
A preliminary version of this paper appears inAdvances in Cryptology – EUROCRYPT ‘09, Lecture Notes in Computer
Science Vol. 5479, pp. 371–388, A. Joux ed., Springer-Verlag, 2009. This is the full version.

Salvaging Merkle-Damg̊ard for Practical Applications

YEVGENIY DODIS ∗ THOMAS RISTENPART† THOMAS SHRIMPTON ‡

January 2009

Abstract

Many cryptographic applications of hash functions are analyzed in the random oracle model. Unfortunately, most
concrete hash functions, including the SHA family, use the iterative (strengthened) Merkle-Damg̊ard transform applied to
a corresponding compression function. Moreover, it is well known that the resulting “structured” hash function cannot
be generically used as a random oracle, even if the compression function is assumed to be ideal. This leaves a large
disconnect between theory and practice: although no attack is known formany concrete applications utilizing existing
(Merkle-Damg̊ard based) hash functions, there is no security guarantee either, evenby idealizing the compression function.

Motivated by this question, we initiate a rigorous and modular study of developing new notions of (still idealized)
hash functions which would be (a) natural and elegant; (b) sufficient for arguing security of important applications; and
(c) provably met by the (strengthened) Merkle-Damgård transform, applied to a “strong enough” compression function. In
particular, we show that a fixed-length compressing random oracle, aswell as the currently used Davies-Meyer compression
function (the latter analyzed in the ideal cipher model) are “strong enough” for the two specific weakenings of the random
oracle that we develop. These weaker notions, described below, are quite natural and should be interesting in their own
right:

• Preimage Aware Functions. Roughly, if an attacker found a “later useful” outputy of the function, then it must
“already know” the corresponding preimagex. We show that this notion works well with the Merkle-Damgård
transform (unlike fixed-length random oracles), and has many applications. Most notably, it yields a variable-length
random oracle, when composed with a fixed-length random oracle. Additionally, (compressing) preimage aware
functions considerably generalize collision-resistant hash functions. Moreover, we show that existing block-cipher-
based hash functions, originally only shown collision-resistant in the idealcipher model, are in fact preimage aware.

• Public-Use Random Oracles. Roughly, these objects are indifferentiable from ordinary random oracles, but only
when they are never evaluated on secret inputs. We show that such public-use oracles are enough to argue security of
most hash-based signature schemes, including Full Domain Hash and Fiat-Shamir signatures. Moreover, the Merkle-
Damg̊ard transform preserves this notion. As a result, all “public-use” applications of random oracles are still secure
with existing hash functions (assuming a strong enough compression function, such as a fixed-length random oracle
or the Davies-Meyer function).

Keywords: hash functions, random oracle model, indifferentiability framework

∗Dept. of Computer Science, New York University. 251 Mercer St. New York, NY 10012, USA. Email: dodis@cs.nyu.edu . URL:
http://www.cs.nyu.edu/ dodis

†Dept. of Computer Science & Engineering 0404, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0404, USA. Email:
tristenp@cs.ucsd.edu . URL: http://www.cs.ucsd.edu/˜tristenp

‡ Dept. of Computer Science, Portland State University, Room 120, Forth Avenue Building, 1900 SW 4th Avenue, Portland OR 97201
USA and Faculty of Informatics, University of Lugano Via Buffi13, CH-6900 Lugano, Switzerland. Email:teshrim@cs.pdx.edu,
thomas.shrimpton@unisi.ch . URL: http://www.cs.pdx.edu/ teshrim, http://www.inf.unisi. ch/

1

Contents

1 Introduction 3
1.1 Preimage Aware Functions 4
1.2 Public-Use Random Oracles 5

2 Preliminaries 6

3 Preimage Awareness 8
3.1 Relationships between PrA, CR, and Random Oracles 9
3.2 Weak Preimage Awareness 9

4 Merkle-Damgård as an FIL-RO domain extender 10

5 Building Preimage-Aware Functions 15
5.1 CR compression functions from PGV are preimage-aware . .. 16
5.2 Shrimpton-Stam compression function is preimage-aware . 17
5.3 Dodis-Pietrzak-Puniya compression function is preimage-aware . 19
5.4 Mix-Compress is preimage-aware 20

6 Indifferentiability for Public-Use Random Oracles 21
6.1 Public-use ROs and PROs 22
6.2 Public-use guarded ROs and PROs 22

7 Constructing Public-use Random Oracles 23
7.1 Iteration preserves being a pub-PRO 23
7.2 Type-II PGV are pub-GPROs 27

A Proof of Theorem 3.2 34

B Preimage Awareness of Iteration without Strengthening 34

C Group-2 PGV schemes are PrA in the iteration 35

D Alternative Formulation for Preimage Awareness 36

2

1 Introduction

The primary security goal for cryptographic hash functionshas historically been collision-resistance. Consequently, in-use
hash functions, such as the SHA family of functions [30], were designed using the (strengthened) Merkle-Damgård (MD)
transform [18, 29]: the input messageM is suffix-free encoded (e.g. by appending a message block containing the length
of M) and then digested by the cascade construction using an underlying fixed-input-length (FIL) compression function.
The key security feature of the strengthened MD transformation is that it iscollision-resistance preserving[18, 29]. Namely,
as long as the FIL compression function is collision-resistant, the resulting variable-input-length (VIL) hash function will
be collision-resistant too.

RANDOM ORACLE MODEL. Unfortunately, the community has come to understand that collision-resistance alone is insuf-
ficient to argue the security of many important applicationsof hash functions. Moreover, many of these applications (e.g.
Fiat-Shamir [24] signatures or RSA [4] encryption) are suchthat no standard model security assumption about the hash
function appears to suffice for proving security. On the other hand, no realistic attacks against these applications have been
found. Motivated in part by these considerations, Bellare and Rogaway [4] introduced the Random Oracle (RO) model,
which models the hash function as a public oracle implementing a random function. Using this abstraction, Bellare and Ro-
gaway [4, 5, 6] and literally thousands of subsequent works managed to formally argue the security of important schemes.
Despite the fact that a proof in the RO model doesnot always guarantee security when one uses a real (standard model)
hash function [13], such a proof does provide evidence that the scheme is structurally sound. Moreover, many important
in-use cryptographic schemes only have provable security guarantees in the RO model.

IS MERKLE-DAMGÅRD A GOOD DESIGN? Given the ubiquity of MD-based hash functions in practice,and the success of
the RO model in provable security, it is natural to wonder if aMD-based hash functionH is reasonably modeled as a RO, at
least when the compression function is assumed to be ideal. But even without formalizing this question, one can see that the
answer is negative. For example, the well-knownextension attackallows one to take a valueH(x) for unknownx, and then
compute the valueH(x, 〈ℓ〉, y), whereℓ is the length ofx andy is an arbitrary suffix. Clearly, this should be impossible for
a truly random function. In fact, this discrepancy leads to simple attacks fornatural schemes proven secure in the random
oracle model (see [17]).

Consequently, Coron et al. [17] adapted the indifferentiability framework of Maurer et al. [28] to define formally what
it means to build a secure VIL-RO from smaller (FIL) idealized components (such as an ideal compression function or ideal
cipher). Not surprisingly, they showed that the strengthened MD transform does not meet this notion of security, even when
applied to an ideal compression function. Although [17] (and several subsequent works [2, 3, 27]) presented straightforward
fixes to the MD paradigm that yield hash functions indifferentiable from a VIL-RO, we are still faced with a large disconnect
between theory and practice. Namely, many applications only enjoy proofs of security when the hash function is modeled
as a “monolithic” VIL-RO, while in practice these applications use existing MD-based hash functions which (as we just
argued) are demonstrably differentiable from a monolithicRO (even when compression functions are ideal). Yet despitethis
gap,nopractical attacks on the MD-based design (like the extension attack) seem to apply for these important applications.

“SALVAGING ” M ERKLE-DAMGÅRD. The situation leads us to a question not addressed prior to this work: given a current
scheme that employs anMD-based hash functionH and yet does not seem vulnerable to extension-type attacks,can we
prove its security (at least if the compression functionf is assumed to be ideal)? The most direct way to answer this question
would be to re-prove, from scratch, the security of a given application when an MD-based hash function is used. Instead,
we take a more modular approach consisting of the following steps:

(1) Identify a natural (idealized) propertyX that is satisfied by a random oracle.

(2) Argue thatX sufficesfor proving the security of a given (class of) application(s), originally proved secure whenH is
modeled as a monolithic RO.

(3) Argue that thestrengthened MD-transform satisfiesX, as long as its compression functionf satisfies some related
propertyY .

(4) Conclude that, as long as the compression functionf satisfiesY , the given (class of) application(s) is secure with an
MD-based hash functionH.

Although this approach might not be applicable to all scenarios, when itis applicable it has several obvious advantages over
direct proofs. First, it supports proofs that are easier to derive, understand, and verify. Second, proving that a hash function
satisfyingX alone is enough (as opposed to being like a “full-blown” RO) for a given application elucidates more precisely
which (idealized) property of the hash function is essential for security. Third, if the propertyX is natural, it is interesting to

3

study in its own right. Indeed, we will show several applications of our notions which are quite general and not necessarily
motivated by salvaging the MD transform. Finally, due to point (4), it suffices to argue/assume “only” that the compression
functionf — a smaller and much-better-studied object — satisfies some related propertyY . Typically, if Y corresponds to
being FIL-RO, it would be easy to conclude that the MD-transform satisfiesX, which will already be quite useful. In our
examples, however, we will be able to derive this conclusionfor considerably weakerpropertiesY , which corresponds to
a wider classof “admissible” compression functionsf . For example, most in-use compression functionsf are built from
a block cipherE via the Davies-Meyer transform:f(c, x) = Ex(c) ⊕ c. It was shown in [17] that this construction isnot
indifferentiable from a FIL-RO, even ifE is assumed to be an ideal cipher. Despite this, in our examples we will be able
to argue, in the ideal cipher model, that the Davies-Meyer compression function satisfies the propertyY sufficient to prove
that the iterated hash functionH satisfiesX. As a result, the resulting applications we consider areprovably secure with
existing block cipher-based hash functions(in the ideal-cipher model).

So which propertiesX (andY)? We introduce two:preimage awarenessand indifferentiability from apublic-use
random oracle. For preimage awareness, the corresponding propertyY will also be preimage awareness, which means that
the Merkle-Damg̊ard transform isproperty-preservingfor this new notion. For public-use random oracles, the property
Y will be evenweakerthan public-use random oracles, which not only implies property-preservation, but will allow us
to justify the use of the Davies-Meyer compression function(which is differentiable from a public-use random oracle, but
satisfies this weaker notion). We detail these new notions below.

1.1 Preimage Aware Functions

A function being Preimage Aware (PrA) means, informally, that if an attacker can output a range pointy and subsequently
produce a preimagex for y, then in fact the attacker “already knew”x when it outputy. To get an idea of how we
formalize this, consider a hash functionH built using some ideal primitiveP (which could model a compression function
or a block cipher). Then the PrA security experiment is loosely defined as follows. An attacker, using oracle access to
P , first outputs a range pointy. Then a deterministic algorithm called anextractor is run ony and the transcript of the
attacker’s interaction withP (the queries and their associated responses); it outputs a domain pointx′. The attacker wins
if it can (using further access toP) output a domain pointx 6= x′ such thatH(x) = y. Intuitively, this definition captures
that producing a preimage-image pair underH requires actually evaluatingH on the preimage in a manner that reveals
it to anyone observing the attacker’s oracle calls. Our notion is very similar in spirit to the notion of plaintext awareness
for encryption schemes [4, 1] and the notion of extractability for perfectly one-way functions [11, 12]; we discuss these
similarities in more detail, below.

We notice that random oracles are clearly PrA. In fact, preimage awareness precisely captures the spirit behind a
common proof technique used in the RO model, often referred to asextractability, making it an interesting notion to
consider. We also show that preimage awareness is a natural strengthening of collision-resistance (CR). That preimage
awareness lies between being a RO and CR turns out to be quite useful: informally, a PrA function is “strong enough” to be
a good replacement for a RO in some applications (where CR is insufficient), and yet the notion of preimage awareness is
“weak enough” to be preserved by strengthened MD (like CR).

MERKLE-DAMGÅRD PRESERVES PREIMAGE AWARENESS. We show that the(strengthened) MD transform preserves
preimage awareness, in stark contrast to the fact that it doesnot preserve indifferentiability from a RO [17]. Thus, to
design a variable-input-length preimage aware (VIL-PrA) function, it is sufficient to construct a FIL-PrA function, or, even
better, argue that existing compression functions are PrA,even when they are not necessarily (indifferentiable from)random
oracles. The proof of this is somewhat similar to (but more involved than) the corresponding proof that MD preserves
collision-resistance.

APPLICATION: DOMAIN EXTENSION FOR ROS. A PrA hash function is exactly what is needed to argue securedomain
extension of a random oracle. More precisely, assumingh is a FIL-RO, andH is a VIL-PrA hash function (whose output
length matches that of the input ofh), thenF (x) = h(H(x)) is indifferentiable from a VIL-RO. Ironically, whenH is just
CR, the above construction ofF was used by [17] to argue that CR functions are not sufficient for domain extension of a
RO. Thus, the notion of PrA can be viewed simultaneously as a non-trivial strengthening of CR, which makes such domain
extension work, while also a non-trivial weakening of RO, which makes it more readily achieved.

RECIPE FOR HASH DESIGN. The previous two properties of PrA functions give a generalrecipe for how to construct hash
functions suitable for modeling as a VIL-RO. First, invest as must as needed to construct a strong FIL functionh (i.e. one
suitable for modeling as a FIL-RO.) Even ifh is not particularly efficient, this is perhaps acceptable because it will only be
called once per message (on a short input). Second, specify an efficient construction of a VIL-PrA hash function built from
some cryptographic primitiveP . But for this we use the fact that MD is PrA-preserving; hence, it is sufficient to focus on

4

constructing a FIL-PrA compression functionf from P , and this latter task could be much easier than building fromP an
object indifferentiable from a FIL-RO.

Adopting our more modular point-of-view, several existinghash constructions in the literature [17, 2, 3, 32, 21] enjoy
an easier analysis. For example, the NMAC construction of [17] becomes an example of our approach, where the outerh
and the innerf are both implemented to be like (independent) FIL-ROs. In [17] it is argued directly, via a difficult and long
argument, that the innerf can be replaced by the Davies-Meyer construction (in the ideal-cipher model), despite the fact
that Davies-Meyer isnot itself indifferentiable from a FIL-RO. We can instead just prove that Davies-Meyer is PrA (which
requires only a few lines due to the existing proofs of CR [7, 37]) and then conclude.

L IFTING FROM CR TO PrA. Another important aspect of preimage awareness is that, for many important constructions,
it gives a much more satisfactory security target than collision resistance. Indeed, there exists a large body of work [31, 7,
25, 26, 34, 35, 33, 21] building FIL-CR hash functions from idealized blockciphers and permutations. On the one hand, it
seems very hard to prove the security of such schemes in the standard model, since there exists a black-box separation [36]
between collision-resistant hash functions and standard-model block ciphers (which are equivalent to one-way functions).
On the other hand, it seems quite unsatisfactory that one starts with such a “powerful” idealized primitive (say, an ideal
cipher), only to end up with a much “weaker” standard model guarantee of collision resistance (which is also insufficient
for many applications of hash functions). The notion of preimage awareness provides a useful solution to this predicament.
We show thatall the FIL constructions proven CR in [7, 35, 33, 21] are provably PrA. This is interesting in its own right, but
also because one can now use these practical constructions within our aforementioned recipe for hash design. We believe
(but offer no proof) that most other CR ideal-primitive-based functions, e.g. [25, 26, 34], are also PrA.

We note that it is also possible to prove that a VIL-CR hash function is PrA even if the underlying compression function
is not. Of course, in this case we must step outside of our modular approach (point (4), in particular). As an example, in
Appendix C we show that the Group-2 blockcipher-based compression functions from [7, 31] (which are not even CR) do
yield a PrA-hash when iterated.

OTHER APPLICATIONS/CONNECTIONS? We believe that PrA functions have many more applications than the ones so far
mentioned. As one example, PrA functions seem potentially useful for achieving straight-line extractability for various
primitives, such as commitments or zero-knowledge proofs.These, in turn, could be useful in other contexts. As already
mentioned, preimage awareness seems to be quite related to the notion ofplaintext awarenessin public-key encryption
schemes [5, 1], and it would be interesting to formalize thispotential connection. PrA functions are also very related to so
calledextractable hash functions(EXT) recently introduced by Canetti and Dakdouk [11, 12]. However, there are some
important differences between EXT and PrA, which appear to make our respective results inapplicable to each other: (a)
EXT functions are defined in the standard model, while PrA functions in an idealized model; (b) EXT functions are keyed
(making them quite different from in-use hash functions), while PrA functions can be keyed or unkeyed; (c) EXT functions
do not permit the attacker to sampleany“unextractable” imagey, while PrA functions only exclude imagesy which could
be later “useful” to the attacker; (d) EXT functions allow the extractor to depend on the attacker, while PrA functions insist
on a universal extractor.

1.2 Public-Use Random Oracles

Next, we consider applications that never evaluate a hash function on secret data (i.e. data that must be hidden from ad-
versaries). This means that whenever the hash function is evaluated on some inputx by an honest partyC, it is safe to
immediately givex to the attackerA. We model this by formalizing the notion of apublic-use random oracle(pub-RO);
such a RO can be queried by adversaries to reveal all so-far-queried messages. This model was independently considered,
under a different motivation, by Yoneyama et al. [39] using the name leaky random oracle. Both of our papers observe
that this weakening of the RO model is actually enough to argue security of many (but, certainly, not all) classical schemes
analyzed in the random oracle model. In particular, a vast majority of digital signature schemes, including Full Domain
Hash (FDH) [4], probabilistic FDH [16], Fiat-Shamir [24], BLS [10], PSS [6] and many others, are easily seen secure in
the pub-RO model. For example, in the FDH signature scheme [4], the ROH is only applied to the messagem supplied by
the attacker, to ensure that the attacker cannot invert the valueH(m) (despite choosingm). Other applications secure in the
pub-RO model include several identity-based encryption schemes [9, 8], where the random oracle is only used to hash the
user identity, which is public.

