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ABSTRACT
We design the first Leakage-Resilient Identity-Based Encryp-
tion (LR-IBE) systems from static assumptions in the stan-
dard model. We derive these schemes by applying a hash
proof technique from Alwen et al.(Eurocrypt ’10) to variants
of the existing IBE schemes of Boneh-Boyen, Waters, and
Lewko-Waters. As a result, we achieve leakage-resilience un-
der the respective static assumptions of the original systems
in the standard model, while also preserving the efficiency
of the original schemes. Moreover, our results extend to the
Bounded Retrieval Model (BRM), yielding the first regu-
lar and identity-based BRM encryption schemes from static
assumptions in the standard model.

The first LR-IBE system, based on Boneh-Boyen IBE, is
only selectively secure under the simple Decisional Bilinear
Diffie-Hellman assumption (DBDH), and serves as a step-
ping stone to our second fully secure construction. This
construction is based on Waters IBE, and also relies on the
simple DBDH. Finally, the third system is based on Lewko-
Waters IBE, and achieves full security with shorter public
parameters, but is based on three static assumptions related
to composite order bilinear groups.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems

General Terms
Security, Algorithms, Design

Keywords
identity based encryption, hash proof system, leakage re-
silience, bounded retrieval model, dual system encryption
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1. INTRODUCTION
Traditionally in cryptography, we assume that the secret

keys are completely hidden from the potential attackers.
However, several works [26, 27, 23] showed that this premise
is not necessarily true in real systems. Many attacks such
as timing attacks, power dissipation, cold-boot attacks, can
extract some bits of information from the secret keys or the
state of the encrypting system, compromising security. In
response to this, there has been a surge of interest in creat-
ing “leakage-resilient” cryptographic schemes. While there
has already been many models of “leakage-resilience”, which
we survey later, the common goal is to design cryptographic
systems resilient to large amounts of leakage with (1) com-
parable efficiency to previously known systems, and (2) se-
curity based on simple assumptions in the standard model.

In this work we concentrate on the model of memory at-
tacks, or the relative-leakage model, introduced by Akavia et
al. [1] in response to the cold-boot attack [23]. In this model
the attacker can learn any efficiently computable function of
the system’s secret key, subject only to the constraint that
the total amount of information learned is bounded by ℓ bits.
Here ℓ is some “leakage parameter” of the system, typically
chosen relative to the security parameter of the system, with
the goal of making ℓ close to the length of the secret key.

Despite its recent introduction, the relative leakage model
has already attracted considerable attention [1, 30, 3, 25, 2,
11], due to its elegance and generality. In particular, one nat-
ural application where protection against memory attacks is
very relevant [1, 2] is the setting of identity-based encryp-
tion (IBE) [34]. An IBE system gives the ability to different
parties to encrypt messages knowing only the identity of the
receiver. The identities are used in a way similar to public
encryption keys, so we avoid the problem of public-key dis-
tribution. In the context of leakage-resilience, it is natural
to ask the question if one can design leakage-resilient IBE
systems satisfying the desirable properties (1)-(2) above.

As it turns out, existing leakage-resilient IBE schemes [1,
2] are based on known regular IBE schemes [21, 20, 6], also
having very similar efficiency, and hence satisfying our goal
(1). Unfortunately, the security of these schemes is either
analyzed in the random oracle model or is based on “non-
static” assumption in the standard model, therefore violat-
ing property (2). Indeed, the lattice-based leakage-resilient
schemes [1, 2], derived from the IBE of Gentry et al. [21], are
either analyzed in the random oracle model (and the stan-



dard learning with errors assumption), or assume a highly
non-standard interactive assumption. The same is true for
the quadratic-residuosity based scheme [2] derived from the
IBE of Boneh et al. [6]. The only leakage-resilient IBE in
the standard model (and without resorting to interactive as-
sumptions) is the scheme [2] derived from the IBE of Gen-
try [20]. However, it is only proven secure under a complex
“q-type” assumption , where the size grows linearly with the
number q of attacker’s queries. Given that there exist IBE
systems secure under simple static assumptions in the stan-
dard model [4, 35, 28], it is a natural question to ask whether
we can give leakage-resilient versions of these systems. This
was posed as an open question by Alwen et al. [2].

Our Results. We resolve this question in the affirma-
tive, and derive three leakage-resilient IBE schemes. Our
first system is based on Boneh-Boyen IBE [4]. This is only
selectively-secure but it serves as a simpler version of the
fully secure second system based on Waters IBE [35]. Like
the original schemes, we prove that both variants are leakage-
resilient under the decisional bilinear Diffie-Hellman assump-
tion (DBDH). This is a well-studied static assumption used
many times in various constructions. However, the second
system has large public parameters. In order to overcome
this obstacle we present a third system based on Lewko-
Waters IBE [28], which is secure under three static assump-
tions related to bilinear composite order groups. These as-
sumptions can be shown to hold in the generic group model
if factoring is hard [28]. Efficiency results of the new systems
compared to the old ones are shown in Table 1.

