 17)

We'll later conclude by boundin@r[AGZ setsbad] via a sequence of games G— Gy 1 — Gg o.

(Game @) By construction, the first game implements exactly the lesa@tr[fgcvai], feval, frevear), justifying (10). Note
that we need not include the explicit checks of the guardathiation interface, since the pub-GRO primitive (implemeen
using Choosef) is only used byO, to implementtr.

(Game G, boxed statement included) In game Be modify the way in which queries are handled via some aaftiti
book-keeping; as we will see the changes do not modify théeimented functionality. In particular, we establish a ¢abl
mapping chaining variable values to sequences of messagksblInO, the operatiorV[v;] « my ---m, is added. In
O; handling of a quenyfv, m) is split into two cases. First, if[v] # L, thenV]w] is assigned/[v] || m. Herew is the
value to be returned to the adversary as chosen by Chbo3ée assignment of[w] maps the new chaining value to a
(one-block-longer) sequence of blocks. Secondjif] = L then we do no updating of. There remains one further
change in G: use of Chooség-in Oy and in the inO; for the first case utilizes = 0 while in O; for the second case
utilizess = 1. To account for this, subroutine Choogdtas additional checks to ensure consistency of use betweet
ands = 1. (Looking ahead, dropping these checks will yield indemgmidandom functions for the two values ©f The
s = 0 function will become the monolothic random oracldﬂﬁpmgff‘;% while s = 1 will be used for the unrelated random
values sometimes returned by the simulator.) Because chibeks, we have that the implemented functionality is tineesa

24

procedure Oy (M): Game G

My ..., mg << M vg— IV
Fori=1to/do
Vi — Choosef((),vi,l,mi)
Q = ((vi—1,my),v;)

Retwv,

procedure Oy (v, m):

w < Choosef (0, v, m)

Q< ((v,m), w)

Retw

subroutine Choosef (s, v, m):

If £[s,v,m] = L thenf[s,v, m] «s {0,1}"
Retf[s, v, m]

procedure Oy (M): Game , Gy
My, ... ,mg <=M vy« IV V[IV] ¢
Fori =1to/do

Vi — ChOOSGf(O,’Uifl,mZ‘)

Viv;] «— mq -+ my

Q < ((vim1,my), v5)

Retwv,

procedure Oy (v, m):
V[IV] — ¢
If V[v] # L then
w < Choosef (0, v, m)
V[w] —V[v] [m
If V[v] = L then
w < Choosef(1,v,m)

Q<= ((v,m),w)
Retw

subroutine Choosef (s, v, m):

s’ — s

If £[1 — s,v,m] # L thenbad « true;

If £[s’,v,m] = L thenf[s’,v,m] «s{0,1}"

procedure Oy(M):

Games G ,
My, ... mg < M; vy« IV V[IV] ¢
Fori=1to/do

v; < Choosef (0, v;_1,m;)

V[’Ui] — M-y

Q‘i((viflanli)avi)

Retv,

procedure Oy (v, m):
V[IV] —¢
If V[v] # L then
w < Choosef (0, v, m)
Vw] — V[o] | m
If v[v] = L then
w « Choosef (1, v, m)
Q & ((v,m), w)
Retw

subroutine Choosef (s, v, m):

If £[s,v,m] # L thenf[s,v,m] «s{0,1}"
R < £[s,v,m)]
Retfl[s, v, m]

Retf[s’, v, m]
Game , Gg
My, ...,mg <t M; vy« IV ; V[IV] ¢
Fori=1to/do
v; < Choosef (0, V[v;—1], m;)
V[’UZ‘} M ---My
Q < ((vim1,mi), vi)

Retv,

procedure Oy(M):

procedure Oy (v, m):

V[IV] —¢

If V[v] # L then
w « Choosef (0, V[v], m)
V[w] < Vo] || m

If v[v] = L then
w « Choosef(1,v,m)

Q & ((v,m), w)

Retw

subroutine Choosef (s, v, m):
If £[s,v,m] = L thenf[s,v, m] «s{0,1}"

R < £[s,v,m)]
Retfl[s, v, m]

Figure 7: Games used in proof of Theorem 7.1. All games alge hgprocedur€®, that returngQ (not shown for brevity).

25

procedure Oy (M): Game G ; | | procedure Oy(M): Game G
My .., mg <t M vg— IV V[IV] —¢ My, mg <t M vg«— IV V[IV] —¢
Fori=1to/do Fori=1to/do

v; < Choosef (0, v;-1,m;) v; < Choosef (0, v;—1,m;)

V[v;] < myq - -m; Viv;] < mq---my

Q& ((’Uz‘—l,mi),vz‘) Q@((w—l,mi),vi)
Retwv, Retwv,
procedure Q1 (v, m): procedure Oy (v, m):
V[IV] —¢ V[IV] —¢
If V[v] # L then If V[v] # L then

w « Choosef (0, v, m) w « Choosef (0, v, m)

V] — Vo] | m Vw] — Vo] [m
If V[v] = L then If V[v] = L then

w «— Choosef(1,v,m) w « Choosef (1, v, m)
Q& ((v,m), w) Q& ((v,m), w)
Retw Retw
subroutine Choosef (s, v, m): subroutine Choosef (s, v, m):
JeJ+1; (7,07, ml) — (s,v,m) je—g+1; (8,0, ml) — (s,v,m)
If 3i < js.t(vi,m') = (vi,m!) A s # s’ then If 3i < js.t(vi,m’) = (v/,m/)As' =1%#0=s’then

bad < true bad; < true
If £[s,v,m] = L thenf[s, v, m] «s{0,1}" If 3i < js.t(vi,m') = (v/,m’)As"=0%#1=s’then
Retf([s, v, m] bady « true

If £[s,v,m] = L thenf[s, v, m] +s{0,1}"
Retf[s, v, m]

Figure 8: Games used in proof of Theorem 7.1. All games alge hgrocedur®, that returng) (not shown for brevity).

in G, as in G, justifying (11).

(Game G, boxed statement omitted) Games &d G are identical-untilbad, since their only difference is whether or not
the boxed statement is included. The fundamental lemmaroégaaying [2] justifies (12).