We go on to formalize this weakening of ROs in the indifferentiability framework of Maurer et al. [28]. This allows us
to define what it means for a hash functionH (utilizing some ideal primitiveP) to be indifferentiable from apublic-use
random oracle. We call such a hash function a public pseudorandom oracle (pub-PRO).

MERKLE-DAMGÅRD CONSTRUCTS PUBLIC-USE ROS. As our main technical result here, we argue that the MD transform

5

preserves indifferentiability from a pub-RO, even though it does not preserve general indifferentiability from a (regular) RO.
To get some intuition about this fact, it is instructive to examine the extension attack mentioned earlier, which was theroot
of the problem with MD for general indifferentiability. There one worried about adversaries being able to infer the hash
output on a message with unknown prefix. In the public-use setting, this is not an issue at all: the security of a public-use
application could never be compromised by extension attacks since all messages are known by the attacker.

PUBLIC-USE COMPRESSION FUNCTIONS. Our modular approach allows us to dig deeper, investigating the suitability
of various compression function designs for use within MD tobuild hash functions that enjoy indifferentiability from a
pub-RO. It is clear that a FIL RO or FIL pub-RO would suffice. Unfortunately, widely-used compression functions are
not suitable for modeling as even pub-ROs, because they are based on block ciphers. (Briefly, that ciphers are invertible
obviates hope of such compression functions being indifferentiable from a pub-RO.) This is doubly unfortunate since widely
used hash functions, such as the SHA family, are constructedusing such compression functions. We therefore formalize a
further-restricted variant of a pub-RO for compression functions: a public-useguardedRO. Informally, this is an FIL RO
that is used by honest parties only within the confines of the MD transform. (Dishonest parties can use the RO in arbitrary
manners.) We go on to strengthen our preservation result regarding MD above to show that MD applied to any (object
indifferentiable from a) public-use guarded RO results in afull public-use RO. Further, we go on to show that all of the
PGV type-2 compression functions applied to an ideal cipherare indifferentiable from public-use guarded ROs. Note that
this approach is still entirely modular, allowing independent (and simpler) analyses of compression function and transform.

DISCUSSION. Our results, combined with the composition theorem of [28], give a plethora of new, important provable
security results. Namely, for any scheme only proven securein the RO model and whose security is unaffected by public
dissemination of hashed messages, our results give thefirst everproofs of security (in the ideal cipher model) when using
hash functions such as SHA-2. Since SHA-2 (and even SHA-1) will be in use for many years to come, these positive results
importantly help explain when such hash functions are secure to use.

2 Preliminaries

WhenS is a set,x←$ S means to sample uniformly fromS and assign the resultant value tox. We writeD+ for the set
({0, 1}d)+. We writex←$ A to denote running algorithmA with fresh random coins and assigning its output tox. For

M ∈ {0, 1}∗, we writeM1, . . . ,Mℓ
d←M to denote (1) letℓ = ⌊|M |/d⌋, (2) letMi be assigned theith d-bit substring of

M for 1 ≤ i ≤ ℓ− 1, and (3) letMℓ be the last|M | mod d bits ofM if |M | mod d 6= 0 and letMℓ be the lastd bits ofM

otherwise. For setS, we writeS ∪← s to denoteS ← S ∪ {s}.
For any algorithmf that accepts inputs fromDom ⊆ {0, 1}∗, we writeTime(f,m) to mean the maximum time to run

f(x) for any inputx ∈ Dom such that|x| ≤ m. Whenf is a function with domainDom ⊆ {0, 1}∗, we defineTime(f,m)
to be the minimum, over all programsTf that implement the mappingf , of the size ofTf plus the worst case running time
of Tf over all elementsx ∈ Dom such that|x| ≤ m. In either case, when we suppress the second argument, writing just
Time(f), we mean to maximize over all strings in the domain. Running times are relative to some fixed underlying RAM
model of computation, which we do not specify here.

As a small abuse of standard notation, we writeO(X) to hide absolute constants that are dominated by the argument X.

INTERACTIVE TMS. An Interactive Turing Machine (ITM) accepts inputs via an input tape, performs some local compu-
tation using internal state that persists across invocations, and replies via an output tape. An ITM might implement various
distinct functionalitiesf1, f2, . . . that are to be exposed to callers. Aninterfaceof an ITM specifies that writing one of a
certain subset of possible strings on the input tape invokesa particular functionality. For example, writingi ‖ s (where the
numberi is suitably encoded as a string) results in executingfi on s. When we writeP = (f1, f2, . . .), this means that
ITM P implements the functionalitiesf1, f2, . . . using some fixed interface semantics. We writeP = (f1, f2, . . .) for an
ITM implementingf1, f2, · · · . When functionalitiesfi, fj (say) do not share state, we say thatfi andfj areindependent
functionalities; these will be explicitly noted. We will (slightly abusing notation) writefi to refer to accessing an ITM via
interfacefi.

We sometimes distinguish betweenprivate interfacesandpublic interfaces(following terminology from [28]), writing
P = ((f1, f2, . . .), (f

′
1, f

′
2, . . .)) to denote the ITMP that has private interfacesf1, f2, . . . and public interfacesf ′

1, f
′
2,

(Looking ahead, private interfaces will be used exclusively by honest parties while public interfaces will be used by adver-
saries and simulators.) We writeMP if an ITM M has access to the private interfaces ofP and writeMPpub if M has access
only to the public interfaces ofP . If P does not have distinguished public and private interfaces,then the public interfaces
are just the private interfaces. We writeMP1,P2,... to denoteM having access to multiple (independent) ITMsP1, P2,

6

Implicitly this means one defines a single ITMP = (P1, P2, . . .) with interfaces for the independent functionalities and
then giveM unfettered access toP .

IDEAL PRIMITIVES. We sometimes use the monikerideal primitiveto refer to an ITM; this is to emphasize the use of an
ITM as building block for some larger functionality. For non-empty setsDom,Rng , a random oracle is the ideal primitive
FDom,Rng with a single interface that consistently maps inputs inDom to range points randomly chosen fromRng . When
Dom = {0, 1}d andRng = {0, 1}r for somed, r we writeFd,n. We writeF whenDom andRng are clear from context.
Let κ, n > 0 be integers. A block cipher is a mapE : {0, 1}κ × {0, 1}n → {0, 1}n such thatE(k, ·) is a permutation for
all k ∈ {0, 1}κ. Let BC(κ, n) be the set of all such block ciphers. An ideal cipher is the ideal primitive Cκ,n = (E,D)
with two interfaces implementing a cipher chosen randomly from BCκ,n and its inverse, respectively. We writeC whenκ
andn are clear from context. (Note that in both cases all interfaces are private, and so accessed both by honest parties and
adversaries alike.)

HASH FUNCTIONS ANDMERKLE-DAMGÅRD. LetDom ⊆ {0, 1}∗ be a non-empty set of strings, andRng be a non-empty
set (typically{0, 1}n for some integern > 0). A hash functionis an algorithm that computes a mapH : Dom → Rng .
We will be concerned with hash functions that use (oracle access to) an underlying ideal primitiveP . We write HP

when we want to make this dependency explicit. IfP has both private and public interfaces, then we use the convention
thatHP meansH uses the first private interface. When the primitive is clear from context, we will sometimes suppress
reference to it. When computingTime(H, ·), calls toP are unit cost. Similar to our definition ofTime(H,m), we write
NumQueries(H,m) for the minimum, over all programsTH that computeH, of the maximum number of queries toP
required to computeHP (x) for anyx ∈ Dom such that|x| ≤ m.

For integersn, d > 0, we call a hash functionfP : {0, 1}n×{0, 1}d → {0, 1}n acompression function(using idealized
primitive P). Let v0 = IV be a fixedn-bit string. Then the iteration offP , denoted byItr[fP], is the algorithm1 that on

inputM ∈ D+ first setsm1, · · · ,mℓ
d←M , then computesvi ← fP (vi−1,mi) iteratively for eachi ∈ [1 .. ℓ], and returns

vℓ. Let sfpad : {0, 1}∗ → D+ be asuffix-free paddingfunction which returns a suffix-free encoding ofM . A suffix-free
encoding has the property that for anyM,M ′ such that|M | < |M ′| the string returned bysfpad(M) is not a suffix of
sfpad(M ′). (For example, pad an appropriate amount and append an encoding of the length of the message.) Let SMD[fP]
be the algorithm that on inputM runssfpad(M) and then appliesItr[fP] to the result.

COLLISION RESISTANCE OF HASH FUNCTIONS. Fix setsDom ⊆ {0, 1}∗ andRng and letA be an adversary that outputs
a pair of stringsx, x′ ∈ Dom. Let P be an ideal primitive. To hash functionHP : Dom → Rng and adversaryA we
associate the advantage relation

Adv
cr
H,P (A) = Pr

[

(x, x′)←$ AP : HP (x) = HP (x′) ∧ x 6= x′
]

where the probability is over the coins used byA and primitiveP .

THE INDIFFERENTIABILITY FRAMEWORK. We make extensive use of the indifferentiability framework of Maurer, Renner,
and Holenstein [28], however we follow more closely the formalizations of it appearing in [17, 2, 3]. LetH be some
cryptographic scheme (e.g. a hash function) that utilizes an ideal primitiveP . Let Q be a second ideal primitive. A
simulator, typically denoted byS, is just an ITM revealing some number of interfaces. Informally, we say thatH is
indifferentiable fromQ if there exists an efficient simulatorS with an interface for each interface ofPpub such that for all
“reasonable” adversariesA outputing a bit it is the case that

Pr
[

Expindiff-1
H,P,A ⇒ 1

]

− Pr
[

Expindiff-0
Q,S,A ⇒ 1

]

is “small” where the probabilities are taken over the coins used the experiments shown in Figure 1. In the indiff-1 experi-
mentH uses access to the (first) private interface ofP while the adversaryA has access to the public interfaces ofP . In the
indiff-0 experiment the adversary has access toQ’s private interfaces whileS has access toQ’s public interfaces. Note that
a crucial aspect of the framework is that the simulator, while able to queryQpub itself, doesnot get to see the queries made
by the adversary toQpriv.

We shall formalize several security notions, based on the reference primitiveQ that the scheme is compared against
(e.g. see below). A key benefit of using indifferentiabilityis the composition theorem detailed in [28], which states that
(intuitively) one can securely useHP instead ofQ in applications.

PSEUDORANDOM ORACLES. Fix non-empty setsDom,Rng . Let P be an ideal primitive and letFDom,Rng be a random

1This construction is sometimes referred to as the Merkle-Damgård transform, seemingly due to [29, 18], however its use significantly predates these
papers. See e.g. [20].

7

Expindiff-1
H,P,A

b← AHP ,Ppub

Retb

Expindiff-0
Q,S,A

b← AQ,S
Qpub

Retb

Figure 1: Experiments used in the indifferentiability framework for schemeH, adversaryA, and ideal primitivesP andQ.

Exp
pra
H,P, E,A

x←$ AP,Ex

z ← HP (x)

Ret(x 6= V[z] ∧ Q[z] = 1)

oracleP(m):

c← P (m)

α← α ‖ (m, c)

Retc

oracleEx(z):

Q[z]← 1

V[z]← E(z, α)

RetV[z]

Figure 2: (Left) Experiment for defining preimage awareness (PrA) for hash function H, extractorE and adversaryA.
(Center,Right) Description of the oracles used in the PrA experiment. The (initially empty) advice stringα, the (initially
empty) arrayV, and the (initially everywhere⊥) arrayQ are global.

oracle. We define the pro advantage of an adversaryA against a functionHP mapping fromDom to Rng by

Adv
pro
H,P,S(A) = Pr

[

Expindiff-1
H,P,A ⇒ 1

]

− Pr
[

Expindiff-0
F,S,A ⇒ 1

]

.

3 Preimage Awareness

SupposeH is a hash function built from an (ideal) primitiveP . We seek to, roughly speaking, capture a notion which states
that an adversary who knows a “later useful” outputz of HP must “already know” (be aware of) a particular corresponding
preimagex. We can capture the spirit of this notion using a deterministic algorithm called anextractor. Consider the
following experiment. An adversaryA outputs a range pointz, possibly after interacting with an oracle forP . The extractor
is then run on two inputs:z and anadvice stringα. The latter contains a description of all ofA’s queries so far toP and
the corresponding responses. The extractor outputs a valuex in the domain ofH. ThenA continues and attempts to output
a preimagex′ such thatHP (x′) = z but x 6= x′. Informally speaking, if no adversary can do so with high probability,
then we considerH to be preimage aware. We now turn to formalizing a notion based on this intuition, but which allows
multiple, adaptive attempts by the adversary to fool the extractor.

Fix setsDom ⊆ {0, 1}∗ andRng , and letA be an adversary that outputs a stringx ∈ Dom. In thepreimage aware-
ness(pra) experiment defined in Figure 2, the adversary is provided with two oracles. First, an oracleP that provides access
to the (ideal) primitiveP , but which also records all the queries and their responses in an advice stringα. (We assume
that whenP is providing an interface to multiple primitives, it is clear from the advice string to which primitive each query
was made.) Second, anextraction oracleEx. The extraction oracle provides an interface to anextractorE , which is a
deterministic algorithm that takes as input a pointz ∈ Rng and the advice stringα, and returns a point inDom ∪ {⊥}.

For hash functionH, adversaryA, and extractorE , we define the advantage relation

Adv
pra
H,P, E(A) = Pr

[

Exp
pra
H,P, E,A ⇒ true

]

where the probabilities are over the coins used in running the experiments. We will assume that an adversary never asks
a query outside of the domain of the queried oracle. We use theconvention that the running time of the adversaryA does
not include the time to answer its queries (i.e. queries are unit cost). When there exists an efficient extractorE such that
Adv

pra
H,P, E(A) is small for all reasonable adversariesA, we say that the hash functionH is preimage aware (PrA). (Here

“efficient”, “small”, and “reasonable” are meant informally.)

REMARKS. As mentioned, the above formalization allows multiple, adaptive challenge queries to the extraction oracle.
This notion turned out to be most convenient in applications. One can instead restrict the above notion to a single query
(or to not allow adaptivity) resulting in a definition with slightly simpler mechanics. In Appendix D we discuss such an
alternative formulation of preimage awareness.

8

3.1 Relationships between PrA, CR, and Random Oracles

Our new notion preimage awareness is an interesting middle point in the continuum between objects that are CR (on one end)
and those that are random oracles (on the other). More formally speaking, we will show momentarily that a PrA function is
also CR, and that a random oracle is PrA. The second point is fairly obvious, but the first is quite interesting. In particular,
we will see in Section 4 that a PrA function is a secure domain extender for fixed-input-length random oracles, unlike CR
functions [17]. (This already suggests that CR does not necessarily imply PrA.). Preimage awareness is consequently a very
useful strengthening of CR, not to mention that it provides rigor to the folklore intuition that CR functions are insufficient
for this application due to a lack of extractability. What is more, the MD transform preserves preimage awareness. This is
in stark contrast to the fact that MD (even if one uses strengthening) doesnot preserve indifferentiability from a random
oracle (i.e. PRO-Pr)

Let us begin with the formal results. One can view preimage awareness as a strengthening of collision resistance in
the following way. Say that queries toP allow the adversary to compute distinct domain pointsx, x′ such thatHP (x) =
HP (x′) = z. The adversary can make an extraction query onz, and then succeed in the PrA game by returning whichever
of x andx′ is not extracted from(z, α) by the extractor.

Theorem 3.1 [PrA⇒CR] Let P be an ideal primitive andHP : Dom → Rng be a hash function. LetE be an arbitrary
extractor. LetA be a CR adversary againstH asking a total ofqp queries toP . Then there exists a PrA adversaryB such
that

Adv
cr
H(A) ≤ Adv

pra
H,P, E(B) .

B runs in time that ofA plusO(qp) + Time(H), asks at mostqp primitive queries, and one extraction query.�

Proof: The PrA adversaryB starts by runningA, using its oracleP to answerA’s oracle queries. Eventually,A halts with
output of two messagesx0, x1. When it does, letB computez ← HP (x0). Then letB make the single queryx′ ← Ex(z).
If x′ = x0 thenB outputsx1, otherwise it outputsx0.

On the other hand, it is not hard to see that a RO is a PrA function. The following theorem captures this, and its proof is in
Appendix A.

Theorem 3.2 [ROs are PrA.]Fix Dom ⊆ {0, 1}∗ andn > 0, let P = RFDom,n Then the hash functionHP (x) = P (x) is
preimage-aware. Specifically, there exists an extractorE such that for all adversariesA making at mostqe queries toP and
qe extraction queries

Adv
pra
H,E(A) ≤

qeqp

2n
+

q2
p

2n
.

Moreover, the running time of the extractor isO(q) . �

3.2 Weak Preimage Awareness

Our proofs of preimage-awareness will be aided by considering a related notion that we callweak preimage awareness
(WPrA) We define WPrA simply by modifying the pra experiment of Figure 2 so that the extractor, when queried on an
imagez, can return a set of potential preimages (instead of just a single preimage). The adversary wins if it can output a
preimagex such thatH(x) = z yet x is not in the set returned by the extractor. While this weakening of PrA no longer
implies CR, it will be useful for evaluating functions already proven CR.

Fix setsDom andRng . A multi-point extractorE+ is a deterministic algorithm that takes input a pointz ∈ Rng and
outputs a setX ⊆ Dom. Formally, letExp

wpra
H,P, E+,A work exactly likeExp

pra
H,P, E+,A except that the last line of the pra

experiment (see Figure 2) is changed to “Ret(x /∈ V[z]∧ Q[z] 6= ⊥)”. Then we associate to any hash functionH, adversary
A, and set extractorE the advantage relation

Adv
wpra
H,P,E(A) = Pr

[

Exp
wpra
H,P, E,A ⇒ true

]

.

We say that a multi-point extractorE+ is honestif for any z ∈ Rng and advice stringα it is the case that

Pr
[

∀x ∈ X . HP (x) = z : X ← E+(z, α)
]

= 1

where the probability is taken over the coins used byP . We will sometimes restrict attention to honest multi-point extractors.
Note that this is not, in general, without loss, sinceE does not have oracle access toP . However it will be easy to verify
that extractors we construct are honest.