Our Technique. First, we use the hash proof system
technique of Alwen et al. [2], who showed that one can build
a leakage-resilient IBE (LR-IBE) from what they call an
identity-based hash proof system (IB-HPS). Very informally,
one can think of an IB-HPS is a special kind of IBE where,
for each identity id, there are many valid secret keys skid and
also two kinds of ciphertexts: valid and invalid. The valid ci-
phertext C decrypts the same with any secret key skid, while
an invalid ciphertext C′ decrypts to a random value R′ un-
der a random possible secret key skid. Moreover, a “random”
valid ciphertext C for id is indistinguishable from a“random”
invalid ciphertext C′ for id, even given the full secret key
skid. The two properties immediately imply that an IB-HPS

is also a secure IBE when no leakage is allowed. Moreover,
even given ℓ bits of leakage about skid, decrypting a valid
ciphertext C produces a value R which is indistinguishable
from a value R′ having (|R| − ℓ) bits of entropy. Thus, one
can get the desired LR-IBE by combining an IB-HPS with
a well studied primitive called a randomness extractor (see
[31, 13]), which will extract from R a one-time pad of length
(almost) (|R| − ℓ) to mask the actual message.

The advantage of dealing with IB-HPS rather than LR-
IBE is that its security definition is much simpler to state,
as it does not deal with leakage, and it also abstracts away
the use of the randomness extractor in the final LR-IBE con-
struction. However, IB-HPS are harder to construct than
regular IBEs, as one needs to come up with an invalid ci-
phertext generation algorithm. Luckily, Alwen et al. [2] ob-
served that this task is essentially immediate for some ex-
isting IBEs [20, 6, 21]. Coincidentally, these are precisely
the IBEs analyzed in the random oracle model or based on
non-static assumptions. On the other hand, it is not clear
how to define invalid ciphertext generation for some other

IBEs in the standard model [4, 35, 28]. One of the key hur-
dles comes from the fact that in these IBEs the owner of
the secret key could easily re-randomize his key arbitrarily,
without any other secret information. Unfortunately, this
property, which was important to argue the security of these
schemes, makes it impossible to turn these schemes into hash
proof systems. Namely, to define invalid ciphertexts which
are indistinguishable from valid ones, but decrypt to ran-
dom values under random skid. Indeed, given a challenge
ciphertext C and a secret key skid, the attacker can produce
a random key sk′id and decrypt C twice with skid and sk′id. If
the results are the same, C is valid; otherwise, C is invalid.

In this work we develop a new technique which allows us
to circumvent this problem, and eventually build the desired
IB-HPS’s with almost the same complexity as the original
IBEs. The idea is to add another degree of randomness to
our identity-based secret keys, called the “tag” t, coupled
with some master secret key terms. This is done in a way
that the secret-key holder can now only re-randomize his key
along the original degree of freedom (which is needed for the
original proof), but cannot re-randomize the key along the
new“tag-dimension”anymore. This will let us define invalid
ciphertexts which decrypt to random values when the tag
t is random, and yet decrypt to the same value when the
tag t is kept the same, but the key is re-randomized along
the original degree of freedom. This high-level technique
is the main technical contribution of our work, and will be
explained in more detail for the specific schemes.

Implications to Bounded Retrieval Model. As an-
other advantage of building an IB-HPS rather than an LR-
IBE, Alwen et al. [2] also showed how to use any IB-HPS to
construct public-key and identity-based encryption schemes
in the so called Bounded Retrieval Model (BRM).1 Infor-
mally, a BRM scheme strengthens the relative leakage model
by allowing one to arbitrarily increase the leakage parameter
ℓ by only increasing the secret key of the system, but without
significantly increasing the size of public parameters and the
encryption/decryption times (i.e., those remain essentially
independent on ℓ and only depend on the security param-
eter). We refer the reader to [2] for more discussion, but
point out that our new constructions of identity-based hash
proof systems from static assumption immediately imply the
corresponding constructions of BRM-secure public-key and
identity-based encryption schemes from static assumptions.
No such constructions were known prior to our work.

Related Work. IBE was first proposed in [34] and the
first construction, secure in the random oracle model, was
given in [5]. By utilizing a weaker notion of security, known
as selective security, many IBE systems were built in the
standard model [4, 8]. The first fully secure and efficient
IBE system based on a simple assumption was given in [35].

Leakage-resilient systems on the other hand present more
diversity and different models have been proposed. Some
early models severely restricted the classes of allowed leak-
ages available to the attacker [33, 7, 24, 19]. More recently,
Micali and Reyzin [29] proposed a leakage model called“only
computation leaks information”, where unbounded amount
of leakage is allowed but only from parts of memory that
are accessed, and several schemes in these model were re-
cently proposed [17, 32, 18, 14]. A different model of leak-

1Moreover, this construction does not generally work with
an LR-IBE in place of IB-HPS [2].