(Game G, boxed statement omitted) Game @spenses with the extra checks in Chogqghat, in G ensured consistency
between calls withs = 0 ands = 1, but were no longer used in,(6 Additionally a setR is added that records all the
random choices made in ChoogeThe functionality of G is unchanged from & justifying (13).

(Game G, boxed statement included) Game festricts sampling in Choosgto not allow collisions between any two
outputs. Games $and G, are identical except for the boxed statement. Since Chgasm be called a maximum of
qoo + ¢1 times, we have via a straightforward birthday analysis that

(qo0 + q1)?

Pr[AGS:>1}—Pr[AG4:>1}§ il ,

justifying (14).

(Game G, boxed statement included) Game S such thatf[0, -, -] is indexed not by chaining variables, message block
pairs but rather by message sequences, message blocKipaitss, wherever Choosgwas called orf0, v, m) for chaining
variablev and message bloak in G, it is called on(0, V[v], m) in G5. Since G and G never have collisions in outputs
of Choosef in both games there is a one-to-one correspondence beta@sri(pv) and(0, V[v]). Therefore this change
does not affect the execution of the game, and so (15) hasjistéied.

(Game G, boxed statement omitted) Gameg @nd G are identical except for the boxed statement, and the aralys
justifying (14) above also applies to justify (16). Finallye argue that @implements oracles that are equivalent to
(Fevat, ST 1, ST ..1)- In game G the routine Choosg{0, -, -) implements the monolithic random oracle of the indiff-

experiment (i.e. this implemeniz,,,;). While S uses a subroutine updél¢o maintain tabley andQ, game G updates

26

these tables directly in response to querie®gmr O,. However, sinces calls updaté) immediately upon any query to it,
the two methods for updating the tables are equivalent.llgjimete that inO; whenV[v] = L a freshly-chosen random
point is returned, which is equivalent to the implementatid S”, ; (recall thatA does not make pointless queries). We
have justified (17).

UPPER BOUND ON SETTINGbad IN Go. All that remains is bounding the probability thatd is set in G, which we do
with a second sequence of games-6— G, ; — Gq 2. See Figure 8.

(Game G ;) This game implements the same functionality asbGt changes the way in whidiad is set. Now Choosg¢-
records each, v, m query using the countgrand tuple(s’, v/, m?). The flagbad is set if there exists a previous execution
of Choosef, let it be thei" execution, such that' = v/ andm’ = m’ and yets’ # s7. In words, the current, m query
value matches a previous query value, batoes not. Since this is just another way of checking for tmeesavent that
causedad to be set in G, we have that

Pr [A® setsbad | = Pr [A% setsbad | .

(Game G 2) We split the setting obad into two separate cases, represented by the (new)#tasandbad,. The first is
the case that the previous query haé 0 and the later query had= 1 and the second case is the opposite. A union bound
gives that

Pr[A% setsbad | < Pr[A% setsbad; | + Pr [A®** setsbads | .

Note, however, that the last term is zero. This is true sinc®4d, to be set due to Choosé-1, v, m) being called from
04, it must be the case th#ifv] # L. That there exists an< j for which s = 0 butv? = v (so thatbad, is set) means
that necessarily[v?] = V[v] # L. This contradiction justifies thatd, can never be set. Finally, we bound the probability
of bad; being set. Let,j be the numbers such that< j and (vi,m’) = (v/,m?) ands’ = 1 ands’ = 0. Then it
must be the case thaifv’] = L at thei™ execution of Choosg- However, at the™ execution it must be the case that
V[vi] = V[v'] # L sinces’ = 0. This means that between tite and ;™ calls, the table entry[v*] was assigned a value.
This can only occur if the output of execution of Chog&@; v, m) (for somev, m) equalsv®. Combining the facts that all
outputs of Choosg-are uniformly chosen and that there are at mgst+ ¢; executions of Choos¢-with s = 0, we have
that

Pr[A® setsbad; | < W .

This concludes the proof

7.2 Type-ll PGV are pub-GPROs

It is easy to see that a RO or a pub-RO are indifferentiable faopub-GRO, and by Theorem 7.1 can therefore be used
within an iteration to build a pub-PRO hash function for &idoiy input lengths. However many hash functions (e.g.¢hos
built from block ciphers) do not utilize compression funcis that are suitable for modeling as a (pub-)RO. In this@ect
we show that many widely-used block-cipher-based comjme$snctions, while not pub-PROs, are indifferentiablenfr

a pub-GRO. As an example to build intuition, recall that ameadary can differentiatBM from a pub-RO by abusing the
inverse oracle (see the attack described in Section 6).elcdhtext of pub-GRO, such attacks fail because the adyersar
cannot query its first oracle with chaining variables noeadly returned by it. In fact, we prove that any Type-ll PGV
function (see Section 5.1) is indifferentiable from a puR@s

Fix a stringIV € {0,1}". Let h* be a compression function built using ideal primitie Thenh? is the ITM
implementing a guarded version bf Initially a setV is empty. Thermh? (v, m) returns_L if v ¢ IV UV, and otherwise
evalutesh” (v, m) to get valuew, addsw to V, and returnsw. Then, for exampleDM is the guarded version of the
Davies-Meyer compression function (defined in Section 2).

We use the guarded versions of compression functions fatycla our analyses. In particular, the forthcoming result
do not rely on implementing guarded versions of compredsinctions — rather when an unguarded compression function
is used within the iteration then only validare used with it, meaning our results apply directly. (Fdlynspeaking, we
could also just restrict adversaries from querying any ispthich would result inl being returned, and the guarding logic
is superfluous. We choose the explicit approach to rendespeaent this usage scenario.) Our results do not apply for
unguarded compression functions when they are used oub&dm®ntext of iteration-based hashing.