9

We can simplify some of our proofs with the following easy, but useful, results. First, WPrA when allowing only
a single query (denoted1-WPrA) implies WPrA with many queries. The proof (omitted) is by straightforward hybrid
argument. Second, and more interestingly, we give a lemma showing that any function that is both CR and WPrA is also
PrA. These lemmas greatly simplify some of proofs, because together they reduce the task of showing a CR function fully
preimage-aware to showing that it meets the WPrA definition for a single extraction query.

Lemma 3.3 [1-WPrA ⇒ WPrA] Let P be an ideal primitive andHP : Dom → Rng be a hash function. LetE+ be a
multi-point extractor. LetA be an adversary making at mostqe extraction queries and running in timet. Then there exists
an PrA adversaryB, asking at most one extraction query, such that

Adv
wpra
H,P, E+(A) ≤ qe ·Adv

wpra
H,P, E+(B) .

B runs in time at mostt +O(qe · Time(E+)) and makes the same number ofP queries queries asA. �

Lemma 3.4 [WPrA + CR⇒ PrA] Let P be an ideal primitive andHP : Dom → Rng be a hash function. LetE+ be
an arbitrary honest multi-point extractor. Then there exists an extractorE such that for any pra-adversaryA makingqe

extraction queries there exists wpra-adversaryB and cr-adversaryC such that

Adv
pra
H,P, E(A) ≤ Adv

wpra
H,P, E+(B) + Adv

cr
H,P (C) .

B makes the same number of queries asA and runs in time that ofA plusO(qe). C asksqp queries and runs in time
t + qe ·Time(E+). E runs in the same time asE+. �

Proof: Let E be the extractor that, on input(z, α) runsX ← E+(z, α) and outputs the first element inX . Let B be a WPA-
adversary that works as follows. It runsA, just forwarding oracle queries toP andE+, returningP -responses directly toA
and simulatingE using the responses ofE+. Let B output whateverA does.

In the event space defined byExp
pra
H,P, E,A let Coll denote the event thatE+ outputs a set of size larger than one. Then its

clear thatPr[Coll] ≤ Adv
cr
H(C) for the natural adversaryC becauseE+ is honest. Note that until eventColl occurs the

execution ofExp
pra
H,P, E,A is identical that ofExp

pra
H,P, E+,B . Therefore,

Pr
[

Exp
pra
H,P, E,A ⇒ true

]

≤ Pr
[

Exp
pra
H,P, E+,B ⇒ true

]

+ Pr [Coll]

implying the theorem statement.

4 Merkle-Damgård as an FIL-RO domain extender

In this section we develop a main result: that an MD-hash is a good domain extender for an FIL random oracle. We do this
in two steps. First, in Theorem 4.1 we prove a generic result thatanyPrA function is a good domain extender for an FIL
random oracle. This is interesting in itself, because untilnow no property weaker than being a PRO is known to be sufficient
for extending the domain of an FIL-RO; in particular, CR is not sufficient [17]. In the second step, Theorem 4.2, we prove
that Merkle-Damg̊ard (with strengthening) yields a VIL-PrA hash function when the underlying compression function is a
FIL-PrA function.

Theorem 4.1 [RO domain extension via PrA]Let P be an ideal primitive andHP : Dom → Rng be a hash function.
Let R be an ideal primitive with two interfaces that implements independent functionalitiesP andR = RFRng,Rng . Define
FR(M) = R(HP (M)). Let F = RFDom,Rng . Let E be an arbitrary extractor forH. Then there exists a simulator
S = (S1,S2) such that for any PRO adversaryA making at most(q0, q1, q2) queries to its three oracle interfaces, there
exists a PrA adversaryB such that

Adv
pro
F,R,S(A) ≤ Adv

pra
H,P, E(B) .

SimulatorS runs in timeO(q1 + q2 ·Time(E)). Let ℓmax the the length (in bits) of the longest query made byA to it’s first
oracle. AdversaryB runs in time that ofA plusO(q0 ·Time(H, ℓmax) + q1 + q2), makesq1 + q0 ·NumQueries(H, ℓmax)
primitive queries,q2 extraction queries, and outputs a preimage of length at mostℓmax. �

Proof: Let E be an arbitrary extractor forH. ThenS = (S1,S2) works as follows. It maintains an internal advice string
α (initially empty) that will consist of pairs(u, v) corresponding toA’s queries toP (via S1). WhenA queriesu to S1 the
simulator simulatesu ← P (v) appropriately, setsα ← α ‖ (u, v), and returnsv. For a queryY to S2, the simulator runs

10

X ← E(Y, α). If X = ⊥ then the simulator returns a random point. Otherwise it queriesZ ← F(X) and returnsZ to the
adversary.

Consider the experiments of the PRO definition, that isA interacting with oracle interfaces(O0,O1,O2) = (F, P,R) or
(O0,O1,O2) = (F ,S1,S2). Informally, there exist only a few events that adversaryA can cause that force the two sets of
oracles to behave differently. These are:

(i) if A makes a queryO2(Y) and the extractor outputs⊥ when run onE(Y, α). Later A queriesO0(X) such that
HP (X) = Y ;

(ii) if A first makes a queryO0(X) with Y = HP (X) and laterA queriesO2(Y), yetE(Y, α) outputs a value that does
not equalX;

(iii) if A first makes a queryO2(Y), the extractor outputs a pointX, and laterA queriesO0(X
′) such thatX 6= X ′ but

HP (X ′) = Y ; or

(iv) if A queriesO0(X) andO0(X
′) such thatX 6= X ′ butHP (X) = HP (X ′).

Furthermore, each case implies thatA has forced a situation that leads to contradicting the preimage awareness ofH.

To formalize these observations, we utilize the five games and adversaryB shown in Figure 3 and Figure 4. We will justify
that

Adv
pro
F,S(A) = Pr

[

AR0 ⇒ 1
]

− Pr
[

AI0 ⇒ 1
]

(1)

= Pr
[

AR1 ⇒ 1
]

− Pr
[

AI0 ⇒ 1
]

(2)

= Pr
[

AG0 ⇒ 1
]

− Pr
[

AG1 ⇒ 1
]

(3)

≤ Pr
[

AG1 setsbad
]

(4)

= Pr
[

AG2 setsbad
]

(5)

= Adv
pra
H,P,E(B) . (6)

Game R0 implements the oracles(F, P,R) using a tableR to simulate the random oracleR. Note that the simulation is
such that none of the oracle procedures query each other (unlike the obvious implementation ofF, P,R). Included in R0
is some extra “book-keeping” code, such as a tableYtoX tracking mappings between range points underH and preimages,
usage of the extractor in handlingO2 queries, etc. This extra code will be useful in future games,but in R0 it does not affect
the computation of responses to queries byA. Thus,Pr[Expindiff-1

F,R,A ⇒ 1] = Pr[AR0 ⇒ 1].

Game R1 implements the same functionality as R0, but using a different way of simulatingR. Specifically, the tableR is
relegated to only handle pointsY that are queried toO2 and for which the extractorE outputs bottom. These table entries
are only later potentialy used in the handling of aO0 query. (Note that repeat queries toO2 are pointless, and therefore
disallowed.) Other points are handled by a new tableF in exactly the same manner as done before in game R0. Thus
Pr[AR0 ⇒ 1] = Pr[AR1 ⇒ 1].

Game G0 (boxed statements included) is the same as R1 except that we now indexF with preimages ofH associated to
pointsY . To ensure consistency of the simulation with R1, the tableYtoX is used to keep track of whatX,Y pairs have been
seen thus far. If ever there are are two valuesX associated to a singleY value, thenF is indexed via the first encounteredX
used. This provides behavior consistent with game R1. Thus,Pr[AR1 ⇒ 1] = Pr[AG0 ⇒ 1]

Game I1 implements the oracles(F ,S1,S2) using a tableF to simulate the random oracleF . Note that the simulation is
such that none of the oracle procedures query each other (unlike the obvious implementation ofF ,S1,S2). Like in R0 there
is extra book-keeping code that does not affect responses. Thus,Pr[Expindiff-0

F,S,A ⇒ 1] = Pr[AI0 ⇒ 1].

Game G1 (boxed statements excluded) is the same as I1 except for the setting ofbad and replacingZ with R[Y] inO2. Both
do not affect query responses because the boxed statements are omitted. Thus,Pr[AI0 ⇒ 1] = Pr[AG1 ⇒ 1]. We have so
far justified Equations (1), (2), and (3). Since G0 and G1 are identical-until-bad, we can apply the fundamental lemma of
game-playing [2] to justify Equation (4).

In game G1 the setting ofbad does not affect query responses. We therefore defer the setting of bad until Finalize in game
G2. To do so, we record a transcriptτ of information related toO0 andO2 queries. We also replace the setting ofR in O2

with the setting of a variableZ. Each entry records which oracle was queried along with a domain pointX (or ⊥) and a
range pointY (in O0 this is set to⊥ because we will wait untilFinalize to compute it). ProcedureFinalize iterates over
the resultant transcript, computing the missingY values, filling out the tablesYtoX andR, and determining ifbad is set.

11

procedureO0(X): Game R0

Y ← HP (X)

YtoX[Y]← X

If R[Y] 6= ⊥ then RetR[Y]

RetR[Y]←$ Rng

procedureO1(u):

v ← P (u) ; α← α ‖ (u, v) ; Retv

procedureO2(Y):

X ← E(Y, α)

YtoX[Y]← X

If R[Y] 6= ⊥ then RetR[Y]

RetR[Y]←$ Rng

procedureO0(X): Game R1

Y ← HP (X)

If R[Y] 6= ⊥ then RetR[Y]

YtoX[Y]← X

If F[Y] 6= ⊥ then RetF[Y]

RetF[Y]←$ Rng

procedureO1(u):

v ← P (u) ; α← α ‖ (u, v) ; Retv

procedureO2(Y):

X ← E(Y, α)

If X = ⊥ then RetR[Y]←$ Rng

YtoX[Y]← X

If F[Y] 6= ⊥ then RetF[Y]

RetF[Y]←$ Rng

procedureO0(X): Game I1

Y ← HP (X)

YtoX[Y]← X

If F[X] 6= ⊥ then RetF[X]

RetF[X]←$ Rng

procedureO1(u):

v ← P (u) ; α← α ‖ (u, v) ; Retv

procedureO2(Y):

X ← E(Y, α)

YtoX[Y]← X

If X = ⊥ then RetZ←$ Rng

If F[X] 6= ⊥ then RetF[X]

RetF[X]←$ Rng

procedureO0(X): Games G0 G1

Y ← HP (X)

If R[Y] 6= ⊥ thenbad← true ; RetR[Y]

If YtoX[Y] 6= ⊥ ∧ YtoX[Y] 6= X then

bad← true ; RetF[YtoX[Y]]

YtoX[Y]← X

If F[X] 6= ⊥ then RetF[X]

RetF[X]←$ Rng

procedureO1(u):

v ← P (u) ; α← α ‖ (u, v) ; Retv

procedureO2(Y):

X ← E(Y, α)

If X = ⊥ then RetR[Y]←$ Rng

If YtoX[Y] 6= ⊥ ∧ YtoX[Y] 6= X then

bad← true ; RetF[YtoX[Y]]

YtoX[Y]← X

If F[X] 6= ⊥ then RetF[X]

RetF[X]←$ Rng

Figure 3: The five games R0, R1, I1, G0, and G1 used in the proof of Theorem 4.1. In each game, initially all tables are
everywhere⊥.

12

procedureO0(X): Game G2

i← i + 1 ; τ ← τ ‖ (0,X,⊥)

If F[X] 6= ⊥ then RetF[X]

RetF[X]←$ Rng

procedureO1(u):

v ← P (u) ; α← α ‖ (u, v) ; Retv

procedureO2(Y):

X ← E(Y, α)

i← i + 1 ; τ ← τ ‖ (2,X, Y)

If X = ⊥ then RetZ←$ Rng

If F[X] 6= ⊥ then RetF[X]

RetF[X]←$ Rng

procedure Finalize(b):

(γ1,X1, Y1), . . . , (γi,Xi, Yi)← τ

For j = 1 to i do

If Yj = ⊥ thenYj ← HP (Xj)

If γj = 0 ∧ R[Yj] 6= ⊥ thenbad← true

If γj = 2 ∧Xj = ⊥ thenR[Yj]← 1

Else

If YtoX[Yj] 6= ⊥ ∧ YtoX[Yj] 6= Xj then

bad← true

YtoX[Yj]← Xj

adversaryBP,Ex:

RunAO0,O2,O3 , answering queries by:

query O0(u):

01 i← i + 1 ; τ ← τ ‖ (0,X,⊥)

02 If F[X] 6= ⊥ then RetF[X]

03 RetF[X]←$ Rng

query O1(u):

10 RetP(u)

query O2(Y):

20 X ← Ex(Y)

21 i← i + 1 ; τ ← τ ‖ (2,X, Y)

22 If X = ⊥ then RetZ←$ Rng

26 If F[X] 6= ⊥ then RetF[X]

27 RetF[X]←$ Rng

WhenA halts with outputb:

30 (γ1,X1, Y1), . . . , (γi,Xi, Yi)← τ

31 For j = 1 to i do

32 If Yj = ⊥ thenYj ← HP(Xj)

33 If γj = 0 ∧ R[Yj] 6= ⊥ then OutputXj

34 If γj = 2 ∧Xj = ⊥ thenR[Yj]← 1

35 Else

36 If YtoX[Yj] 6= ⊥ ∧ YtoX[Yj] 6= Xj then

37 k ← Γ[Yj]

38 If γj = 2 then OutputXk

39 If γk = 2 then OutputXj

40 X∗ ← Ex(Yj)

41 If X∗ = Xk then OutputXj

42 If X∗ = Xj then OutputXk

43 YtoX[Yj]← Xj

44 Γ[Yj]← j

Figure 4: The game G2 and adversaryB used in the proof of Theorem 4.1. Initiallyi = 0 and all tables are everywhere⊥.

13

ProcedureFinalize is written so thatPr
[

AG1 setsbad
]

= Pr
[

AG2 setsbad
]

, justifying (5).

We bound the probability ofbad being set in game G2 by building a PrA adversaryB againstH. The adversaryB is
detailed in Figure 4. It executesAG2, except that the ideal primitiveP is replaced by queries toB’s primitive oracleP,
usage ofE is replaced by queries toB’s extraction oracleEx, and settingbad is replaced by outputing a domain point ofH.
Note that since all extraction queries are finished by the time Finalize is executed, calculating the missingY values does
not affect the advice strings used by the extractor. We will now finish by justifying Equation (6).

By construction settingbad in G2 corresponds toB outputting a non-bottom domain point. Thus we must justify that any
timeB outputs a domain point, it wins in the PrA game. We do so via a case analysis:

• Line 33 : This case corresponds to event (i) discussed above. The conditional on line33 ensures that there exists a
previous transcript entry(γk,Xk, Yk) with k < j such thatγk = 2 andXk = ⊥. (This is becauseR[Yj] is defined.)
But this implies thatEx was queried onYk = Yj with return⊥ and thatHP (Xj) = Yj = Yk. Thus outputtingXj

causesB to win the PrA game.

• Line 38 : This case corresponds to event (ii) discussed above. The conditional on line 36 implies that there exists a
k < j such that transcript entry(γk,Xk, Yk) was such thatYk = Yj but Xk 6= Xj . Sinceγj = 2, this meansXk

was first queried toO0 and thenYj = Yk was later queried toO2, but the query toEx(Yk) did not outputXk. Thus
outputtingXk causesB to win the PrA game.

• Line 39 : This case corresponds to event (iii) discussed above. Thiscase is exactly like the last: the first query was
made toO2 onYk, the queryEx(Yk) output a valueXk, and a later queryXj toO0 was such thatHP (Xj) = Yj = Yk

yetXj 6= Xk. Thus outputtingXj causesB to win the PrA game.

• Lines41 ,42 : These cases corresponds to event (iv) discussed above. TwoqueriesXk,Xj toO0 resulted inHP (Xj) =
Yj = Yk = HP (Xk). The adversary queriesYj to the extraction oracle and outputs whichever ofXk,Xj is not
returned. This results inB winning the PrA game.

In all cases we see thatB succeeds, justifying (2).

Theorem 4.1 shows that preimage awareness is a strong enoughnotion to provide secure domain extension for random
oracles. At the same time, the next theorem shows that it is “weak” enough to be preserved by SMD. We consider SMD
based on any suffix-free padding functionsfpad : {0, 1}∗ → ({0, 1}d)+ that is injective. Further we assume it is easy to
strip padding, namely that there exists an efficiently computable functionunpad : ({0, 1}d)+ → {0, 1}∗ ∪ {⊥} such that
x = unpad(sfpad(x)) for all x ∈ {0, 1}∗. Inputs tounpad that are not valid outputs ofsfpad are mapped to⊥ by unpad.

Theorem 4.2 [SMD is PrA-preserving]Fix n, d > 0 and letP be an ideal primitive. LethP : {0, 1}n×{0, 1}d → {0, 1}n

be a compression function, and letH = SMD[hP]. Let Eh be an arbitrary extractor for the PrA-experiment involvingh.
Then there exists an extractorEH such that for all adversariesA making at mostqp primitive queries andqe extraction
queries and outputting a message of at mostℓmax ≥ 1 blocks there exists an adversaryB such that

Adv
pra
H,P, EH

(A) ≤ Adv
pra
h,P, Eh

(B) .

EH runs in time at mostℓmax (Time(Eh) + Time(unpad)). B runs in time at most that ofA plusO(qeℓmax), makes at
mostℓmax · NumQueries(h, ℓmax) + qp ideal primitive queries, and makes at mostqeℓmax extraction queries. �

Proof: We start by defining the adversaryB; the extractorEH is implicit in its description.

adversaryBP,Ex(ε):

m∗←$ AP,SimEx

m∗
ℓ · · ·m

∗
1

d← sfpad(m∗) ; v∗
ℓ+1 ← IV

For i = ℓ down to1 do
v∗

i ← hP(v∗
i+1,m

∗
i)

If Q[v∗
i] = 1 andE[v∗

i] 6= (v∗
i+1,m

∗
i) then Ret(v∗

i+1,m
∗
i)

Ret⊥

subroutine SimEx(z, α):

i← 1 ; v1 ← z

While i ≤ ℓmax do
(vi+1,mi)← Ex(vi, α)

Q[vi]← 1 ; E[vi]← (vi+1,mi)

If vi+1 = ⊥ then Ret⊥
m← unpad(mi · · ·m1)

If vi+1 = IV andm 6= ⊥ then Retm
i← i + 1

Ret⊥

AdversaryB answersA’s primitive queries by forwarding to its own oracleP. It answersA’s extraction queries using the
subroutineSimEx (which makes use ofB’s extraction oracle). For the line of code(vi+1,mi) ← Ex(vi, α) is executed

14

with the oracle returning⊥, then bothvi+1 andmi are assigned⊥. The codem∗
ℓ · · ·m

∗
1

d← sfpad(m∗) means take the
output ofsfpad(m∗) and parse it intoℓ d-bit blocksm∗

ℓ , . . . ,m
∗
1. The tablesQ andE, which record if a value was queried

to Ex and the value returned by the query, are initially everywhere⊥.

The extractorEH works exactly the same as the code ofSimEx except that queries toEx are replaced by directly running
Eh and the tablesQ andE can be omitted. Loosely, extractorEH , when queried on a challenge imagez, usesEh to compute
(backwards) the preimages of each iteration ofh leading toz. When a chaining variable equal toIV is extracted, the
functionunpad is applied to the extracted message blocks. If it succeeds, then the result is returned.

Note that we reverse the (usual) order of indices for messageblocks and chaining variables (starting high and counting
down, e.g.m∗

ℓ · · ·m
∗
1) for both the extractor andB due to the extractor working backwards.

To lower boundB’s advantage by the advantage ofA we first point out that, by construction ofEH , the values returned by
the simulatedSimEx are distributed identically to the values returned during execution ofExp

pra
H,P,EH ,A. Thus we have that

Adv
pra
H,P,EH

(A) = Pr[m∗ satisfies] where the event “m∗ satisfies”, defined over the experimentExp
pra
h,P, EB ,B , occurs

when the messagem∗ satisfies the conditions of winning forA. Namely thatHP (m∗) was queried toSimEx and the
reply given was not equal tom∗. We callm∗ a satisfying preimage forA. We will show that wheneverm∗ is a satisfying
preimage forA, with m∗

ℓ · · ·m
∗
1

d← sfpad(m∗), there exists ak with 1 ≤ k ≤ ℓ for which adversaryB returns(v∗
k+1,m

∗
k)

and this pair is a satisfying preimage forB (i.e. one that wins the PrA experiment againsth for B). This will establish that

Pr [m∗ satisfies] ≤ Adv
pra
h,Eh

(B) . (7)

Consider the querySimEx(HP (m∗)) necessarily made byA. Let (vj+1, xj), . . . , (v2, x1) be the sequence of values re-
turned by theEx queries made bySimEx in the course of responding toA’s query. Necessarily1 ≤ j ≤ ℓmax and
1 ≤ ℓ ≤ ℓmax .

We will show that there exists ak such that1 ≤ k ≤ min{j, ℓ} and(vk+1, xk) 6= (v∗
k+1,m

∗
k). (This includes the possibility

that vk+1 = ⊥ andxk = ⊥.) First we use this fact to conclude. Sincek ≤ j it means thatvk was queried toEx. If
vk = v∗

k = HP (v∗
k+1,m

∗
k) we are done, because thenv∗

k+1,m
∗
k is a satisfying preimage forB. Otherwise,vk 6= v∗

k and
we can repeat the reasoning fork − 1. At k = 1 we have that, necessarily,ck = v∗

k since this was the image queried byA.
Thus there must exist a satisfying preimage, justifying (7).

We return to showing the existence ofk such that1 ≤ k ≤ min{j, ℓ} and(vk+1, xk) 6= (v∗
k+1,m

∗
k). Assume for contra-

diction that no suchk exists, meaning that(v∗
i+1,m

∗
i) = (vi+1, xi) for 1 ≤ i ≤ min{j, ℓ}. If j > ℓ, then sincevj = IV

andm∗
ℓ · · ·m

∗
1 = mℓ · · ·m1 we have a contradiction because in such a situation the loop in SimEx would have halted at

iterationℓ. If j = ℓ, then havingm∗
ℓ · · ·m

∗
1 = mℓ · · ·m1 andvℓ+1 = v∗

ℓ+1 = IV would imply thatSimEx returned
m = m∗, contradicting thatm∗ is a satisfying preimage forA. If j < ℓ, then the loop inSimEx must have stopped iterating
becausevj+1 = IV (if vj+1 = ⊥ we would already have contradicted our assumption regarding k) andx 6= ⊥. But by
assumption we have thatm∗

j · · ·m
∗
1 = mj · · ·m1 and so there exist two stringsm andm∗ for which sfpad(m) is a suffix

of sfpad(m∗). This contradicts thatsfpad provides a suffix-free encoding.

Recall that if a compression functionh is both CR and hard to invert for range point theIV , then the iteration ofh is a
CR function [18, 22]. We prove an analogous theorem forItr[h] and preimage awareness in Appendix B. This is particularly
useful in our context, because for the compression functions we will consider (e.g. a FIL random oracle or an ideal cipher
based compression function) it is easy to verify that it is difficult to invert a fixed range point. Note that this extra property
on h (difficulty of inverting IV) is, in fact,necessaryfor iteration (without strengthening) to provide preimageawareness
(analogously, collision-resistance).

5 Building Preimage-Aware Functions

The results of Section 4 allow us to more elegantly and modularly prove that a hash function construction is a pseudorandom
oracle (PRO). Particularly, Theorems 4.1 and 4.2 mean that the task of building a PRO is reduced to the task of building
a compression function that is PrA. For example, in the case that the compression function is itself suitable to model
as an FIL-RO, then it is trivially PrA and so one is finished. However, even if the compression function has some non-
trivial structure, such as when based on a block cipher, it isstill (relatively) straightforward to prove (suitable compression
functions) are PrA. In the rest of this section we show that most CR functions built from an ideal primitive are, in fact, PrA.

Are there applications of preimage awareness beyond analysis of hash functions? We believe the answer is yes. For
example, one might explore applications of CR functions, instead analyzing these applications assuming a PrA function.
(As one potential application, the CR-function using statistically hiding commitment scheme of [19] conceivably achieves

15

straight-line extractability given instead a PrA function.) We leave such explorations to future work.

PrA FOR CR CONSTRUCTIONS. There is a long line of research [31, 7, 25, 26, 34, 35, 33, 21]on building compression
functions (or full hash functions) that are provably collision-resistant in some idealized model, e.g. the ideal-cipher model.
We show that in many cases one can generalize these results toshowing the constructions are also PrA. In the rest of this
section we show that the Davies-Meyer and other so-called “group-1” PGV compression functions [31, 7] are not only CR
but PrA. We also give bounds on the PrA-security of the Shrimpton-Stam compression function [35], the Dodis-Pietrzak-
Puniya compression function [21], and the first two steps of the MCM construction [32]. Previously these constructions
were only known to be CR.

5.1 CR compression functions from PGV are preimage-aware

Let us begin with block-cipher-based compression functions. Sixty-four schemes, including Davies-Meyer and MMO, were
considered by Preneel et al. [31], and twelve of these were later proven to be optimally collision-resistant and preimage-
resistant (in the ideal-cipher model) by Black et al. [7]; these were labeled as “group-1”. Another group of eight “group-2”
compression functions were found to be optimally collisionresistant in the iteration (and preimage resistant in the iteration
up to the birthday bound) despite not being collision or preimage resistant themselves. Subsequently, Stam [37] gave
an alternative classification of these schemes based on a more general analysis of rate-1 block-cipher-based compression
functions. He considered compression functions that, on input a chaining variablev ∈ {0, 1}n and message blockm ∈
{0, 1}d, operate as follows:

(k, x)← Cpre(v,m) ; y ← E(k, x) ; Retw ← Cpost(v,m, y)

whereCpre : {0, 1}n×{0, 1}d → {0, 1}d×{0, 1}n andCpost : {0, 1}d×{0, 1}n×{0, 1}n → {0, 1}n are functions called
preprocessing and postprocessing, respectively. He also defined an auxillary post-processing functionCaux : {0, 1}d ×
{0, 1}n × {0, 1}n → {0, 1}n. Davies-Meyer, for example, hasCpre(v,m) = (m, v) andCpost(v,m, y) = v ⊕ y and
Caux(k, x, y) = x⊕ y. Stam called a scheme “Type-I” iff

(1) Cpre is bijective,

(2) for all v,m the mappingCpost(v,m, ·) is bijective, and

(3) for all k, y the mappingCaux(k, ·, y) is bijective.

When they exist, we letC−pre denote the inverse ofCpre, C−post(v,m, ·) denote the inverse ofCpost(v,m, ·), and
C−aux(k, ·, y) denote the inverse ofCaux(k, ·, y). As it turns out, the twelve “group-1” compression functions are also
“Type-I”. We leverage Stam’s results here to show that the group-1/Type-I PGV compression functions are preimage aware.
In Appendix C we discuss the group-2 PGV functions, showing these build preimage aware hash functions when used
within an iteration. (There too we leverage Stam’s generalized framework and results.)

Theorem 5.1 [The Group-1/Type-I PGV schemes are PrA]Fix κ, n > 0, let Cκ,n = (E,D) be an ideal cipher and let
HC be a Type-I block-cipher-based compression function. There exists an extractorE such that for any adversaryA making
at mostqp queries toC andqe extraction queries we have

Adv
pra
H, C, E(A) ≤

qeqp

2n − qp
+

qp(qp + 1)

2(2n − qp)

whereE runs in time at mostO(qp(Time(C−pre) + Time(Cpost))). �

Proof: We will prove that any such compression function is1-WPrA-secure, and then use Lemmas 3.3 and 3.4 to give the
final bound. We note that Theorem 5 of [37] upperbounds the collision-finding advantage ofA by qp(qp + 1)/2(2n − qp),
yielding the second term above.

Let us define the extractorE as follows:

algorithm E(z, α):

L ← ∅
Parse(k1, x1, y1), · · · , (kr, xr, yr)← α
For i = 1 to r do

(vi,mi)← C−pre(ki, xi)

If Cpost(vi,mi, yi) = z thenL ∪← (vi,mi)
If L 6= ∅ then ReturnL else Return⊥

16

Note that becauseCpre is a bijection, a pair(vi,mi) is uniquely determined by a pair(ki, xi). Intuitively, E simply iterates
over the query-response triples and searches for ideal-cipher queries(k, x, y) that would producez under the compression
function. Upon finding them, it adds the corresponding (unique) compression function input(v,m) to the preimage list.
Thus all preimages ofz that can be determined from the query listα are returned, and ifA wins the1-WPrA experiment,
it must find find a new preimage ofz. Then one can straightforwardly adapt Stam’s results (specifically, the proof of [37,
Th. 6]) to show that the probability of this occuring is at most q/(2n − q).

5.2 Shrimpton-Stam compression function is preimage-aware

Next we show that it is possible to build a PrA compression function fromnon-compressingrandom functions2. In particular,
we examine the compression function recently designed by Shrimpton and Stam [35]. They proved that their compression
function is nearly optimally collision resistant (i.e. to the birthday bound), and we will now show that it is also PrA.

Theorem 5.2 [Shrimpton-Stam is PrA] Fix n > 3. Let f1, f2, f3 be three independent random oraclesFn,n. Define a
compression functionHf1,f2,f3(c,m) = f3(f1(m)⊕ f2(c))⊕ f1(m). Then there exists an extractorE such that for any
adversaryA makingqp queries to each off1, f2, f3 andqe extraction queries, we have

Adv
pra
H,f1,f2,f3, E(A) ≤

(n + 3)qpqe

2n
+

(3n + 13)qe

2n
+

q2
p(1 + 4n2) + 1

2n

where the extractor runs in timeO(q2
p). �

Before proving the theorem, we first remark that this bound isconservative in several ways as it uses a hybrid argument
and several upperbound approximations to facilitate the proof. With additional effort it is possible that, in particular, the
third term in the bound can be tightened a bit.

Proof: We proceed by reasoning about the single-extractor-query WPrA experiment, and then applying Lemmas 3.3 and 3.4
and the collision resistance bound from [35] to get the final result. For convenience, we writeq everywhere forqp (this
should cause no confusion as we assume only one extraction query).

We will assume that the advice string has the format

α = 〈r〉, (a1, u1), . . . , (ar, ur), 〈s〉, (b1, v1), . . . , (bs, vs)〈t〉, (x1, y1), . . . , (xt, yt)

whereui = f1(ai), vi = f2(bi) andyi = f3(xi), with i over the indicated indices in each case. We now define the (honest)
multi-point extractorE+. LetL1 andL2 be initialized to the empty set.

algorithm E+(z, α):

Parseα as〈r〉, (a1, u1), . . . , (ar, ur), 〈s〉, (b1, v1), . . . , (bs, vs), 〈t〉, (x1, y1), . . . , (xt, yt)

For i = 1 to t do

Let u′
i = z ⊕ yi

If ∃j such thatu′
i = uj thenL1 ← L1 ∪ {(xi, uj)}

For all (xi, uj) ∈ L1

if ∃k such thatxi ⊕ uj = vk thenL2 ← L2 ∪ {(aj , bk)}

if L2 = ∅ then return⊥ else returnL2

We note that by construction the extractor returnsL2 (i.e. not⊥) only when all(a, b) ∈ L2 are preimages ofz; thus the
extractor is honest. Moreover, this extractor returns all preimages ofz that can be computed from the advice string. ForA
to win the WPrA experiment, it must find a new (possibly first) preimage forz. Without loss, we assume thatA outputs
a new preimage as soon as one can be computed. Thus there are three cases to consider, namely thatA’s winning (final)
query is tof1, f2 or f3.

2One can view a block cipher as a compressing primitive, since ittakesκ + n bits and producesn bits.

17

f1 query. Consider the case that the winning query is tof1, and letu∗ be the returned value for that query. Since this
is the last query, we can assume that allf2 andf3 queries have already been made. LetV be the list off2 responses. Let
F3 be the list off3 query-pairs(xi, yi), and for convenience letX andY be the lists ofxi andyi, respectively (order
maintained relative to the order inF3). If u∗ is one of theq − 1 previously returnedf1 values, then we can assume without
loss thatA has found a new preimage ofz. (This follows because this is assumed to be the final and winning query.) But
this happens with probability at most(q − 1)/2n. So we proceed under the assumption thatu∗ does not collide with a
previousf1 response. Consider the multisetu∗ ⊕ Y = {u∗ ⊕ yi : yi ∈ Y }. Foru∗ to be winning forA, the targetz must
appear in this multiset, and this will happen for anyyi = z ⊕ u∗. For any fixedc ∈ {0, 1}n, the probability that there are at
leastn stringsy ∈ Y (which areq uniform, independent strings) such thaty = z ⊕ c is at most2−n. This follows from a
Chernoff bound under the assumption thatq ≤ n2n/6, which is at least2n/2 for all n claimed by the theorem. So under the
assumption thatq ≤ 2n/2, we can assume that there are at mostn pairs(xi, yi) such thatyi = z ⊕ u∗, this holding except
with probability at most2−n. (The upperbound onq will ultimately be dropped as the collision-resistance bound, and hence
the PrA bound, will be vacuous forq > 2n/2.)

Now, for eachxi ∈ X, define a setSi = {xi ⊕ v : v ∈ V }. (These were already determined at the time of the finalf1

query.) LetS =
⋃

i∈I Si whereI is the set of indicesi such thatyi ⊕ u∗ = z. Clearly|S| ≤ nq, sou∗ ∈ S with probability

at mostnq/2n. Putting it all together, the probabilty thatA wins with anf1 query is at mostq−1
2n + nq

2n + 1
2n ≤

(n+1)q
2n + 1

2n .

f2 query. Consider the case that the winning query is tof2, and letv∗ be the returned value for that query. Again, since
this is the last query, we can assume that allf1 andf3 queries have already been made. LetF3, X andY be as in the
previous case. As before, ifv∗ collides with a previously returnedf2 query, then we can assume that the adversary has
found a new preimage ofz; this happens with probability at most(q − 1)/2n. Now, consider theq distinct values of
v∗ ⊕X = {v∗ ⊕ xi : xi ∈ X}. (These are distinct because thexi are.) Sincev∗ is winning only if some previously defined
f1-responseu is in v∗ ⊕X, we will assume that for each of theq strings inv∗ ⊕X there is such au; thus, by a union
bound, we want to upperbound

∑q
i=1 Pr(v∗ ⊕ xi = yi ⊕ z). But each probability in the sum is over the uniformv∗, so this

sum is at mostq/2n. In total then, the probability thatA wins with anf2 query is at mostq−1
2n + q

2n ≤
2q
2n .

f3 query. Consider the case that the winning query is tof3, and lety∗ be the returned value for that query. As before, we
can assume that allf1 andf2 queries have been made, and we letU andV be the corresponding multisets of responses. Let
Nc be the number of times thatc ∈ {0, 1}n appears in the multisetU ⊕ V = {u⊕ v : u ∈ U, v ∈ V }. We assume for the
moment that, for allc, Nc ≤ 3n except with some (small) probability that we will bound in a moment. Then the finalf3

query yields at most3n opportunities fory∗ ⊕ u = z to hold, so thaty∗ is winning with probability at most3n/2n.

It remains to boundPr[Nc > 3n], which we do by boundingPr[Nc ≥ 3n]. Notice that the elements ofU andV are
independent of adversarial choices, so this is a strictly combinatorial problem. In addition, that the elements inU are
independent of those inV , so the order in which these lists are populated is irrelevant from the point of view of the event
Nc ≥ 3n for any value ofc. So we assume thatq elements inU are selected, and then we begin to fill inV . Let us assume
that there are no4-way collisions inU , which holds except with probability at most

2n

(

q

4

) (

1

2n

)4

≤
2n

4!