Recall that the Type-ll PGV functions are those for whicH** is a bijection, C*°*" (v, m,-) is a bijection, and
C{™(k,-) is a bijection. Here the map; """ : {0,1}% x {0,1}"* — {0,1}" is defined byC; "**(k,m) = v where

27

subroutine ChooseE (s, k, x):

y —{0,1}"

If E[s, k,z] # L theny < Els, k,]
E[s,k,x] < y; D[s, k,y] — x

subroutine ChooseD (s, k, y):

x s {0,1}"

If D[s, k,y] # L thenz < DIs, k, y]
Els,k,x] < y; D[s, k,y] — =

Rety Retz

Figure 9: Subroutines used by gameg G;, G, and G for the proof of Theorem 7.2.

(v,m) = C~""8(k, x). (This is simply the projection af’ ~*** to its left output.)

It is interesting to note that the four Type-l PGV functiohattare not also Type-Il ameot pub-GPRO. Consider the
(guarded) MMO compression functianOE(um) = E,(m) ® m built from an ideal ciphet,, ,,. For any simulator
S, we give an adversary that can differentidd®O from a pub-GRO that works as follows given oract®s, O,, and

02 (implementing(MMOE,E,D) or (fyevat, SE, Sp) respectively). It chooses arbitrary pointss {0,1}" and queries
O5(IV,y) to get replyz. It then queriexDy(IV,x), retrievesw, and outputs a one i§ & w = z. If in the indiff-1
experiment, the adversary will output one always. In theffin@ experimentSp must respond with a value such that

y @ f(IV,x) = x, lest the adversary will return zero. This can't be done ieffitty (sincef is a random oracle), and so
the adversary will succeed with probability close to onemiir attacks can be fashioned for the three other only Type-
functions?

Intuitively, the Type-II functions resist such attacks &ese of the third requirement, which ensures that any iavers
query corresponds to a (close to) uniform chaining variaBlace uniformly distributed chaining variables are ueljkto
ever end up being in the sitof allowed queries td),, the final query of the adversary above wouldn’t work for adyp
function. The next theorem formalizes this, showing that Bype-I1l PGV function is a pub-GPRO.

Theorem 7.2 [Type-ll PGV are pub-GPROs]Fix d,n > 0 and fix IV € {0,1}". LetCixnn = (F,D) be an ideal
cipher and let:¢ be the guarded implementation of a Type-Il PGV functién There exists a simulat&# = (Sg, Sp)
such that for any adversary making at mostqo, ¢1, ¢2) queries, we have

2
- (90 + @1 + q2) n q2(q0 +q1 + 1)
n 2n
whereS works in timeO(g2(q0 + ¢1)) and makes at mogt queries.

Advgf;§p1'°(A)

Proof: We fix the simulatoS = (Sg, Sp) detailed below.

procedure Sp (k, y):
((Ulvml)awl)a) ((Uzvmé)vw[) — freveal()
Fori =1to¢do

(ki, :EZ) - CPRE(,Ui’ mz)

yi - C—POST(vi7 mi7 wz)

If £ = k' andy = ' then Retr?
x—s{0,1}"; E[k,z] — y
Retx

procedure Sg(k, x):

If E[k, z] # L then ReE[k, x]
(m,v) «— C7"R8(k, x)

w — feval (’U, WL)

y - C_POST('U, m, w)

Rety

The simulator associates queries by the adversaftandSp with queries tof je,q;. Note thatC™™ andC"%" (v, m, -)
are bijections (the latter for any, m), and their inverses vi&'~"** andC'~"°*" (v, m, -) (see Section 5.1). The simulator
uses these functions to map between inputs and outputs bfdble cipher and inputs and outputs fof

We utilize a sequence of gameg G— --- — Gg to boundA’s advantage relative t8. See Figures 10 and 11. Some of
these games utilize as subroutines those shown in Figurhi®hwogether implement a modified version of an ideal cipher
in which sampling with replacement is done (instead of thealisampling without replacement). (The parametisrused

3Note that [15] point out that these four just type-I PGV fiiogs are also not suitable compression functions for buildROs via prefix-free
encoding messages and then iteration.

28

procedure Og (v, m): Game G

If v ¢ {IV} UV then RetL
(k,z) « C"™ (v, m)

y < ChooseE (0, k, x)

W — CPOST(,U, m, y)

Ve w

Retw

procedure O, (k, z):

y < ChooseE (0, k, x)
Rety

procedure Os(k, y):

x «— ChooseD(0, k,y)
Retz

procedure Og (v, m): Game G

100
101
102
103
104
105
106

If v ¢ {IV} UV then RetL

(k,z) « C""8(v,m)

y < ChooseE (0, k, x)

w — C* (v, m, y)

t—1+1; ((Uivmi)ﬂwi) — ((v,m), w)
V&Ew

Retw

procedure Oy (k, z):

110 y « ChooseE(0, k, z)

111 w «— CPOSY(C "Rk, x), y)

112 i i+ 1; (v}, m?),w?) « (C~"RE(k, x), w)
113 Rety

%
, W

procedure Oy (k, y):

120 Forj =1toido

121 (K%, xt) «— CPR (v mt)
122 yi - C—POST(vi7 mi7 uﬂ)
123 If £ = k' andy = ' then Retr?

124 x «+ ChooseD(0, k, y)
125 Retx

procedure Oy (v, m):

Game@ Gs

200 If v ¢ {IV} UV then RetL
201 (k,x) <« C"™(v,m)
202 s« 0; If E[1,k,2] # L thenbad «— true

203
204
205
206
207

y < ChooseE (s, k, x)

W — CPOST(U,m, ,y)

i—i+1; ((v',m?),w) — ((v,m),w)
Ve w

Retw

procedure Oy (k, x):

210 If E[1,k, 2] # L then Ret Choosés(1,m, ¢)
211 y « ChooseE (0, k, x)

212 w « CPOSY(C~PRE(k, x),y)

213 i i+ 1; ((v',m?),w’) « (C7RE(k, z),w)
214 Rety

procedure Oz (k, y):

220 Forj =1toido

221 (ki %) « CPRE (vt m?)
292 Y — C=PT(yi i)
223 If £ = k' andy = ' then Retr?