(q

2n

)4

<
1

2n

where in the final inequality we have assumed thatq ≤ 2n/2. Now, under the assumption thatU contains no 4-way
collisions, each element assigned toV increasesNc by at most 3 for anyc ∈ {0, 1}n. Thus ifNc ≥ 3n for somec, it must
be the case that at leastn values ofv increaseNc. The probability that some value ofv increasesNc (equivalently that
v = u⊕ c for someu ∈ U) is at mostq/2n. Thus by a union bound

Pr[∃c ∈ {0, 1}n such thatNc ≥ 3n | no 4-way collisions inU] ≤ 2n

(

q

n

)

(q

2n

)n

≤
2n

n!

(

q2

2n

)n

≤
2n

n!
(again assumingq ≤ 2n/2)

≤ 2 · 1 ·
2

3
·
2

4
· · ·

2

n
≤

4/3

2n−3
<

11

2n
.

18

So assuming thatq ≤ 2n/2, the probability thatA wins on anf3 query is at most3n
2n + 1

2n + 11
2n = 3n

2n + 12
2n .

Summary. Pulling together all of our cases, the probability thatA manages to find a new preimage forz in our single-
extractor-query WPrA experiment is at most

(

(n + 1)q

2n
+

1

2n

)

+
2q

2n
+

(

3n

2n
+

12

2n

)

=
(n + 3)q

2n
+

3n + 13

2n

By Lemma 3.3, we multiply through byqe to get the bound for the multiple-extractor-query case. Finally, we use Lemma 3.4
and the collision resistance bound from [35]. The latter states that for alln > 0 andk, q ≥ 0 the probability of finding a

collision is at mostq
2

2n + (kq)2

2n + Pq,k,n where

Pq,k,n =

(

q!

(q − k)!

)2 (

2n

k!

)(

(2n − k)!

2n!

)

≤
q2k

k!

(

1

(2n − 1)(2n − 2) · · · (2n − (k − 1))

)

≤
q2k

k!

(

1

2n − (k − 1)

)k−1

Now we determine an upperbound onq (as a function ofk, n) such that the last line above is at most1/2n. This means

q2k ≤ k!
1

2n
(2n − (k − 1))k−1

q ≤ (k!)
1
2k 2

−n
2k (2n − (k − 1))

k−1
2k

Settingk = 2n and taking logarithms (base 2),

log(q) ≤
log(2n!)

4n
+
−1

4
+

2n− 1

4n
log(2n − (2n− 1))

Sincen log(n) ≤ log(2n!) for all n, we can use the more conservative bound

log(q) ≤
log(n)

4
+
−1

4
+

2n− 1

4n
log(2n − (2n− 1)).

Now is can be shown that forn > 3

log(n)

4
+
−1

4
+

2n− 1

4n
log(2n − (2n− 1)) ≥

2n

4n
log(2n−1)

=
n− 1

2

Thus if n > 3 and log(q) ≤ (n − 1)/2, or equivalentlyq ≤ 2(n−1)/2, we havePq,2n,n ≤ 1/2n. This yields a collision

bound of q2

2n + (2nq)2

2n + 1
2n = q2(1+4n2)+1

2n . But in fact if q = 2(n−1)/2 we can see thatq
2(1+4n2)

2n > 1 (i.e., without the
addition ofPq,2n,n), so we can drop the restriction onq. This completes the proof.

5.3 Dodis-Pietrzak-Puniya compression function is preimage-aware

Dodis et al. [21] also offer a compression function from non-compressing primitives, this beingf(c,m) = f1(c)⊕ f2(m).
A straightforward extension of the argument in [21] shows that this function is PrA for idealf1 andf2.

Theorem 5.3 [DPP is PA]Fix n > 0. Let f1, f2 be independent random oraclesFn,n and letHf1,f2(c,m) = f1(c) ⊕
f2(m). Then, there exists an extractorE such that for any adversaryA making at mostq1, q2 queries tof1, f2 and makes at
mostqe extraction queries, we have

Adv
pra
H,f1,f2,E(A) ≤

q2
1q2

2 + 2q1q2qe + qe

2n
.

19

E runs in timeO(q1q2). �

Proof: Using Lemmas 3.3 and 3.4, it suffices to show thatH is CR and also WPrA for1 extraction query. The former
bound was already shown in [21]: for any attackerC, Adv

cr
H(C) ≤ q2

1q2
2/2n.

Next, we prove security relative to the WPrA notion for one extraction query as per Appendix 3.2. We assume that the
advice stringα is of the formα1α2 whereα1 is a list of query/response pairs made byA to f1 andα2 is the list forf2. Then
let E+ be the (honest) multi-point extractor that works as shown below.

algorithm E+(z, α1α2):

Parse(c1, d1), · · · , (cr, dr)← α1

Parse(x1, y1), · · · , (xp, yp)← α2

For i = 1 to r do
For j = 1 to p do

If di ⊕ yj = z thenX ∪← (ci, xj)
If X = ∅ then Ret⊥
RetX

Now suppose thatA did not query at least one off1 or f2 before making the extract queryz (otherwiseE+ would extract
it). Now, each such new querycj = c′ to f1 can define at mostq2 new valuesz′i = f1(c

′) ⊕ f2(xi). Sincef1(c
′)

is random, the chance thatz′i is equal toz is at most2−n, so the total probability thatf1(c
′) would define some value

z′i = z is at mostq2/2n. Symmetrically, the total probability that a new queryxi = x′ to f2 would produce a new value
z′j = f1(cj) ⊕ f2(x

′) equal toz is at mostq1/2n. Taking the union bound over all such new queries, the total probability
of obtaining a valuez = f1(cj) ⊕ f2(xi) (for somei andj) is at most2q1q2/2n. If no such value is found, the chance
that the value(c, x) output by the attacker is equal toz is at most2−n. Combining these bounds, for any attackerB,
Adv

wpra-1
H,f1,f2,E(B) ≤ (2q1q2 + 1)/2n.

Combining, we get that for anyA, Adv
pra
H,f1,f2,E(A) ≤ (q2

1q2
2 + 2q1q2qe + qe)/2n.

5.4 Mix-Compress is preimage-aware

We show that the “mix-compress” portion of the “mix-compress-mix” construction from [32] is PrA as long as the compress
step is CR and relatively balanced. First we must define a measure of balance. Associated to any functionF : {0, 1}∗ →
{0, 1}n is the setPreImF (ℓ, z) = {y | y ∈ {0, 1}∗ ∧ |y| = ℓ ∧ F (y) = z} for all ℓ > 0 andz ∈ {0, 1}n. That is,
PreImF (ℓ, z) contains the lengthℓ preimages ofz underF . We also define the function

δF (ℓ, z) =

∣

∣

∣

∣

|PreImF (ℓ, z)| − 2ℓ−n

2ℓ

∣

∣

∣

∣

(8)

related toF . The δF function measures how far a particular preimage set deviates from the case in whichF is regular.
Let ∆F = max{δF (ℓ, z)}, where the maximum is taken over all choices ofℓ andz. Second, we letF∗,τ to be the ideal
primitive that, on inputx ∈ {0, 1}∗ returns a randomly chosen stringy ∈ {0, 1}|x|+τ .

Theorem 5.4 [Mix-Compress is PrA.]Fix τ, n > 0, let F : {0, 1}∗ → {0, 1}n and letF∗,τ be the ideal primitive defined
above. LetHF (m) = F (F(m)) be the hash with minimum accepted message lengthν ≥ n − τ if n > τ andν ≥ τ if
n < τ . There exists an extractorE such that for any pra-adversaryA makingqp primitive queries andqe extraction queries
there exists a CR adversaryB such that

Adv
pra
H,F, E(A) ≤ qeqp(

1

2n
+ ∆F) + Adv

cr
H,F,F (B)

E runs in time at mostO(qp). B runs in time at most that ofA plusO(qp). �

The restricted domain in the theorem statement (inherited from [32]) ensures that inputs toF have size at leastn bits.

Proof: We prove the WPrA notion for one extraction query and then apply Lemmas 3.3 and 3.4. LetE+ be the (honest)
multi-point extractor that works as shown below.

20

algorithm E+(z, α):

Parse(x1, y1), · · · , (xr, yr)← α
For i = 1 to r do

If z = F (yi) thenX ∪← xi

If X = ∅ then Ret⊥
RetX

Assume that before the single extractor query no previous query toF by the adversary led to a pointy in the preimage set
(underF) of the challenge pointz (otherwise the extractor will have succeeded forz). Then we must bound the probability
that a new query toF results in a pointy for which F (y) = z. If F for each message length is regular then any new
random valuey has probability2−n of being mapped toz underF , and so we could finish with boundqp/2n. Instead we
do something slightly more general using the definitions ofPreImF , δF , and∆F defined above. Chooseℓ ∈ N (such that
ℓ − τ ≥ ν, the minimum message length ofH) andz ∈ {0, 1}n to maximize|PreImF (ℓ, z)|. Then the optimal strategy
for A is to first queryz to its extraction oracle and only make queries toF of lengthℓ − τ . (Primitive queries before the
extraction query will only lowerA’s advantage, since any successful ones will be known to the extractor.) The result of
these queries isqp randomℓ-bit strings, call thesey1, . . . , yqp

. Then we have that

Pr [∃i . F (yi) = z] = Pr [∃yi . yi ∈ PreImF (ℓ, z)]

≤
∑

1≤i≤qp

Pr [yi ∈ PreImF (ℓ, z)]

=
∑

1≤i≤qp

|PreImF (ℓ, z)|

2ℓ

= qp ·

(

2ℓ−n

2ℓ
+ δF (ℓ, z)

)

(9)

≤
qp

2n
+ qp ·∆F

where the events are defined in the natural manner. In deriving equality (9) we apply (8) (ignoring the absolute values, since
|PreImF (ℓ, z)| ≥ 2ℓ−n due to our maximization). Then applying Lemma 3.3 gives a factor qe to the right hand side of this
bound. We apply Lemma 3.4 and this gives our theorem statement.

6 Indifferentiability for Public-Use Random Oracles

In numerous applications, hash functions are applied only to public messages. Such public-use occurs in most signature
schemes (e.g. full-domain-hash [4], probabilistic FDH [16], Fiat-Shamir [24], BLS [10], PSS [6]) and even some encryption
schemes (e.g. a variant of Boneh-Franklin IBE [14] and Boneh-Boyen IBE [8]). It is easy to verify that the provable security
of such schemes is retained even if all hashed messages are revealed to adversaries. We introduce the notion of a public-use
random oracle (pub-RO). This is an ideal primitive that exposes two interfaces: one which performs the usual evaluation
of a random oracle on some domain point and a second which reveals all so-far evaluated domain points. All parties have
access to the first interface, while access to the latter interface will only be used by adversaries (and simulators).

A wide class of schemes that have proofs of security in the traditional random oracle model can easily be shown secure
in this public-use random oracle model. Consider any schemeand security experiment for which all messages queried
to a RO can be inferred from an adversary’s queries (and theirresponses) during the experiment. Then one can prove
straightforwardly the scheme’s security in the pub-RO model, using an existing proof in the full RO model as a “black
box”. For example, these conditions are met for unforgeability under chosen-message attacks of signature schemes thatuse
the RO on messages and for message privacy of IBE schemes thatuse the RO on adversarially-chosen identities. All the
schemes listed in the previous paragraph (and others) fall into these categories.

The pub-RO model was independently considered by Yoneyama et al. [39] (there called the leaky random oracle model)
under different motivation. They directly prove some schemes secure when hash functions are modeled as amonolithic
pub-RO. They do not analyze the underlying structure of iterative hash functions.

We next utilize the indifferentiability framework of Maurer et al. [28] to formalize a new notion of security for hash con-
structions: indifferentiability from a public-use RO, which we will call being apublic-use pseudorandom oracle(pub-PRO).
This new security property is weaker than that of being a PRO,but nevertheless enjoys the indifferentiability framework’s
composibility guarantees [28].

21

procedureFeval(M):

If M /∈ Dom then Ret⊥
If F[M] = ⊥ then

F[M]←$ Rng

Q ∪← (M, F[M])

RetF[M]

procedureFreveal():

RetQ

procedurefgeval(v,m):

If v /∈ W ∪ {IV } or (v, x) /∈ {0, 1}n × {0, 1}d then Ret⊥
If f[v, x] = ⊥ then

f[v, x]←$ {0, 1}n

W ∪← f[v, x] ; Q ∪← ((v, x), f[v, x])

Retf[v, x]

procedurefeval():

If f[v, x] = ⊥ thenf[v, x]←$ {0, 1}n

Q ∪← ((v, x), f[v, x])

Retf[v, x]

procedurefreveal ():

RetQ

Figure 5: (Left) The pub-RO ideal primitiveFDom,Rng = (Feval , (Feval ,Freveal)). Initially F is everywhere⊥ andQ is
empty.(Right) The pub-GRO ideal primitivefn×d,n = (fgeval , (feval , freveal)). Initially f is everywhere⊥ andW,Q are
empty. HereIV ∈ {0, 1}n is a fixed string.

6.1 Public-use ROs and PROs

Fix setsDom,Rng . A public-use random oracle (pub-RO) is an ideal primitiveFDom,Rng = ((Feval), (Feval ,Freveal))
defined as follows. Letρ be a random functionDom → Rng . The (private and public) evaluation interfaceFeval , on
input M ∈ Dom, first adds the pair(M,ρ(M)) to an initially-empty setQ and then returnsρ(M). The (public) reveal
interfaceFreveal takes no input and returnsQ (suitably encoded into a string). Figure 5 details a pub-RO in code. We say
thatFDom,Rng is a fixed-input-length (FIL) pub-RO ifDom only includes messages of a single length. We writeFn×d,n

for the FIL pub-RO with domainDom = {0, 1}n × {0, 1}d andRng = {0, 1}n. As usual, we write justF whenDom and
Rng are clear from context.

INDIFFERENTIABILITY FROM A pub-RO. LetHP : Dom → Rng be a hash function using an ideal primitiveP . Let
FDom,Rng = (Feval , (Feval ,Freveal)) be a pub-RO. LetS be a simulator with oracle access to (both interfaces of)F . Then
we associate to pub-pro adversaryA, primitive P , and simulatorS the pub-pro advantage function

Adv
pub-pro
H,P,S (A) = Pr

[

Expindiff-1
H,P,A ⇒ 1

]

− Pr
[

Expindiff-0
F,S,A ⇒ 1

]

.

The simulator’s ability to callFreveal , thereby seeing all queries so-far-made byA toFeval , is the crucial difference between
pub-PRO and PRO. Informally, we say that a constructionH is a pub-PRO if there exists an efficient simulator such that all
efficient adversariesA have small advantage.

The composition theorem in [28] (recast to use ITMs in [17]) can be applied to pub-PROs. That is, a cryptographic
scheme using a pub-PRO hash constructionHP for some ideal primitiveP can have its security analyzed in a setting where
HP is replaced by a monolithic pub-ROF . In this setting, adversaries attacking the scheme can perform queries toFreveal .

6.2 Public-use guarded ROs and PROs

Many “structured” compression functions are easily differentiable from a FIL pub-RO. For example, consider the following
attack againstDM, due to [38]. LetA againstDME(v,m) = Em(v) ⊕ v work as follows. It picks a randomy andm and
then queries its third oracle interface (in the “real” setting this would beE−1) onm, y. When interacting with the pub-RO
F and any simulatorS, we see thatS would need to respond with a valuev such thatFeval(v,m) = y⊕v. This corresponds
to invertingF on some fixed range point, which is hard. (Note thatA has not, before querying the simulator, submitted
any queries toF .) Thus the adversary will win easily. Nevertheless brief reflection suggests that iteratingDM from a fixed
IV should result in a pub-PRO. We could try to argue this directly, but instead we introduce another variant of ROs as a
technical tool to allow modular proofs.

Fix n, d > 0 and IV ∈ {0, 1}n. A public-useguardedrandom oracle (pub-GRO) is an ideal primitivefn×d,n =
(fgeval , (feval , freveal)) that works as detailed in Figure 5. In words, letρ be a random function from{0, 1}n × {0, 1}d

to {0, 1}n. The (private) guarded evaluation interfacefgeval on input(v,m) returnsρ(v,m) if v = IV or v is equal to a
value previously returned by the interface; it returns⊥ otherwise. The (public) evaluation interfacefeval returnsρ(v,m).

22

The (public) reveal interface reveals all so-far (guarded or not) evaluated points and their associated outputs. This weaker
version of a FIL pub-RO will still be sufficient for building apub-PRO using MD. At the same time, the weakening does
allow us to show that structured compression functions (such as Davies-Meyers) are indifferentiable from a pub-GRO (even
though they are not pub-PROs).

INDIFFERENTIABILITY FROM A pub-GRO. Fixn, d > 0 andIV ∈ {0, 1}n. Let hP : {0, 1}n × {0, 1}d → {0, 1}n be
a FIL hash function using ideal primitiveP . Let fn×d,n = (fgeval , (feval , freveal)) be a pub-GRO. LetS be a simulator
with oracle access to (all interfaces of)f . Then we associate to pub-gpro-adversaryA, h, P , andS the pub-gpro advantage
function

Adv
pub-gpro
h,P,S (A) = Pr

[

Expindiff-1
h,P,A ⇒ 1

]

− Pr
[

Expindiff-0
f,S,A ⇒ 1

]

.

We stress that in the second probability experiment, whileA has access only tofgeval , the simulatorS has oracle access to
feval andfreveal . Informally, we say that a constructionh is a pub-GPRO if there exists an efficient simulator such thatall
efficient adversariesA have small advantage.

7 Constructing Public-use Random Oracles

In this section we first show that iterating a FIL public-use RO (or public-use guarded RO) results in an object indiffer-
entiable from a monolithic public-use RO. Then we go on to show that common constructions of compression functions
are, in fact, indifferentiable from public-use guarded ROs. In particular we show that the Stam Type-II PGV functions
are pub-GROs. Since Davies-Meyers is one such function, these results together imply that the structure of existing hash
functions (such as SHA-2) is sound for public-use applications.

7.1 Iteration preserves being a pub-PRO

We show that iteration preserves the property of being a pub-PRO. In fact we show something slightly stronger. Given a
compression function that is (indifferentiable from) a public-use guarded RO, iterating this compression function results in
a pub-PRO. In the following theorem we writeItr[fgeval] to meanItr[gfgeval] whereg is defined by callingfgeval on its input
and returning the result. We note that in the computation ofItr[gfgeval] the input tofgeval is always either theIV or a valid
chaining value.

Theorem 7.1 [Itr is pub-PRO-preserving] Fix n, d > 0 andIV ∈ {0, 1}n. Let fn×d,n = (fgeval , (feval , freveal)) be
a pub-GRO and letItr[fgeval] be the iteration offgeval . There exists a simulatorS = (Seval ,Sreveal) so that for any
adversaryA

Adv
pub-pro
Itr,f,S (A) ≤

(σq0 + q1)
2

2n
+

q1(σq0 + q1)

2n

whereq0 is the maximal number of queries byA to its first oracle, these of length at mostσ blocks ofd bits, andq1 is the
maximal number of queries byA to its feval/Seval interface. Letq2 be the number of queries byA to its freveal/Sreveal
interface. ThenS runs in time that ofA plusO(q0σ(q1 + q2)) and makes at mostq0σ + 2q1 + q2 queries. �

Proof: We specify a simulatorS = (Seval ,Sreveal) in Figure 6. Recall thatS must emulate only the two public interfaces
of a public-use guarded RO. To do this, it utilizes a subroutine update() which usesS ’s access toFreveal() to simulate a
compression function by defining chaining variables in terms of appropriate outputs ofFeval . That is, for any sequence of
messagem queried toFgeval (orFeval) parsed into message blocksm1 . . . ,mℓ, the simulator defines compression function
input/output pairs((vi−1,mi), vi) for 1 ≤ i ≤ ℓ wherev0 = IV andvi is assigned the output ofFeval(m1 · · ·mi). The
tablesV andF are used to maintain this simulation (these tables are initially everywhere⊥). Queries toSeval not associated
(via the chaining variable input) with a valid sequence of message blocks have random values returned as output.

Intuitively, S will succeed as long as no two outputs ofFeval collide (which would meanS might fail to use the correct
sequence of message blocks when assigning a chaining value)or if the adversary queries some valuev,m toSeval for which
V[v] = ⊥, yet later one of the chaining variables (an output ofFeval) is assigned the valuev. Loosely, the first event will
happen with probability at most(q0σ+q1)

2/2n while the second event will happen with probability at mostq1(q0σ+q1)/2n.
We now give a formal argument using the sequences of games G0 −→ · · · −→ G6 and G2 −→ G2,1 −→ G2,2. All games
include a procedureO2() which returnsQ (this was not explicitly included in the pseudocode for brevity). The games

23

procedureSeval(v,m):

update()
If V[v] 6= ⊥ then

RetFeval(V[v] ‖m)

w←$ {0, 1}n

Q ∪← ((v,m), w)

Retw

procedureSreveal ():

update()
RetQ

subroutine update():

(m1, v1), . . . , (mp, vp)← Freveal ()

For i = plast + 1 to p do
mi

1, . . . ,m
i
ℓi

d←mi

vi
0 ← IV ; V[IV]← ε

For j = 1 to ℓi do
vi

j ← F[mi
1 · · ·m

i
j]

If vi
j = ⊥ then
vi

j ← Feval(m
i
1 · · ·m

i
j)

V[vi
j]← mi

1 · · ·m
i
j

Q ∪← ((vi
j−1,m

i
j), v

i
j)

F[mi
1 · · ·m

i
j]← vi

j

plast← p

Figure 6: Simulator used in proof of Theorem 7.1. TablesV andF are initialized everywhere to⊥, setQ is initially empty,
andplast is initialized to 0.

are shown in Figures 7 and 8. We assume that adversaryA does not repeat a query to any of its oracles (such queries are
pointless).

THE FIRST GAME SEQUENCE. We start by justifying that

Pr
[

Expindiff-1
Itr,f,A ⇒ 1

]

= Pr
[

AG0 ⇒ 1
]

(10)

= Pr
[

AG1 ⇒ 1
]

(11)

≤ Pr
[

AG2 ⇒ 1
]

+ Pr
[

AG2 setsbad
]

(12)

= Pr
[

AG3 ⇒ 1
]

+ Pr
[

AG2 setsbad
]

(13)

≤ Pr
[

AG4 ⇒ 1
]

+
(q0σ + q1)

2

2n+1
+ Pr

[

AG2 setsbad
]

(14)

≤ Pr
[

AG5 ⇒ 1
]

+
(q0σ + q1)

2

2n+1
+ Pr

[

AG2 setsbad
]

(15)

≤ Pr
[

AG6 ⇒ 1
]

+
(q0σ + q1)

2

2n
+

(q0σ + q1)
2

2n+1
+ Pr

[

AG2 setsbad
]

(16)

= Pr
[

Expindiff-0
Itr,S,A ⇒ 1

]

+
(q0σ + q1)

2

2n
+ Pr

[

AG2 setsbad
]

. (17)

We’ll later conclude by boundingPr[AG2 setsbad] via a sequence of games G2 −→ G2,1 −→ G2,2.

(Game G0) By construction, the first game implements exactly the oracles(Itr[fgeval], feval , freveal), justifying (10). Note
that we need not include the explicit checks of the guarded evaluation interface, since the pub-GRO primitive (implemented
using Choose-f) is only used byO0 to implementItr.

(Game G1, boxed statement included) In game G1 we modify the way in which queries are handled via some additional
book-keeping; as we will see the changes do not modify the implemented functionality. In particular, we establish a tableV
mapping chaining variable values to sequences of message blocks. InO0 the operationV[vi] ← m1 · · ·mi is added. In
O1 handling of a query(v,m) is split into two cases. First, ifV[v] 6= ⊥, thenV[w] is assignedV[v] ‖ m. Herew is the
value to be returned to the adversary as chosen by Choose-f . The assignment ofV[w] maps the new chaining value to a
(one-block-longer) sequence of blocks. Second, ifV[w] = ⊥ then we do no updating ofV. There remains one further
change in G1: use of Choose-f in O0 and in the inO1 for the first case utilizess = 0 while in O1 for the second case
utilizess = 1. To account for this, subroutine Choose-f has additional checks to ensure consistency of use betweens = 0
ands = 1. (Looking ahead, dropping these checks will yield independent random functions for the two values ofs. The
s = 0 function will become the monolothic random oracle ofExpindiff-0

MD,S,A while s = 1 will be used for the unrelated random
values sometimes returned by the simulator.) Because of thechecks, we have that the implemented functionality is the same

24

procedureO0(M): Game G0

m1, . . . ,mℓ
d←M ; v0 ← IV

For i = 1 to ℓ do
vi ← Choose-f(0, vi−1,mi)

Q ∪← ((vi−1,mi), vi)

Retvℓ

procedureO1(v,m):

w ← Choose-f(0, v,m)

Q ∪← ((v,m), w)

Retw

subroutine Choose-f(s, v,m):

If f[s, v,m] = ⊥ thenf[s, v,m]←$ {0, 1}n

Retf[s, v,m]

procedureO0(M): Games G1 , G2

m1, . . . ,mℓ
d←M ; v0 ← IV ; V[IV]← ε

For i = 1 to ℓ do
vi ← Choose-f(0, vi−1,mi)

V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)

Retvℓ

procedureO1(v,m):

V[IV]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, v,m)

V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)

Retw

subroutine Choose-f(s, v,m):

s′ ← s

If f[1− s, v,m] 6= ⊥ thenbad← true ; s′ ← 1− s

If f[s′, v,m] = ⊥ thenf[s′, v,m]←$ {0, 1}n

Retf[s′, v,m]

procedureO0(M): Games G3 , G4

m1, . . . ,mℓ
d←M ; v0 ← IV ; V[IV]← ε

For i = 1 to ℓ do
vi ← Choose-f(0, vi−1,mi)

V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)

Retvℓ

procedureO1(v,m):

V[IV]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, v,m)

V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)

Retw

subroutine Choose-f(s, v,m):

If f[s, v,m] 6= ⊥ thenf[s, v,m]←$ {0, 1}n \R

R ∪← f[s, v,m]

Retf[s, v,m]

procedureO0(M): Games G5 , G6

m1, . . . ,mℓ
d←M ; v0 ← IV ; V[IV]← ε

For i = 1 to ℓ do
vi ← Choose-f(0, V[vi−1],mi)

V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)

Retvℓ

procedureO1(v,m):

V[IV]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, V[v],m)

V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)

Retw

subroutine Choose-f(s, v,m):

If f[s, v,m] = ⊥ thenf[s, v,m]←$ {0, 1}n \R

R ∪← f[s, v,m]

Retf[s, v,m]

Figure 7: Games used in proof of Theorem 7.1. All games also have a procedureO2 that returnsQ (not shown for brevity).

25

procedureO0(M): Game G2,1

m1, . . . ,mℓ
d←M ; v0 ← IV ; V[IV]← ε

For i = 1 to ℓ do
vi ← Choose-f(0, vi−1,mi)

V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)

Retvℓ

procedureO1(v,m):

V[IV]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, v,m)

V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)

Retw

subroutine Choose-f(s, v,m):

j ← j + 1 ; (sj , vj ,mj)← (s, v,m)

If ∃i < j s.t. (vi,mi) = (vj ,mj) ∧ si 6= sj then
bad← true

If f[s, v,m] = ⊥ thenf[s, v,m]←$ {0, 1}n

Retf[s, v,m]

procedureO0(M): Game G2,2

m1, . . . ,mℓ
d←M ; v0 ← IV ; V[IV]← ε

For i = 1 to ℓ do
vi ← Choose-f(0, vi−1,mi)

V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)

Retvℓ

procedureO1(v,m):

V[IV]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, v,m)

V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)

Retw

subroutine Choose-f(s, v,m):

j ← j + 1 ; (sj , vj ,mj)← (s, v,m)

If ∃i < j s.t. (vi,mi) = (vj ,mj) ∧ si = 1 6= 0 = sj then
bad1 ← true

If ∃i < j s.t. (vi,mi) = (vj ,mj) ∧ si = 0 6= 1 = sj then
bad2 ← true

If f[s, v,m] = ⊥ thenf[s, v,m]←$ {0, 1}n

Retf[s, v,m]

Figure 8: Games used in proof of Theorem 7.1. All games also have a procedureO2 that returnsQ (not shown for brevity).

in G1 as in G0, justifying (11).

(Game G2, boxed statement omitted) Games G1 and G2 are identical-until-bad, since their only difference is whether or not
the boxed statement is included. The fundamental lemma of game playing [2] justifies (12).

(Game G3, boxed statement omitted) Game G3 dispenses with the extra checks in Choose-f (that, in G1 ensured consistency
between calls withs = 0 ands = 1, but were no longer used in G2). Additionally a setR is added that records all the
random choices made in Choose-f . The functionality of G3 is unchanged from G2, justifying (13).

(Game G4, boxed statement included) Game G4 restricts sampling in Choose-f to not allow collisions between any two
outputs. Games G3 and G4 are identical except for the boxed statement. Since Choose-f can be called a maximum of
q0σ + q1 times, we have via a straightforward birthday analysis that

Pr
[

AG3 ⇒ 1
]

− Pr
[

AG4 ⇒ 1
]

≤
(q0σ + q1)

2

2n+1
,

justifying (14).

(Game G5, boxed statement included) Game G5 is such thatf[0, ·, ·] is indexed not by chaining variables, message block
pairs but rather by message sequences, message block pairs.That is, wherever Choose-f was called on(0, v,m) for chaining
variablev and message blockm in G4 it is called on(0, V[v],m) in G5. Since G4 and G5 never have collisions in outputs
of Choose-f in both games there is a one-to-one correspondence between pairs(0, v) and(0, V[v]). Therefore this change
does not affect the execution of the game, and so (15) has beenjustified.

(Game G6, boxed statement omitted) Game G5 and G6 are identical except for the boxed statement, and the analysis
justifying (14) above also applies to justify (16). Finally, we argue that G6 implements oracles that are equivalent to
(Feval ,S

F
eval ,S

F
reveal). In game G6 the routine Choose-f(0, ·, ·) implements the monolithic random oracle of the indiff-0

experiment (i.e. this implementsFeval). While S uses a subroutine update() to maintain tablesV andQ, game G6 updates

26

these tables directly in response to queries toO0 orO1. However, sinceS calls update() immediately upon any query to it,
the two methods for updating the tables are equivalent. Finally, note that inO1 whenV[v] = ⊥ a freshly-chosen random
point is returned, which is equivalent to the implementation of SFeval (recall thatA does not make pointless queries). We
have justified (17).

UPPER BOUND ON SETTINGbad IN G2. All that remains is bounding the probability thatbad is set in G2, which we do
with a second sequence of games G2 −→ G2,1 −→ G2,2. See Figure 8.

(Game G2,1) This game implements the same functionality as G2 but changes the way in whichbad is set. Now Choose-f
records eachs, v,m query using the counterj and tuple(sj , vj ,mj). The flagbad is set if there exists a previous execution
of Choose-f , let it be theith execution, such thatvi = vj andmi = mj and yetsi 6= sj . In words, the currentv,m query
value matches a previous query value, buts does not. Since this is just another way of checking for the same event that
causedbad to be set in G2, we have that

Pr
[

AG2 setsbad
]

= Pr
[

AG2,1 setsbad
]

.

(Game G2,2) We split the setting ofbad into two separate cases, represented by the (new) flagsbad1 andbad2. The first is
the case that the previous query hads = 0 and the later query hads = 1 and the second case is the opposite. A union bound
gives that

Pr
[

AG2,1 setsbad
]

≤ Pr
[

AG2,1 setsbad1

]

+ Pr
[

AG2,1 setsbad2

]

.

Note, however, that the last term is zero. This is true since for bad2 to be set due to Choose-f(1, v,m) being called from
O1, it must be the case thatV[v] 6= ⊥. That there exists ani < j for which si = 0 but vi = v (so thatbad2 is set) means
that necessarilyV[vi] = V[v] 6= ⊥. This contradiction justifies thatbad2 can never be set. Finally, we bound the probability
of bad1 being set. Leti, j be the numbers such thati < j and (vi,mi) = (vj ,mj) andsi = 1 andsj = 0. Then it
must be the case thatV[vi] = ⊥ at theith execution of Choose-f . However, at thejth execution it must be the case that
V[vj] = V[vi] 6= ⊥ sincesj = 0. This means that between theith andjth calls, the table entryV[vi] was assigned a value.
This can only occur if the output of execution of Choose-f(0, v,m) (for somev,m) equalsvi. Combining the facts that all
outputs of Choose-f are uniformly chosen and that there are at mostq0σ + q1 executions of Choose-f with s = 0, we have
that

Pr
[

AG2,1 setsbad1

]

≤
q1(q0σ + q1)

2n
.

This concludes the proof.

7.2 Type-II PGV are pub-GPROs

It is easy to see that a RO or a pub-RO are indifferentiable from a pub-GRO, and by Theorem 7.1 can therefore be used
within an iteration to build a pub-PRO hash function for arbitrary input lengths. However many hash functions (e.g. those
built from block ciphers) do not utilize compression functions that are suitable for modeling as a (pub-)RO. In this section
we show that many widely-used block-cipher-based compression functions, while not pub-PROs, are indifferentiable from
a pub-GRO. As an example to build intuition, recall that an adversary can differentiateDM from a pub-RO by abusing the
inverse oracle (see the attack described in Section 6). In the context of pub-GRO, such attacks fail because the adversary
cannot query its first oracle with chaining variables not already returned by it. In fact, we prove that any Type-II PGV
function (see Section 5.1) is indifferentiable from a pub-GRO.

Fix a stringIV ∈ {0, 1}n. Let hP be a compression function built using ideal primitiveP . Then h̄P is the ITM
implementing a guarded version ofh. Initially a setV is empty. Then̄hP (v,m) returns⊥ if v /∈ IV ∪ V, and otherwise
evaluteshP (v,m) to get valuew, addsw to V, and returnsw. Then, for example,DM is the guarded version of the
Davies-Meyer compression function (defined in Section 2).

We use the guarded versions of compression functions for clarity in our analyses. In particular, the forthcoming results
do not rely on implementing guarded versions of compressionfunctions — rather when an unguarded compression function
is used within the iteration then only validv are used with it, meaning our results apply directly. (Formally speaking, we
could also just restrict adversaries from querying any inputs which would result in⊥ being returned, and the guarding logic
is superfluous. We choose the explicit approach to render transparent this usage scenario.) Our results do not apply for
unguarded compression functions when they are used outsidethe context of iteration-based hashing.

Recall that the Type-II PGV functions are those for whichCpre is a bijection,Cpost(v,m, ·) is a bijection, and
C−pre

1 (k, ·) is a bijection. Here the mapC−pre

1 : {0, 1}d × {0, 1}n → {0, 1}n is defined byC−pre

1 (k,m) = v where

27

subroutine Choose-E(s, k, x):

y←$ {0, 1}n

If E[s, k, x] 6= ⊥ theny ← E[s, k, x]

E[s, k, x]← y ; D[s, k, y]← x

Rety

subroutine Choose-D(s, k, y):

x←$ {0, 1}n

If D[s, k, y] 6= ⊥ thenx← D[s, k, y]

E[s, k, x]← y ; D[s, k, y]← x

Retx

Figure 9: Subroutines used by games G0, G1, G2, and G3 for the proof of Theorem 7.2.

(v,m) = C−pre(k, x). (This is simply the projection ofC−pre to its left output.)
It is interesting to note that the four Type-I PGV functions that are not also Type-II arenot pub-GPRO. Consider the

(guarded) MMO compression functionMMO
E

(v,m) = Ev(m) ⊕ m built from an ideal cipherCn,n. For any simulator
S, we give an adversary that can differentiateMMO from a pub-GRO that works as follows given oraclesO0, O1, and

O2 (implementing(MMO
E

, E,D) or (fgeval ,SE ,SD) respectively). It chooses arbitrary pointsy ∈ {0, 1}n and queries
O2(IV, y) to get replyx. It then queriesO0(IV, x), retrievesw, and outputs a one ify ⊕ w = x. If in the indiff-1
experiment, the adversary will output one always. In the indiff- 0 experiment,SD must respond with a valuex such that
y ⊕ f(IV, x) = x, lest the adversary will return zero. This can’t be done efficiently (sincef is a random oracle), and so
the adversary will succeed with probability close to one. Similar attacks can be fashioned for the three other only Type-I
functions.3

Intuitively, the Type-II functions resist such attacks because of the third requirement, which ensures that any inverse
query corresponds to a (close to) uniform chaining variable. Since uniformly distributed chaining variables are unlikely to
ever end up being in the setV of allowed queries toO0, the final query of the adversary above wouldn’t work for a Type-II
function. The next theorem formalizes this, showing that any Type-II PGV function is a pub-GPRO.