224 s — 1; If D[0, k, y] # L thenbad «— true

225 1+ ChooseD (s, k,y)
226 Retx

procedure Oy (v, m): Game G

400 If v ¢ {IV} UV then RetL

401 (k,x) — C"™(v,m)

402 If E[1,m, ¢] # L thenbad « true

403 y «— f(k,x); w— C*T(v,m,y)

404 D0, k,y] « x

405 i« i+ 1; ((vi,m"),w’) « ((¢,m),w)
406
407

V< w

Retw

procedure Oy (k, z):

410 If E[1, k, x] # L then ReE[l, k, x]

11y — f(k,a); w e CPOT(C 5 (k,z), y)
412 D[0, k,y] «— x

412 i i+ 13 (v, mi),wi) — (O (k,z), w)
414 Rety

procedure Oy (k, y):
Forj=1to:do

420

421 (ki, :UZ) - CPRE(vi’ mz)
422 Y C7POST (v i)
423 If kK = k" andy = y* then Retr?

424 1f D[0, k,y] # L thenbad « true
425 x s {0,1}"; E[1,k,z] <y
426 Retz

Figure 10: Games used in proof of Theorem 7.2. Subroutine®&3¥. and Choosd> are detailed in Figure 9. Game,G

uses a random functiofimapping from{0, 1} x {0,1}" to {0, 1}".

29

procedure Og (v, m): Game G | | procedure Oy (v, m): Game G

500 If v ¢ {IV} UV then RetL 600 If v ¢ {IV} UV then RetL
501 (k,x) «— C*™(v,m) 601 w «— f(v,m)
502 If E[1,k,z] # L thenbad « true 602 i i+ 1; ((v',m'),w") — ((v,m),w)
503 w « f(C™ "R (K, x)); y «— O (v, m,w) 603 V< w
504 D[0,k,y| « x 604 Retw
505 ¢ iz +1; ((vr,m"),w") « ((v,m),w) procedure Oy (k, z):
506 V «—w
507 Retw 610 If E[1,m,] # L then ReE[1,m, (]
611 w « f(C PR (k, x))
procedure O, (k, z): 612 i« i+ 1; ((v',m?),w') « (C~""E(k,x), w)
510 If E[1,m,] # L then ReE[l, m, ¢| 613 Rety

511w F(C~" (k)3 y — OO (O (K,), w)
512 D[0, k,y] <« «

513 i — i+ 1; ((vF,mf),w’) — (C~"*(k, z), w) 620 Forj = l‘tOi do o
621 (k*, ") « C™F(v",m")

procedure Oz (k, y):

514 Rety . A

622 yz - CV—POS'I‘(Uz7 mz7 ,wz)
procedure Oy (k, y): 623 If k = k' andy = y' then Retz!
520 Forj =1to:do 624 x s {0,1}"; E[1,k,z] — y
521 (k' ') « CPRE(vt m?) 625 Retx
522 yi - C*POST(,UZ” 7ni7 wi)

523 If £ = k' andy = * then Retr?
524 If D[0, k,y] # L thenbad « true
525 x«s{0,1}"; E[1,k, 2] <y

526 Retx

Figure 11: Game used in the proof of Theorem 7.2. Gamgar@ G; use a random functiofi mapping from{0, 1}"™ x
{0,1} to {0, 1}™.

to allow multiple instances of the objects. Namely, differeindicate distinct tableg andD.) We will justify that

(0 +a +a)

Pr|Exphal 1] < Pr[a® =]+ 0L (18)
2

= Pr[A® o]y OIS (19)
2

_ pr[A% o)y B TOT@R)” q;f %) (20)
2

< Pr[A® = 1]+ (qo+q2+q2) +Pr [A% setsbad | 21)
2

= Pr[A% =1]+ (q‘ﬁq?;fqz) +Pr[A% setsbad | (22)
2

= Pr[A% 1]+ (q°+q2+q2) +Pr [A% setsbad | (23)
2

= Pr[A% 1]+ (%ﬂ;ﬂ +Pr [A% setsbad | (24)

- 2
— Pr {Exp';ffgf;,o - 1} n Mﬂ +Pr [A% setsbad] (25)

and then conclude by bounding the probabilitybefl being set in game &

(Game G) Game G implements the oraclds”, £, D but where ideal cipheE (with inverseD) is implemented using the
subroutines of Figure 9. A straightforward birthday arguairjastifies (18).

30

(Game G) Game G is the same as gxcept that book-keeping code is added to procedQgeend@; which is then used

in O,. The new®, functionality checks explicitly for previous queries® or O, that have already s8f0, k, 3] (i.e. due to

an execution of ChoosgX0, k,) that sampled range poipj. To show that this is in fact the case, we need to show that any
time z is returned inD, on line 123, the same value would have been returned on lBelB k, y be a pair queried t@,.
Suppose there exists asuch that! = k andy’ = y where(k?, z) = C™":(vi, m?) andy® = C~"RE(vi mt w?). Then
consider ifv?, m?, w' were assigned values on line 104. This means that ChBO8ec™" (v, m*)) = ChooseE (0, k*, x?)

was executed and it returned a valfemeaningd|0, k¢, y'] = ¢, SinceC™™* andC"°T(v?, m?, -) are bijections we have
thaty’ = y* = y. Thus,D[0, k,y] = x%. Consider now ifv’, m?, w’ were instead assigned values on line 112. Then again
ChooseE (0, C™(vi,m')) = ChooseE (0, k, %) was executed and returned a valiemeaningd|[0, k%, y'] = x'. But
now w! = CTOST(CPRE(K1 %), y") and the bijectivity ofC**5T and C™* gives thaty’ = y* = y. Thus,D[0, k,y] = z°.

We have justified (19).

(Game G, boxed statements included) Gamgi&a modification of G in that two pairs of tables (correspondingste= 0
ands = 1) are used to track points defined by the oracles. The checksem201, 210, and 222 ensure, however, that the
two tables are used in a manner that mimics exactly the behakthe single pair of tables in{G This justifies (20).

(Game G, boxed statements excluded) Gameg &d G are identical-untibad, and the fundamental lemma of game-
playing [2] justifies (21).

(Game G) In game G f is a random oracle mapping poiritse to random values frorj0, 1}™. It is used in conjunction
with the other code on lines 403/404, 411/412, and 425, tqpbetely remove use of Choode-and Choosé> in the game.
This simplification of the code of game;@nplements identical functionality, justifying (22).

(Game G) In game G we make two pairs of changes. First, we apply the random eygathb C—"**(k, z) as oppoesd
to k,z on lines 503 and 511. (Technically,is now a map on domaif0,1}" x {0,1}¢. Before it had a domain of
{0,1}4 x {0,1}™.) SinceC™ " is bijective this change does not affect the distributiothefoutputs off. Second, we swap
the order of assignment fgrandw on lines 503 and 511, now assigningp the output off and then setting as a function

of y andwv, m (or, equivalentlyk, z). The change to line 503 is justified by the fact tlh&rs" (v, m, -) is a bijection for

any v, m. The change to line 511 is justified sin€&°S"(C'~""*(k, x),-) is a bijection for anyk, « (sinceC™* is also a

bijection). Thus the variables involved maintain the sajoimi) distribution, justifying (23).

(Game @) In the final game we drop code that handled the settinigadfin G5. Now we see that this final game; &
exactly implementing the oraclég,..a., SJ, S1,), justifying (24).

All that remains is to bound the probability bdd being set in game £ We proceed via case analysis.

The flagbad might be set due to line 502 or line 524. For line 524, howeter)oop and conditional of 520 and 521 ensure
that 524 will never be executed whafb, k, y] # L. To see this, note tha@{0, k, y] is assigned a value only if one of lines
505 or 513 is also executed. Thuspi, k,y] # L during aOs(k,y) query, then necessarily there existg & [1..7]
such thatt = k7 andy = y/ where(k?, 27) = C™(v/, m/) andy’ = CT*(v?, m?, w?). This is so becaus€™* and
CrosT(v' m?,) are bijections. Thusad will never get set on line 524.

We turn to bounding the probability that line 502 sets bad.Had to be set here, it must be that some qu@gyfv, m) was
made for whichv € {IV'} UV at the time of the query aril1, k, 2] # L. BUtE[l, k, z] can only be set to a non-bottom
value if line 525 previously executed and hergvas uniformly selected. Lét* be the sed’ at the end ofd’s execution.
Letx be a value sampled due to execution of line 523 for a @I}, y). Then we want to assess the probability tAatan
make a later query, m to O for which C***(v, m) = (k,). Re-writing this last equation we haye, m) = C~"*(k, z)
and thusy = C; "™ (k, z). Then we will justify that

Pr[C"™(v,m) = (k,z) A(v=1IVVveV*)] < Pr[C;"™(k,z)=1IVVC;™(k,z)e V"]
< Pr[Cy™(k,2) =1V]| +Pr[C7"(k,2) € V*]
_ 1 @w+a
277, 2n

where the indicated events are defined in the natural way (beecoins used in executing®). We can bound the first
term on the right as follows. Sinceis a uniformly-chosen point, and by the fact tiiat ™" (k, -) is a bijection, we have
the probability thatC[""" (k,z) = IV with probability at mos2~". We can bound the second term as follows. Each
valuew added toV in the course of the game is the output of the random funcfion some paiv, m. These points are
chosen independently of the valuend there are at mogg + ¢; outputs off chosen in the course of the game. Thus the
probability of any one of these independent points beingetuC| """ (k,) is at most(¢go + ¢1)/2™. Together, we see

31

that for the probability of settingad due toE[1, k, 2] being set for any particula®, query is at most1l + gy + ¢1)/2",
justifying the equations above.

Finally, since there are at magt queries ta0,, and consequently at magt valuesz sampled due to execution of line 525
we have via a straightforward union bound that

Pr[A% setsbad | < W .

This completes the proofl

Acknowledgments

We thank llya Mironov, Martijn Stam, and Mihir Bellare forefsil discussions regarding this work. We thank Lei Wang
for pointing out an error in an earlier version of this worlevgeniy Dodis was supported in part by NSF Grants 0831299,
0716690, 0515121, and 0133806. Thomas Ristenpart was segpo part by Mihir Bellare’s NSF grants CNS 0524765
and CNS 0627779 and a gift from Intel corporation. He thamhiesRaculty of Informatics at the University of Lugano,
Switzerland for hosting and supporting him while a portidrihds work was done. Thomas Shrimpton was supported by
NSF grant CNS 0627752 and SNF grant 200021-122162.

References

[1] M. Bellare and A. Palacio. Towards Plaintext-Aware Reddey Encryption without Random Oraclesdvances in
Cryptology — ASIACRYPT 'Q4NCS vol. 3329, pp. 48-62, 2004.

[2] M. Bellare and T. Ristenpart. Multi-property-presergiHash Domain Extension and the EMD TransfoAdvances
in Cryptology — ASIACRYPT 'Q&NCS vol. 4284, Springer, pp. 299-314, 2006.

[3] M. Bellare and T. Ristenpart. Hash Functions in the Datlid-key Setting: Design Choices and MPP Transfotms.
ternational Colloquium on Automata, Languages, and Pragrang — ICALP '07LNCS vol. 4596, Springer, pp. 399—
410, 2007.

[4] M. Bellare and P. Rogaway. Random oracles are practicphradigm for designing efficient protocols. In: CCS '93,
ACM Press (1993) 62—73.

[5] M. Bellare and P. Rogaway. Optimal asymmetric encryptioHow to encrypt with RSAAdvances in Cryptology —
EUROCRYPT "94LNCS vol. 950, pp. 92-111, 1994.

[6] M. Bellare and P. Rogaway. The Exact Security of Digitigr&tures - How to Sign with RSA and Rabin. In: Advances
in Cryptology - EUROCRYPT '96. Volume 1070 of Lecture NotesGomputer Science, Springer (1996) 399-416.

[7] J. Black, P. Rogaway, and T. Shrimpton. Black-Box Anaysf the Block-Cipher-Based Hash-Function Constructions
from PGV.. Advances in Cryptology — CRYPTO ;ANCS vol. 2442, Springer, pp. 320-325, 2002.

[8] D.Boneh and X. Boyen. Efficient Selective-ID Secure litgrBased Encryption Without Random Oracléglvances
in Cryptology — EUROCRYPT 'Q4NCS vol. 3027, Springer, pp. 223—-238, 2004.