Theorem 7.2 [Type-II PGV are pub-GPROs]Fix d, n > 0 and fix IV ∈ {0, 1}n. Let Cd×n,n = (E,D) be an ideal
cipher and let̄hC be the guarded implementation of a Type-II PGV functionhC . There exists a simulatorS = (SE ,SD)
such that for any adversaryA making at most(q0, q1, q2) queries, we have

Adv
pub-gpro

h̄,C,S
(A) ≤

(q0 + q1 + q2)
2

2n
+

q2(q0 + q1 + 1)

2n

whereS works in timeO(q2(q0 + q1)) and makes at mostq1 queries. �

Proof: We fix the simulatorS = (SE ,SD) detailed below.

procedureSE(k, x):

If E[k, x] 6= ⊥ then RetE[k, x]

(m, v)← C−pre(k, x)

w ← feval(v,m)

y ← C−post(v,m,w)

Rety

procedureSD(k, y):

((v1,m1), w1), . . . , ((vℓ,mℓ), wℓ)← freveal ()

For i = 1 to ℓ do
(ki, xi)← Cpre(vi,mi)

yi ← C−post(vi,mi, wi)

If k = ki andy = yi then Retxi

x←$ {0, 1}n ; E[k, x]← y

Retx

The simulator associates queries by the adversary toSE andSD with queries tofgeval . Note thatCpre andCpost(v,m, ·)
are bijections (the latter for anyv,m), and their inverses viaC−pre andC−post(v,m, ·) (see Section 5.1). The simulator
uses these functions to map between inputs and outputs of theblock cipher and inputs and outputs off .

We utilize a sequence of games G0 −→ · · · −→ G6 to boundA’s advantage relative toS. See Figures 10 and 11. Some of
these games utilize as subroutines those shown in Figure 9, which together implement a modified version of an ideal cipher
in which sampling with replacement is done (instead of the usual sampling without replacement). (The parameters is used

3Note that [15] point out that these four just type-I PGV functions are also not suitable compression functions for building PROs via prefix-free
encoding messages and then iteration.

28

procedureO0(v,m): Game G0

If v /∈ {IV } ∪ V then Ret⊥
(k, x)← Cpre(v,m)

y ← Choose-E(0, k, x)

w ← Cpost(v,m, y)

V ∪← w

Retw

procedureO1(k, x):

y ← Choose-E(0, k, x)

Rety

procedureO2(k, y):

x← Choose-D(0, k, y)

Retx

procedureO0(v,m): Game G1

100 If v /∈ {IV } ∪ V then Ret⊥
101 (k, x)← Cpre(v,m)

102 y ← Choose-E(0, k, x)

103 w ← Cpost(v,m, y)

104 i← i + 1 ; ((vi,mi), wi)← ((v,m), w)

105 V ∪← w

106 Retw

procedureO1(k, x):

110 y ← Choose-E(0, k, x)

111 w ← Cpost(C−pre(k, x), y)

112 i← i + 1 ; ((vi,mi), wi)← (C−pre(k, x), w)

113 Rety

procedureO2(k, y):

120 For j = 1 to i do
121 (ki, xi)← Cpre(vi,mi)

122 yi ← C−post(vi,mi, wi)

123 If k = ki andy = yi then Retxi

124 x← Choose-D(0, k, y)

125 Retx

procedureO0(v,m): Games G2 G3

200 If v /∈ {IV } ∪ V then Ret⊥
201 (k, x)← Cpre(v,m)

202 s← 0 ; If E[1, k, x] 6= ⊥ thenbad← true ; s← 1

203 y ← Choose-E(s, k, x)

204 w ← Cpost(v,m, y)

205 i← i + 1 ; ((vi,mi), wi)← ((v,m), w)

206 V ∪← w

207 Retw

procedureO1(k, x):

210 If E[1, k, x] 6= ⊥ then Ret Choose-E(1,m, c)

211 y ← Choose-E(0, k, x)

212 w ← Cpost(C−pre(k, x), y)

213 i← i + 1 ; ((vi,mi), wi)← (C−pre(k, x), w)

214 Rety

procedureO2(k, y):

220 For j = 1 to i do
221 (ki, xi)← Cpre(vi,mi)

222 yi ← C−post(vi,mi, wi)

223 If k = ki andy = yi then Retxi

224 s← 1 ; If D[0, k, y] 6= ⊥ thenbad← true ; s← 0

225 x← Choose-D(s, k, y)

226 Retx

procedureO0(v,m): Game G4

400 If v /∈ {IV } ∪ V then Ret⊥
401 (k, x)← Cpre(v,m)

402 If E[1,m, c] 6= ⊥ thenbad← true

403 y ← f(k, x) ; w ← Cpost(v,m, y)

404 D[0, k, y]← x

405 i← i + 1 ; ((vi,mi), wi)← ((c,m), w)

406 V ∪← w

407 Retw

procedureO1(k, x):

410 If E[1, k, x] 6= ⊥ then RetE[1, k, x]

411 y ← f(k, x) ; w ← Cpost(C−pre(k, x), y)

412 D[0, k, y]← x

412 i← i + 1 ; ((vi,mi), wi)← (C−pre(k, x), w)

414 Rety

procedureO2(k, y):

420 For j = 1 to i do
421 (ki, xi)← Cpre(vi,mi)

422 yi ← C−post(vi,mi, wi)

423 If k = ki andy = yi then Retxi

424 If D[0, k, y] 6= ⊥ thenbad← true

425 x←$ {0, 1}n ; E[1, k, x]← y

426 Retx

Figure 10: Games used in proof of Theorem 7.2. Subroutines Choose-E and Choose-D are detailed in Figure 9. Game G4

uses a random functionf mapping from{0, 1}d × {0, 1}n to {0, 1}n.

29

procedureO0(v,m): Game G5

500 If v /∈ {IV } ∪ V then Ret⊥
501 (k, x)← Cpre(v,m)

502 If E[1, k, x] 6= ⊥ thenbad← true

503 w ← f(C−pre(k, x)) ; y ← C−post(v,m,w)

504 D[0, k, y]← x

505 i← i + 1 ; ((vi,mi), wi)← ((v,m), w)

506 V ∪← w

507 Retw

procedureO1(k, x):

510 If E[1,m, c] 6= ⊥ then RetE[1,m, c]

511 w ← f(C−pre(k, x)); y ← C−post(C−pre(k, x), w)

512 D[0, k, y]← x

513 i← i + 1 ; ((vi,mi), wi)← (C−pre(k, x), w)

514 Rety

procedureO2(k, y):

520 For j = 1 to i do
521 (ki, xi)← Cpre(vi,mi)

522 yi ← C−post(vi,mi, wi)

523 If k = ki andy = yi then Retxi

524 If D[0, k, y] 6= ⊥ thenbad← true

525 x←$ {0, 1}n ; E[1, k, x]← y

526 Retx

procedureO0(v,m): Game G6

600 If v /∈ {IV } ∪ V then Ret⊥
601 w ← f(v,m)

602 i← i + 1 ; ((vi,mi), wi)← ((v,m), w)

603 V ∪← w

604 Retw

procedureO1(k, x):

610 If E[1,m, c] 6= ⊥ then RetE[1,m, c]

611 w ← f(C−pre(k, x))

612 i← i + 1 ; ((vi,mi), wi)← (C−pre(k, x), w)

613 Rety

procedureO2(k, y):

620 For j = 1 to i do
621 (ki, xi)← Cpre(vi,mi)

622 yi ← C−post(vi,mi, wi)

623 If k = ki andy = yi then Retxi

624 x←$ {0, 1}n ; E[1, k, x]← y

625 Retx

Figure 11: Game used in the proof of Theorem 7.2. Games G5 and G6 use a random functionf mapping from{0, 1}n ×
{0, 1}d to {0, 1}n.

to allow multiple instances of the objects. Namely, different s indicate distinct tablesE andD.) We will justify that

Pr
[

Expindiff-1
DM,E,A

⇒ 1
]

≤ Pr
[

AG0 ⇒ 1
]

+
(q0 + q1 + q2)

2

2n
(18)

= Pr
[

AG1 ⇒ 1
]

+
(q0 + q1 + q2)

2

2n
(19)

= Pr
[

AG2 ⇒ 1
]

+
(q0 + q1 + q2)

2

2n
(20)

≤ Pr
[

AG3 ⇒ 1
]

+
(q0 + q1 + q2)

2

2n
+ Pr

[

AG3 setsbad
]

(21)

= Pr
[

AG4 ⇒ 1
]

+
(q0 + q1 + q2)

2

2n
+ Pr

[

AG4 setsbad
]

(22)

= Pr
[

AG5 ⇒ 1
]

+
(q0 + q1 + q2)

2

2n
+ Pr

[

AG5 setsbad
]

(23)

= Pr
[

AG6 ⇒ 1
]

+
(q0 + q1 + q2)

2

2n
+ Pr

[

AG5 setsbad
]

(24)

= Pr
[

Expindiff-0
f,S,A ⇒ 1

]

+
(q0 + q1 + q2)

2

2n
+ Pr

[

AG5 setsbad
]

(25)

and then conclude by bounding the probability ofbad being set in game G4.

(Game G0) Game G0 implements the oracles̄hE , E,D but where ideal cipherE (with inverseD) is implemented using the
subroutines of Figure 9. A straightforward birthday argument justifies (18).

30

(Game G1) Game G1 is the same as G0 except that book-keeping code is added to proceduresO0 andO1 which is then used
inO2. The newO2 functionality checks explicitly for previous queries toO1 orO2 that have already setD[0, k, y] (i.e. due to
an execution of Choose-E(0, k, x) that sampled range pointy). To show that this is in fact the case, we need to show that any-
timexi is returned inO2 on line 123, the same value would have been returned on line 125. Letk, y be a pair queried toO2.
Suppose there exists ani such thatki = k andyi = y where(ki, xi) = Cpre(vi,mi) andyi = C−pre(vi,mi, wi). Then
consider ifvi,mi, wi were assigned values on line 104. This means that Choose-E(0, Cpre(vi,mi)) = Choose-E(0, ki, xi)
was executed and it returned a valuey′, meaningD[0, ki, y′] = xi. SinceCpre andCpost(vi,mi, ·) are bijections we have
thaty′ = yi = y. Thus,D[0, k, y] = xi. Consider now ifvi,mi, wi were instead assigned values on line 112. Then again
Choose-E(0, Cpre(vi,mi)) = Choose-E(0, ki, xi) was executed and returned a valuey′, meaningD[0, ki, y′] = xi. But
now wi = Cpost(C−pre(ki, xi), y′) and the bijectivity ofCpost andCpre gives thaty′ = yi = y. Thus,D[0, k, y] = xi.
We have justified (19).

(Game G2, boxed statements included) Game G2 is a modification of G1 in that two pairs of tables (corresponding tos = 0
ands = 1) are used to track points defined by the oracles. The checks onlines 201, 210, and 222 ensure, however, that the
two tables are used in a manner that mimics exactly the behavior of the single pair of tables in G1. This justifies (20).

(Game G3, boxed statements excluded) Game G3 and G2 are identical-until-bad, and the fundamental lemma of game-
playing [2] justifies (21).

(Game G4) In game G4 f is a random oracle mapping pointsk, x to random values from{0, 1}n. It is used in conjunction
with the other code on lines 403/404, 411/412, and 425, to completely remove use of Choose-E and Choose-D in the game.
This simplification of the code of game G3 implements identical functionality, justifying (22).

(Game G5) In game G5 we make two pairs of changes. First, we apply the random oracle f to C−pre(k, x) as oppoesd
to k, x on lines 503 and 511. (Technically,f is now a map on domain{0, 1}n × {0, 1}d. Before it had a domain of
{0, 1}d×{0, 1}n.) SinceCpre is bijective this change does not affect the distribution ofthe outputs off . Second, we swap
the order of assignment fory andw on lines 503 and 511, now assigningy to the output off and then settingz as a function
of y andv,m (or, equivalently,k, x). The change to line 503 is justified by the fact thatCpost(v,m, ·) is a bijection for
anyv,m. The change to line 511 is justified sinceCpost(C−pre(k, x), ·) is a bijection for anyk, x (sinceCpre is also a
bijection). Thus the variables involved maintain the same (joint) distribution, justifying (23).

(Game G6) In the final game we drop code that handled the setting ofbad in G5. Now we see that this final game G6 is
exactly implementing the oracles(fgeval ,S

f
E ,Sf

D), justifying (24).

All that remains is to bound the probability ofbad being set in game G5. We proceed via case analysis.

The flagbad might be set due to line 502 or line 524. For line 524, however,the loop and conditional of 520 and 521 ensure
that 524 will never be executed whenD[0, k, y] 6= ⊥. To see this, note thatD[0, k, y] is assigned a value only if one of lines
505 or 513 is also executed. Thus, ifD[0, k, y] 6= ⊥ during aO2(k, y) query, then necessarily there exists aj ∈ [1 .. i]
such thatk = kj andy = yj where(kj , xj) = Cpre(vj ,mj) andyj = Cpost(vi,mi, wi). This is so becauseCpre and
Cpost(vi,mi, ·) are bijections. Thus,bad will never get set on line 524.

We turn to bounding the probability that line 502 sets bad. For bad to be set here, it must be that some queryO0(v,m) was
made for whichv ∈ {IV } ∪ V at the time of the query andE[1, k, x] 6= ⊥. But E[1, k, x] can only be set to a non-bottom
value if line 525 previously executed and herex was uniformly selected. LetV∗ be the setV at the end ofA’s execution.
Letx be a value sampled due to execution of line 523 for a queryO2(k, y). Then we want to assess the probability thatA can
make a later queryv,m toO0 for whichCpre(v,m) = (k, x). Re-writing this last equation we have(v,m) = C−pre(k, x)
and thusv = C−pre

1 (k, x). Then we will justify that

Pr [Cpre(v,m) = (k, x) ∧ (v = IV ∨ v ∈ V∗)] ≤ Pr
[

C−pre

1 (k, x) = IV ∨ C−pre

1 (k, x) ∈ V∗
]

≤ Pr
[

C−pre

1 (k, x) = IV
]

+ Pr
[

C−pre

1 (k, x) ∈ V∗
]

=
1

2n
+

q0 + q1

2n

where the indicated events are defined in the natural way (over the coins used in executingAG5). We can bound the first
term on the right as follows. Sincex is a uniformly-chosen point, and by the fact thatC−pre

1 (k, ·) is a bijection, we have
the probability thatC−pre

1 (k, x) = IV with probability at most2−n. We can bound the second term as follows. Each
valuew added toV in the course of the game is the output of the random functionf on some pairv,m. These points are
chosen independently of the valuev and there are at mostq0 + q1 outputs off chosen in the course of the game. Thus the
probability of any one of these independent points being equal to C−pre

1 (k, x) is at most(q0 + q1)/2n. Together, we see

31

that for the probability of settingbad due toE[1, k, x] being set for any particularO2 query is at most(1 + q0 + q1)/2n,
justifying the equations above.

Finally, since there are at mostq2 queries toO2, and consequently at mostq2 valuesx sampled due to execution of line 525
we have via a straightforward union bound that

Pr
[

AG5 setsbad
]

≤
q2(1 + q0 + q1)

2n
.

This completes the proof.

Acknowledgments

We thank Ilya Mironov, Martijn Stam, and Mihir Bellare for useful discussions regarding this work. We thank Lei Wang
for pointing out an error in an earlier version of this work. Yevgeniy Dodis was supported in part by NSF Grants 0831299,
0716690, 0515121, and 0133806. Thomas Ristenpart was supported in part by Mihir Bellare’s NSF grants CNS 0524765
and CNS 0627779 and a gift from Intel corporation. He thanks the Faculty of Informatics at the University of Lugano,
Switzerland for hosting and supporting him while a portion of this work was done. Thomas Shrimpton was supported by
NSF grant CNS 0627752 and SNF grant 200021-122162.

References

[1] M. Bellare and A. Palacio. Towards Plaintext-Aware Public-Key Encryption without Random Oracles.Advances in
Cryptology – ASIACRYPT ’04, LNCS vol. 3329, pp. 48–62, 2004.

[2] M. Bellare and T. Ristenpart. Multi-property-preserving Hash Domain Extension and the EMD Transform.Advances
in Cryptology – ASIACRYPT ’06, LNCS vol. 4284, Springer, pp. 299–314, 2006.

[3] M. Bellare and T. Ristenpart. Hash Functions in the Dedicated-key Setting: Design Choices and MPP Transforms.In-
ternational Colloquium on Automata, Languages, and Programming – ICALP ’07, LNCS vol. 4596, Springer, pp. 399–
410, 2007.

[4] M. Bellare and P. Rogaway. Random oracles are practical:a paradigm for designing efficient protocols. In: CCS ’93,
ACM Press (1993) 62–73.

[5] M. Bellare and P. Rogaway. Optimal asymmetric encryption – How to encrypt with RSA.Advances in Cryptology –
EUROCRYPT ’94, LNCS vol. 950, pp. 92–111, 1994.

[6] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In: Advances
in Cryptology - EUROCRYPT ’96. Volume 1070 of Lecture Notes in Computer Science, Springer (1996) 399–416.

[7] J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions
from PGV..Advances in Cryptology – CRYPTO ’02, LNCS vol. 2442, Springer, pp. 320–325, 2002.

[8] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles.Advances
in Cryptology – EUROCRYPT ’04, LNCS vol. 3027, Springer, pp. 223–238, 2004.