[9] D. Boneh and M. Franklin. Identity-Based Encryptionrfréhe Weil Pairing Advances in Cryptology — CRYPTO ;01
LNCS vol. 2139, Springer, pp. 213-229, 2001.

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures fittanVeil pairing.Advances in Cryptology — ASIACRYPT
'01, LNCS vol. 2248, Springer, pp. 514-532, 2001.

[11] R. Canetti and R. Dakdouk. Extractable Perfectly OreyWunctions. ICALP '08, LNCS vol. 5126, Springer,
pp. 449-460, 2008.

[12] R. Canetti and R. Dakdouk. Towards a Theory of Extrdet&nctions.Theory of Cryptography Conference — TCC
'09, 2009, to appear.

[13] R. Canetti, O. Goldreich, and S. Halevi. The random leratethodology, revisited. J. ACBIL(4), pp. 557-594, 2004.

32

[14] R. Canetti, S. Halevi, and J. Katz. A Forward-Securelietey Encryption Scheme. J. Cryptology (JOC) 20(3):265-
294 (2007)

[15] D. Chang, S. Lee, M. Nandi, and M. Yung, Indifferenti@l8ecurity Analysis of Popular Hash Functions with Prefix-
Free PaddingAdvances in Cryptology — ASIACRYPT ,Q@BICS vol. 4284, Springer, pp. 283-298, 2006.

[16] J.S. Coron. Optimal Security Proofs for PSS and Othgn&ure Schemegdvances in Cryptology — EUROCRYPT
'02, LNCS vol. 2332, Springer, pp. 272—-287, 2002.

[17] J.S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. MeiREmdard Revisited: How to Construct a Hash Function.
Advances in Cryptology — CRYPTO ;A5NCS vol. 3621, Springer, pp. 21-39, 2005.

[18] I. Damgard. A design principle for hash function&dvances in Cryptology — CRYPTO 8INCS vol. 435, Springer,
pp. 416-427, 1989.

[19] I. Damgard, T. Pedersen, and B. Pfitzmann. On the Existence of talig Hiding Bit Commitment Schemes and
Fail-Stop Signaturesidvances in Cryptology — CRYPTO ;93NCS vol. 773, Springer, pp. 250-265, 1993.

[20] D. Davies and W. Price. The Application of Digital Signees Based on Public Key Cryptosyster®soc. Fifth Intl.
Computer Communications Conferenpp. 525-530, October 1980.

[21] V. Dodis, K. Pietrzak, and P. Puniya. A New Mode of Openatfor Block Ciphers and Length-Preserving MACs.
Advances in Cryptology — EUROCRYPT.QBICS vol. 4965, Springer, pp. 198-219, 2008.

[22] Y. Dodis and P. Puniya. Getting the Best Out of ExistiresH Functions or What if We Are Stuck with SHA®Rpplied
Cryptography and Network Security — ACNS.'@8ICS vol. 5037, Springer, pp. 156-173, 2008.

[23] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvagingrke-Damgard for Practical Applications (full version of this
paper). IACR ePrint Archive, 2009.

[24] A. Fiatand A. Shamir. How to Prove Yourself: Practical@ions to Identification and Signature ProblerAdvances
in Cryptology — CRYPTO '88_NCS vol. 263, Springer, pp. 186-194, 1987.

[25] S. Hirose. Provably Secure Double-Block-Length Haghdfions in a Black-Box Modellnformation Security and
Cryptology — ICISC '04LNCS vol. 3506, Springer, pp. 330-342, 2005.

[26] S. Hirose. Some Plausible Constructions of DoublegdtlkrHash FunctionsFast Software Encryption — FSE '06
LNCS vol. 4047, Springer, pp. 210-225, 2006.

[27] S. Hirose, J. Park, and A. Yun. A Simple Variant of the MerDamgard Scheme with a Permutation. Advances in
Cryptology — ASIACRYPT '07, LNCS vol. 4833, Springer, pp.3:H129, 2007.

[28] U. Maurer, R. Renner, and C. Holenstein, Indifferelitity, Impossibility Results on Reductions, and Applicats
to the Random Oracle Methodologyl'heory of Cryptography Conference — TCC ;AANCS vol. 2951, Springer,
pp. 21-39, 2004.

[29] R. Merkle. One way hash functions and DES&dvances in Cryptology — CRYPTO ;89INCS vol. 435, Springer,
pp. 428-446, 1989.

[30] National Institute of Standards and Technology. FIRSBFA.80-1: Secure Hash Standard. (1995) Supersedes FIPS
PUB 180 1993 May 11.

[31] B. Preneel, R. Govaerts, and J. Vandewalle. Hash fonstbased on block ciphers: A synthetic approastivances
in Cryptology — CRYPTO’93.NCS vol. 773, Springer, pp. 368-378, 1994.

[32] T. Ristenpart and T. Shrimpton. How to Build a Hash Fiotfrom any Collision-Resistant Functiodvances in
Cryptology — ASIACRYPT 'OLNCS vol. 4833, Springer, pp. 147-163, 2007.

[33] P. Rogaway and J. Steinberger. Security/Efficiencyl@ddfs for Permutation-Based Hashingdvances in Cryptol-
ogy — EUROCRYPT 'Q&NCS vol. 4965, Springer, pp. 220-365, 2008.

[34] P. Rogaway and J. Steinberger. Constructing CrypfigcaHash Functions from Fixed-Key Blockciphefsdvances
in Cryptology — CRYPTO 'Q8.NCS vol. 5157, Springer, pp. 443-450, 2008.

33

[35] T. Shrimpton and M. Stam. Building a Collision-Resmt&ompression Function from Non-compressing Primitives.
ICALP '08, LNCS vol. 5126, Springer, pp. 643-654, 2008.

[36] D. Simon. Finding Collisions on a One-Way Street: Canue Hash Functions Be Based on General Assumptions?
Advances in Cryptology — EUROCRYPT,@8ICS vol. 1403, Springer, pp. 334-345, 1998.

[37] M. Stam. Blockcipher Based Hashing Revisitédst Software Encryption — FSE '0® appear, 2009.
[38] L. Wang. Personal correspondence. 2009.

[39] K. Yoneyama, S. Miyagawa, and K. Ohta. Leaky Random @réextended Abstract). Provable Security — ProvSec
'08, LNCS vol. 5324, pp. 226-240, 2008.

A Proof of Theorem 3.2

Proof: We argue about WPrA security in the case of a single extracfi@my, and then apply Lemmas 3.3 and 3.4 to get
the final result. We begin by defining the extracfor; let it operate as follows:

algorithm £+ (z, a):
Parse(xlvyl)’ I (xkayk) o
Fori=1tok do

If Y = 2 thenX «— z;
If X = () then RetL
RetX

That is,£* simply iterates over the query-response pairs providetiénatlvice string and, upon finding a response that
matchesz, outputs the corresponding domain point. There are twoscseonsider. First assum&made aP-query on

x before extraction queryz, o). Then&™ will extract 2 from the advice string. Thus this case cannot contributd’so
advantage. On the other hand, assutmaakes extraction quergx(z,) for which z has not been already returned By
Any subsequenP-query will returnz with probability at mostl /2™. SinceA can query at most times to P, this means
that the probability of hitting one suchis at mostg/2". |

B Preimage Awareness of Iteration without Strengthening

We formalize a variant of preimage resistance, following][2Let h”: Dom — Rng be a hash function for an ideal
primitive P. An inversion adversaryl takes no inputs, has access to a primitive ordgl@nd outputs a point € Dom.
For fixed valuelV' € Rng, we define the experimeExp',?j’P’IV’A by the following pseudocode

x—s AP ; Reth? (z) = IV
We associate to inv-adversady hash function7”’, and constanfV € Rng the advantage relation
AdV;ﬁ‘;zIV (A) = PI‘ Expl;r;yp[v’A = true:| .

where the probability is taken over the coins used to exettigénv experiment. It is easy to verify that for the ideal-
primitive-based compression functions we consider, theaiige in this game is low for any” and any adversary. For
example, _forf = RFgyn.n, We have thaAdv’'7, (A) < g,/2" for any adversaryl making at most,, queries. We have
the following result.

Theorem B.1 [ltr achieves PrA] Fix n,d > 0 and letP be an ideal primitive. Leb?: {0,1}"*¢ — {0,1}" be a
compression function, and léf = Itr[”"] using some constadt” € {0, 1}". Let &, be an arbitrary extractor for the PA-
experiment involving:. Then there exists an extraci®y; such that for all pra-adversariesmaking at mosty, primitive
gueries and. extraction queries and outputing a message of at st > 1 blocks there exists an pra-adversahand
an inv-adversary’ such that

Advii e (A) < Advg . (B) + Adv}'p ()

34

Ep runs in time at most,y,q, - Time(&y,). B runs in time at most that ol plus O(gclimqz), Makes at most, + yaz -
NumQueries(h) primitive queries, and makes at magt,,,.,. extraction queriesC' runs in time that ofB and makes the
same number of primitive queries]

The proof can be adapted easily from that used for SMD. Narttedyprobability of the last case (where suffix-freeness
is invoked) of the case analysis occurring can be shown ttyithp existance of a natural inversion adversary.

C Group-2 PGV schemes are PrA in the iteration

Consider a generalized rate-1 blockcipher-based comipressiction, which operates as follows on ingutm): (k, x) <
C™(v,m), y s E(k,x), w «— C"*"(v,m,y), outputw. We recall that a blockcipher-based compression funcgon i
Stam Type-Il if: 1)C*®* is bijective, 2) for allv, m the postprocessing*°%* (v, m, -) is bijective, and 3) for alk, the
inverse mapC; ™" (k, -) is bijective. Here the ma@| ™" : {0,1}7 x {0,1}" — {0,1}" is defined byC; """ (k,m) = v
where(v, m) = C~""(k,). (This is simply the projection of' """ to its left output.) Stam has shown that the Group-2
PGV schemes from [7] are also Type-II.

Theorem C.1 [The Group-2/Type-ll PGV schemes are PrA in theteration.] Fix x,n > 0, let E «<s BC(k,n). Let P

be an ideal primitive providing an interfacs tband E~!. Let h* be a Type-ll blockcipher-based compression function,
and letH = Itr[h?’] for some constantV € {0,1}". There exists an extractérsuch that for any adversary making at
mostg, queries taP andg. extraction queries we have

ra qeq 1.5qp(qp + 1)
AdvPr(A) < P4 PP
H,S() omn a0 mn _ ap

where¢ runs in time at mos® (¢.(¢2 + g,(Time(C ") 4 Time(C*5"))) O

Proof: Let C be the event that when the PrA-adversdrizalts, the advice string contains the queries required to evaluate
H(M) and H(M') for M # M’ such thatH (M) = H(M’), or to evaluateH (M) for some non-trivialM such that
H(M)=1V.

Now we condition:

Pr [Expg‘},A = 1} = Pr [(Exp%ﬂ&A = 1) A C} + Pr [(Exp%ﬁg’A = 1) A ﬁC}

IA

Pr [(Expg’f‘“ - 1) | ﬁc} +Pr[C] (26)

The proof of collision resistance for the Type-Il schemeggiin Stam [37] boundBr[C] < .5¢,(q, + 1)/(2" — ¢,). We
continue then under the assumption thatholds.

The extracto€ on input(z, «) operates as follows. Informally, it will build from the blkcipher queries imv an IV -rooted
tree with vertices that are labeled by chaining values ag@®thbeled by message blocks. It then looks to seajfpears
as a vertex label in the tree. If so, it returns the appropnmeimage by reading edge labels from fhéto z; if not, it
returns..