[9] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.Advances in Cryptology – CRYPTO ’01,
LNCS vol. 2139, Springer, pp. 213–229, 2001.

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures fromthe Weil pairing.Advances in Cryptology – ASIACRYPT
’01, LNCS vol. 2248, Springer, pp. 514–532, 2001.

[11] R. Canetti and R. Dakdouk. Extractable Perfectly One-Way Functions. ICALP ’08, LNCS vol. 5126, Springer,
pp. 449–460, 2008.

[12] R. Canetti and R. Dakdouk. Towards a Theory of Extractable Functions.Theory of Cryptography Conference – TCC
’09, 2009, to appear.

[13] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J. ACM51(4), pp. 557–594, 2004.

32

[14] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption Scheme. J. Cryptology (JOC) 20(3):265-
294 (2007)

[15] D. Chang, S. Lee, M. Nandi, and M. Yung, Indifferentiable Security Analysis of Popular Hash Functions with Prefix-
Free Padding.Advances in Cryptology – ASIACRYPT ’06, LNCS vol. 4284, Springer, pp. 283–298, 2006.

[16] J.S. Coron. Optimal Security Proofs for PSS and Other Signature Schemes.Advances in Cryptology – EUROCRYPT
’02, LNCS vol. 2332, Springer, pp. 272–287, 2002.

[17] J.S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard Revisited: How to Construct a Hash Function.
Advances in Cryptology – CRYPTO ’05, LNCS vol. 3621, Springer, pp. 21–39, 2005.

[18] I. Damg̊ard. A design principle for hash functions.Advances in Cryptology – CRYPTO ’89, LNCS vol. 435, Springer,
pp. 416–427, 1989.

[19] I. Damg̊ard, T. Pedersen, and B. Pfitzmann. On the Existence of Statistically Hiding Bit Commitment Schemes and
Fail-Stop Signatures.Advances in Cryptology – CRYPTO ’93, LNCS vol. 773, Springer, pp. 250–265, 1993.

[20] D. Davies and W. Price. The Application of Digital Signatures Based on Public Key Cryptosystems.Proc. Fifth Intl.
Computer Communications Conference, pp. 525–530, October 1980.

[21] Y. Dodis, K. Pietrzak, and P. Puniya. A New Mode of Operation for Block Ciphers and Length-Preserving MACs.
Advances in Cryptology – EUROCRYPT ’08. LNCS vol. 4965, Springer, pp. 198–219, 2008.

[22] Y. Dodis and P. Puniya. Getting the Best Out of Existing Hash Functions or What if We Are Stuck with SHA?.Applied
Cryptography and Network Security – ACNS ’08. LNCS vol. 5037, Springer, pp. 156–173, 2008.

[23] Y. Dodis, T. Ristenpart, and T. Shrimpton. Salvaging Merkle-Damg̊ard for Practical Applications (full version of this
paper). IACR ePrint Archive, 2009.

[24] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems.Advances
in Cryptology – CRYPTO ’86, LNCS vol. 263, Springer, pp. 186–194, 1987.

[25] S. Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box Model.Information Security and
Cryptology – ICISC ’04, LNCS vol. 3506, Springer, pp. 330–342, 2005.

[26] S. Hirose. Some Plausible Constructions of Double-Length Hash Functions.Fast Software Encryption – FSE ’06,
LNCS vol. 4047, Springer, pp. 210–225, 2006.

[27] S. Hirose, J. Park, and A. Yun. A Simple Variant of the Merkle-Damg̊ard Scheme with a Permutation. Advances in
Cryptology – ASIACRYPT ’07, LNCS vol. 4833, Springer, pp. 113–129, 2007.

[28] U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results on Reductions, and Applications
to the Random Oracle Methodology.Theory of Cryptography Conference – TCC ’04, LNCS vol. 2951, Springer,
pp. 21–39, 2004.

[29] R. Merkle. One way hash functions and DES.Advances in Cryptology – CRYPTO ’89, LNCS vol. 435, Springer,
pp. 428–446, 1989.

[30] National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash Standard. (1995) Supersedes FIPS
PUB 180 1993 May 11.

[31] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers: A synthetic approach.Advances
in Cryptology – CRYPTO’93, LNCS vol. 773, Springer, pp. 368–378, 1994.

[32] T. Ristenpart and T. Shrimpton. How to Build a Hash Function from any Collision-Resistant Function.Advances in
Cryptology – ASIACRYPT ’07. LNCS vol. 4833, Springer, pp. 147–163, 2007.

[33] P. Rogaway and J. Steinberger. Security/Efficiency Tradeoffs for Permutation-Based Hashing.Advances in Cryptol-
ogy – EUROCRYPT ’08, LNCS vol. 4965, Springer, pp. 220–365, 2008.

[34] P. Rogaway and J. Steinberger. Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers.Advances
in Cryptology – CRYPTO ’08, LNCS vol. 5157, Springer, pp. 443–450, 2008.

33

[35] T. Shrimpton and M. Stam. Building a Collision-Resistant Compression Function from Non-compressing Primitives.
ICALP ’08, LNCS vol. 5126, Springer, pp. 643-654, 2008.

[36] D. Simon. Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General Assumptions?
Advances in Cryptology – EUROCRYPT ’98, LNCS vol. 1403, Springer, pp. 334-345, 1998.

[37] M. Stam. Blockcipher Based Hashing Revisited.Fast Software Encryption – FSE ’09, to appear, 2009.

[38] L. Wang. Personal correspondence. 2009.

[39] K. Yoneyama, S. Miyagawa, and K. Ohta. Leaky Random Oracle (Extended Abstract). Provable Security – ProvSec
’08, LNCS vol. 5324, pp. 226–240, 2008.

A Proof of Theorem 3.2

Proof: We argue about WPrA security in the case of a single extractionquery, and then apply Lemmas 3.3 and 3.4 to get
the final result. We begin by defining the extractorE+; let it operate as follows:

algorithm E+(z, α):

Parse(x1, y1), · · · , (xk, yk)← α
For i = 1 to k do

If yi = z thenX ← xi

If X = ∅ then Ret⊥
RetX

That is,E+ simply iterates over the query-response pairs provided in the advice string and, upon finding a response that
matchesz, outputs the corresponding domain point. There are two cases to consider. First assumeA made aP -query on
x before extraction query(z, α). ThenE+ will extract x from the advice string. Thus this case cannot contribute toA’s
advantage. On the other hand, assumeA makes extraction queryEx(z, α) for which z has not been already returned byP .
Any subsequentP -query will returnz with probability at most1/2n. SinceA can query at mostq times toP , this means
that the probability of hitting one suchz is at mostq/2n.

B Preimage Awareness of Iteration without Strengthening

We formalize a variant of preimage resistance, following [22]. Let hP : Dom → Rng be a hash function for an ideal
primitive P . An inversion adversaryA takes no inputs, has access to a primitive oracleP , and outputs a pointx ∈ Dom.
For fixed valueIV ∈ Rng , we define the experimentExpinv

h,P,IV,A by the following pseudocode

x←$ AP ; RethP (x) = IV

We associate to inv-adversaryA, hash functionHP , and constantIV ∈ Rng the advantage relation

Adv
inv
h,P,IV (A) = Pr

[

Expinv
h,P,IV,A ⇒ true

]

.

where the probability is taken over the coins used to executethe inv experiment. It is easy to verify that for the ideal-
primitive-based compression functions we consider, the advantage in this game is low for anyIV and any adversary. For
example, forf = RFd+n,n, we have thatAdv

inv
f,IV (A) ≤ qp/2n for any adversaryA making at mostqp queries. We have

the following result.

Theorem B.1 [Itr achieves PrA] Fix n, d > 0 and letP be an ideal primitive. LethP : {0, 1}n+d → {0, 1}n be a
compression function, and letH = Itr[hP] using some constantIV ∈ {0, 1}n. Let Eh be an arbitrary extractor for the PA-
experiment involvingh. Then there exists an extractorEH such that for all pra-adversariesA making at mostqp primitive
queries andqe extraction queries and outputing a message of at mostℓmax ≥ 1 blocks there exists an pra-adversaryB and
an inv-adversaryC such that

Adv
pra
H,P,EH

(A) ≤ Adv
pra
h,P,Eh

(B) + Adv
inv
h,P,IV (C) .

34

EH runs in time at mostℓmax ·Time(Eh). B runs in time at most that ofA plusO(qeℓmax), makes at mostqp + ℓmax ·
NumQueries(h) primitive queries, and makes at mostqeℓmax extraction queries.C runs in time that ofB and makes the
same number of primitive queries.�

The proof can be adapted easily from that used for SMD. Namely, the probability of the last case (where suffix-freeness
is invoked) of the case analysis occurring can be shown to imply the existance of a natural inversion adversary.

C Group-2 PGV schemes are PrA in the iteration

Consider a generalized rate-1 blockcipher-based compression function, which operates as follows on input(v,m): (k, x)←
Cpre(v,m), y←$ E(k, x), w ← Cpost(v,m, y), outputw. We recall that a blockcipher-based compression function is
Stam Type-II if: 1)Cpre is bijective, 2) for allv,m the postprocessingCpost(v,m, ·) is bijective, and 3) for allk, the
inverse mapC−pre

1 (k, ·) is bijective. Here the mapC−pre

1 : {0, 1}d × {0, 1}n → {0, 1}n is defined byC−pre

1 (k,m) = v
where(v,m) = C−pre(k, x). (This is simply the projection ofC−pre to its left output.) Stam has shown that the Group-2
PGV schemes from [7] are also Type-II.

Theorem C.1 [The Group-2/Type-II PGV schemes are PrA in the iteration.] Fix κ, n > 0, let E←$ BC(κ, n). Let P
be an ideal primitive providing an interfacs toE andE−1. Let hP be a Type-II blockcipher-based compression function,
and letH = Itr[hP] for some constantIV ∈ {0, 1}n. There exists an extractorE such that for any adversaryA making at
mostqp queries toP andqe extraction queries we have

Adv
pra
H,E(A) ≤

qeqp

2n − qp
+

1.5qp(qp + 1)

2n − qp

whereE runs in time at mostO
(

qe(q
2
p + qp(Time(C−pre) + Time(Cpost))

)

�

Proof: Let C be the event that when the PrA-adversaryA halts, the advice stringα contains the queries required to evaluate
H(M) andH(M ′) for M 6= M ′ such thatH(M) = H(M ′), or to evaluateH(M) for some non-trivialM such that
H(M) = IV .

Now we condition:

Pr
[

Exp
pra
H,E,A⇒ 1

]

= Pr
[(

Exp
pra
H,E,A⇒ 1

)

∧ C

]

+ Pr
[(

Exp
pra
H,E,A⇒ 1

)

∧ ¬C

]

≤ Pr
[(

Exp
pra
H,E,A⇒ 1

)

| ¬C

]

+ Pr [C] (26)

The proof of collision resistance for the Type-II schemes given in Stam [37] boundsPr[C] ≤ .5qp(qp + 1)/(2n − qp). We
continue then under the assumption that¬C holds.

The extractorE on input(z, α) operates as follows. Informally, it will build from the blockcipher queries inα anIV -rooted
tree with vertices that are labeled by chaining values and edges labeled by message blocks. It then looks to see ifz appears
as a vertex label in the tree. If so, it returns the appropriate preimage by reading edge labels from theIV to z; if not, it
returns⊥.

Let us be more formal. LetL be an initially empty list. LetE(z, α) first parse the advice string(k1, x1, y1), . . . , (kr, xr, yr).
Let E build a graphT = (V,E) with vertex and edge labels; the vertex labeld by the initialvalue will simply be refered
to by IV . Initially, V = {IV } andE = {}. For i ∈ [1..r] it does the following:(mi, vi) ← C−pre(ki, xi), wi ←
Cpost(vi,mi, yi); if wi = z then an (initiallyfalse) flag possible is set totrue. If vi = IV , E adds(vi,mi, wi) to L with
the annotation “used, 0”, and creates edge(IV,wi) in T with label mi; elseE simply adds(vi,miwi) to L. If the flag
possible was not set totrue during this loop, the extractor halts with output⊥. We pause in our description to note the
following. SinceCpre andCpost(v,m, ·) are bijections, each blockcipher query(k, x, y) defines a unique (compression
function) tuple(v,m,w). Combined with the assumption that¬C holds, any tuple marked asused will never again be
added to the graph. (Note that¬C also implies thatv 6= w.) Continuing our description ofE , for each(v,m,w) ∈ L that
is not marked asused, it searches the vertices at distance one from the IV (corresponding exactly to theL-tuples labeled
”used, 0”) for a vertex labeledv; if it finds one, it creates a new edge(v, w) labeled bym, and marks the tuple(v,m,w)
as “used, 1”. The extractor continues in this way, making repeated passes overL and attempting to add un-used tuples
to the tree. Notice that by our assumptions,E only needs to compare un-used tuples to tuples marked “used, ℓ” for the
highest value ofℓ in the list. (This is easily implement by a counter that keepstrack of what is the current distance from
theIV .) When either all tuples inL are marked asused, or when a pass completes without adding any new edges toT ,

35

the extractor stops building. It then searches the tree for avertex labeledz. If it finds one (and there will be at most one) it
reads the edge labels fromIV to z and returns the corresponding messsage. Otherwise, it returns⊥.

It is clear that (for a single extraction query) the running time of the extractor isO(r2 + r(Time(C−pre) + Time(Cpost)).

Now, since¬C holds, the adversary must win by finding a preimage for somez upon which the extractor never returned
a non-⊥ value. (It is possible that somez is queried more than once toE with different advice strings.) We call thesez
useful. Without loss of generality, we can assume that the adversary outputs a preimage for a usefulz as soon as one can be
computed from the query list. Thus we can also assume that allextractor queries are made prior to the adversary finding its
eventual preimage, and so there are at mostqe usefulz. It remains then to bound the probability that the adversarymanages
to find a preimage for any of thesez.

As the adversary runs, we imaging building a graphG = (V,E) much as the one above. The vertex setV = {0, 1}n and the
edge set is initially empty. When the adversary learns (via aP query) a triple(k, x, y), we compute(v,m)← C−pre(k, x)
andw ← Cpost(v,m, y), and place an edge between verticesv andw. Consider this graph at the time of the final extraction
query. In particular, consider the subgraphG′ that consists of the component containing theIV vertex and any component
containing a vertex labeled with a usefulz. Let S ⊆ V be the set of vertices in this subgraph. We claim that ifk queries
to P have been made at the time of the last extraction query, then|S| ≤ 1 + qe + k. To see this, notice thatS contains
theIV vertex and the (at most)qe vertices labeled by the usefulz. Moreover, as components are by definition connected
subgraphs, each of thek edges placed inG would have added at most one new vertex toG′.

Now, asA continues to makeP queries after the final extraction query, each adds at most one new vertex toS. A necessary
condition forA to win is for it to create a new edge between vertices already in S, in particular because theIV and all of
the usefulz are inS. (This is certainly not a sufficient condition.) Say this occurs on queryk + i, for i ∈ [1..qp − k]. If
this is a forward blockcipher query(k, x) yieldingy, then by the bijectivity ofCpre andCpost(v,m, ·), the probability that
w = Cpost(v,m, y) is the label of a vertex already inS is at most(1 + qe + k + (i− 1))/(2n− (k + (i− 1))). Similarly, if
the necessary edge is created by an inverse blockcipher query (k, y) yielding x, then the bijectivity ofC−pre

1 (k, ·) insures
again that the probability of creating the edge is at most(1 + qe + k + (i− 1))/(2n − (k + (i− 1))).

Thus, by a union bound

Pr
[(

Exp
pra
H,E,A⇒ 1

)

| ¬C

]

≤

qp−k
∑

i=1

qe + k + i

2n − (k + (i− 1))

≤
1

2n − qp

qp−k
∑

i=1

(qe + k + i)

=
1

2n − qp

(

(qp − k)(qe + k) +
(qp − k)(qp − k + 1)

2

)

≤
qp − k

2n − qp

(

2(qe + k) + (qp − k + 1)

2

)

≤
qp − k

2n − qp

(

2qe + qp + k + 1

2

)

≤
qp

2n − qp
(qe + qp + 1)

where the final line is overly conservative because it setsk = 0 outside of the parentheses, andk = qp inside. (We choose
to use this looser bound for presentation purposes, and anyway it suffices.) Altogether then, (26) becomes

Pr
[

Exp
pra
H,E,A⇒ 1

]

≤
qp(qe + qp + 1)

2n − qp
+

.5(qp)(qp + 1)

2n − qp
=

qeqp

2n − qp
+

1.5(qp)(qp + 1)

2n − qp

completing the proof.

D Alternative Formulation for Preimage Awareness

A two-stage pa-adversaryA = (A1, A2) is a pair of algorithms. The challenge selection algorithmA1 runs on no input
and has access to a primitive oracleP . It outputs a triple(z, α, st) wherez ∈ Rng , α ∈ {0, 1}∗ is an advice string,

36

andst ∈ {0, 1}∗ is a string representing arbitrary state information. The preimage selection algorithmA2 runs on input
z, st, has oracle access toP , and outputs a preimagex′ ∈ Dom. Then the 1-PrA experimentExp

1-pra
H,E,A is defined by the

pseudocode

(z, α, st)←$ AP
1 ; x← E(z, α) ; x′←$ AP

2 (z, st) ; Ret(x 6= x′ ∧HP (x′) = z)

To H, E , andA we associate the advantage relation

Adv
1-pra
H,E (A) = Pr

[

Exp
1-pra
H,E,A ⇒ true

]

where the probability is taken over the coins used in executing the experiment. The next theorem captures the simple hybrid
that 1-PrA security implies full PrA security, but with a factor qe (the number of extraction queries) loss in concrete security.
The proof (omitted) is by a simple hybrid argument.

Theorem D.1 [1-PrA ⇒ PrA] Let HP : Dom → Rng be a hash function. LetE be an extractor. Then there exists an
extractorE such that for any pra-adversaryA makingqe extraction queries there exists a two-stage pra-adversaryB =
(B1, B2) such that

Adv
pra
H, E(A) ≤ qe ·Adv

1-pra
H, E (B) .

B runs in time that ofA plusqe ·Time(E). �

37