Let us be more formal. Lef be an initially empty list. Le€E(z, «) first parse the advice strin@1, x1,v1), - - -, (kr, T, yr)-
Let £ build a graphl” = (V, E') with vertex and edge labels; the vertex labeld by the initedlie will simply be refered
to by IV. Initially, V. = {IV} andE = {}. Fori € [1..r] it does the following: (m;,v;) «— C " (k;,z;), w; —
CTSY(v;, m4,y;); if w; = z then an (initiallyfalse) flag possible is set totrue. If v; = IV, £ adds(v;, m;, w;) to £ with
the annotation Ysep, 0", and creates edg€ V, w;) in T with labelm;; else& simply adds(v;, m;w;) to L. If the flag
possible was not set tarue during this loop, the extractor halts with output We pause in our description to note the
following. SinceC*"® and C*°%* (v, m, -) are bijections, each blockcipher quddy, =, y) defines a unique (compression
function) tuple(v, m,w). Combined with the assumption tha€ holds, any tuple marked assep will never again be
added to the graph. (Note that also implies that # w.) Continuing our description &, for each(v, m,w) € L that

is not marked ag'sED, it searches the vertices at distance one from the IV (cporading exactly to the-tuples labeled
”USED, 0”) for a vertex labeled; if it finds one, it creates a new edge, w) labeled bym, and marks the tuplév, m, w)

as "USED, 1”. The extractor continues in this way, making repeated gaeser and attempting to add unseDp tuples
to the tree. Notice that by our assumptiofispnly needs to compare urseD tuples to tuples markedsSep, ¢” for the
highest value of in the list. (This is easily implement by a counter that ketepsk of what is the current distance from
the I'V.) When either all tuples i are marked assED, or when a pass completes without adding any new edgé$ to

35

the extractor stops building. It then searches the tree Yertex labelect. If it finds one (and there will be at most one) it
reads the edge labels frohl to z and returns the corresponding messsage. Otherwise, rihsetu

It is clear that (for a single extraction query) the runniimget of the extractor i€)(r? + r(Time(C~ %) + Time(C"5")).

Now, since—C holds, the adversary must win by finding a preimage for sernpon which the extractor never returned
a non-L value. (It is possible that someis queried more than once twith different advice strings.) We call these
useful Without loss of generality, we can assume that the adwem#puts a preimage for a usefubs soon as one can be
computed from the query list. Thus we can also assume thextatictor queries are made prior to the adversary finding its
eventual preimage, and so there are at mossefulz. It remains then to bound the probability that the adverszamages

to find a preimage for any of these

As the adversary runs, we imaging building a grépk- (V, E) much as the one above. The vertexiget {0, 1}" and the
edge set is initially empty. When the adversary learns (Viacuery) a triple(k, =, y), we computdv, m) «— C*E(k,)
andw «— C**%*(v, m,y), and place an edge between verticemdw. Consider this graph at the time of the final extraction
query. In particular, consider the subgra@ghthat consists of the component containing ffievertex and any component
containing a vertex labeled with a usefulLet S C V be the set of vertices in this subgraph. We claim thatdfueries

to P have been made at the time of the last extraction query, |tflere 1 + ¢. + k. To see this, notice thaf contains
the I'V vertex and the (at most). vertices labeled by the useful Moreover, as components are by definition connected
subgraphs, each of ttieedges placed it¥ would have added at most one new vertex:to

Now, asA continues to maké queries after the final extraction query, each adds at m@shew vertex t&h. A necessary
condition for A to win is for it to create a new edge between vertices already; in particular because the” and all of
the usefulz are inS. (This is certainly not a sufficient condition.) Say this orzon queryk + 4, fori € [1..q, — k]. If
this is a forward blockcipher query,) yielding y, then by the bijectivity of2"** andC*%* (v, m, -), the probability that
w = C""(v,m, y) is the label of a vertex already s at most(1 +q. +k+ (i — 1)) /(2" — (k+ (¢ — 1))). Similarly, if
the necessary edge is created by an inverse blockciphey ¢uey) yielding z;, then the bijectivity ofC; ™" (k,) insures
again that the probability of creating the edge is at nfbst ¢. + & + (i —1))/(2" — (k + (i — 1))).

Thus, by a union bound

ap—k

Pr KEXP%’A: 1) ‘ﬁc} < Xm qe(ljf(jil))
i=1

R iy
S gy (g tkdd)
2= 5
1 (gp —F)(gp =k +1)
= 7k . k p p
s (= e+)+ i
< ap — k <2(Qe+k)+(%k+1))
T 2" —q, 2
_ 4k <2qe+qp+k+1)
- 2" —q, 2
dp
< Ge +qp+1
e+ + 1)

where the final line is overly conservative because it Bets0 outside of the parentheses, ane- ¢, inside. (We choose
to use this looser bound for presentation purposes, andanywuffices.) Altogether then, (26) becomes

1 . 1 1. 1
Pr [Expg?&A = 1} < (e +ap +1) + 5(ap)(ap +1) = Qe 5(qp)(gp +1)

2" —q, 2" —qp 2" —qp 2" —qp

completing the proof.

D Alternative Formulation for Preimage Awareness

A two-stage pa-adversay = (A;, A) is a pair of algorithms. The challenge selection algoritAmruns on no input
and has access to a primitive orade It outputs a triple(z, o, st) wherez € Rng, a € {0,1}* is an advice string,

36

andst € {0,1}* is a string representing arbitrary state information. Thedrpage selection algorithms runs on input
z, st, has oracle access 18, and outputs a preimageé € Dom. Then the 1-PrA experimerlbcp}h}f’;ff4 is defined by the
pseudocode

(z,a,st) s AL s & — E(z,a); 2’ s AL (2, st) ; Ret(z # o' A HE (2') = 2)
To H, £, and A we associate the advantage relation
Adv}l_f’ga(A) =Pr [Exp};fgz = true}

where the probability is taken over the coins used in exagutie experiment. The next theorem captures the simplaechybr
that 1-PrA security implies full PrA security, but with a facq. (the number of extraction queries) loss in concrete segcurit
The proof (omitted) is by a simple hybrid argument.

Theorem D.1 [1-PrA = PrA] Let H” : Dom — Rng be a hash function. Lef be an extractor. Then there exists an
extractor€ such that for any pra-adversary making ¢. extraction queries there exists a two-stage pra-adverBagy
(B1, By) such that

Advi(A) < go-Adv " (B) .
B runs in time that ofd plusg. - Time(&). O

37