IBE System Enc.Time Dec.Time Ciphertext Size Parameters Size Problem Security Leakage

Boneh-Boyen [4] 4 · E 2 · P 1 ·RT + 2 ·R 1 ·RT + 3 ·R DBDH Selective 0

L-R BB (Sec. 3) 5 · E 2 · P 1 ·RT + 2 ·R + 1 ·X 2 ·RT + 3 ·R DBDH Selective 1/3

Waters [35] 3 · E 2 · P 1 ·RT + 2 ·R 1 ·RT + (B + 2) ·R DBDH Full 0

L-R W (Sec. 4) 4 · E 2 · P 1 ·RT + 2 ·R + 1 ·X 2 ·RT + (B + 2) ·R DBDH Full 1/3

Lewko-Waters [28] 4 · E 2 · P 1 ·RT + 2 ·R 1 ·RT + 3 ·R 1,2,3 Full 0

L-R LW (Sec. 5) 5 · E 2 · P 1 ·RT + 2 ·R + 1 ·X 2 ·RT + 3 ·R 1,2,3 Full 1/9

Table 1: Efficiency results for existing systems and our constructions

L-R denotes the leakage-resilient version of each system in this paper. For encryption and decryption times we count only
the dominant operations, which are the exponentiations in G and GT (both denoted as E), and the pairings (denoted as P ),
respectively. For sizes we denote by RT , R the number of bits for the representation of elements of GT and G, respectively. X
is the size of plaintext messages (typically symmetric encryption keys) plus the size of the extractor’s seed. B is the number
of bits of each identity. 1,2,3 are the assumptions on composite order groups given in Section 2.5, the operation times and the
parameter sizes in these systems are thus relatively larger. Leakage refers to the formally shown tolerable relative leakage.

age, which is the model used in this work and which captures
the cold-boot memory attacks, allows the attacker to call an
arbitrary leakage function on the secret key. Naturally, the
overall amount of leakage has to be bounded in this case,
since otherwise an attacker can get the entire secret key.
Two different models have been proposed: the relative leak-
age model [1, 30, 3, 25, 2, 12, 11], where the leakage is a
portion of the secret key and depends on the security pa-
rameter, and the bounded retrieval model [15, 10, 16, 2, 3],
which allows for arbitrary large leakage and increasing sizes
of secret keys, but with constant cost of encryption and de-
cryption unrelated to the amount of tolerable leakage.

2. PRELIMINARIES
Notations. For n ∈ N, 1n denotes a string of ones. We
write [n] for {1, 2, · · · , n}. By negl(n) we denote a negligible

function of n. We use s
$
← S to denote that s is picked uni-

formly at random from the set S. We write PPT for prob-
abilistic polynomial time. Finally, the statistical distance
between two random variables X, Y over a finite domain Ω
is defined as SD(X, Y ) = 1

2

P

ω∈Ω |Pr[X = ω]− Pr[Y = ω]|.

2.1 Identity-Based Encryption
An identity-based encryption scheme [34] consists of four

PPT algorithms (Setup, KeyGen, Encrypt, Decrypt).

IBE

(mpk, msk)← Setup(1λ) : The setup algorithm takes a secu-
rity parameter λ (in unary) and produces the master

public key mpk (which defines an identity set ID and a
message space M) and the master secret key msk. All
other algorithms KeyGen, Encrypt, Decrypt implicitly in-
clude mpk as an input.

skid ← KeyGen(id, msk) : For any identity id ∈ ID, the user
secret key generation algorithm uses the master secret
key msk to sample an identity secret key skid.

C← Encrypt(id, M) : The encryption algorithm takes an iden-
tity id, and a message M to be encrypted, outputs an
encryption C of the message M for identity id

M ← Decrypt(C, skid) : The decryption algorithm takes a ci-
phertext C and a secret key of identity id, and outputs
the message M (provided the ciphertext was a correct
encryption for identity id).

We require that an IBE satisfies the following properties.

I. Correctness of Decryption. For any (mpk, msk) pro-
duced by Setup(1λ), any id ∈ ID, any M ∈M, we have

Pr

2

4M ′ 6= M

˛

˛

˛

˛

˛

˛

skid ← KeyGen(id, msk)
C← Encrypt(id, M)

M ′ ← Decrypt(C, skid)

3

5 ≤ negl(λ).

II. Semantic Security with Leakage. We follow the
natural definition from [1, 2], which roughly states that an
IBE is ℓ-leakage-resilient if it remains secure (in the standard
sense defined in [5]) despite the fact that the attacker can
learn up to ℓ bits of arbitrary information about the secret
key of the identity id∗ he wants to attack. We notice that
this definition also has the restriction that only one secret
key can be produced/leaked for each identity id (even those
different from id∗). For simplicity, we also follow this model,
but remark that our IBE systems can be proven secure in a
slightly stronger model, where secret key queries from mul-
tiple secret keys for identities other than id∗ is allowed.

The resulting notion, called semantic security with leak-
age, is parameterized by the game IBE-SSL(λ, ℓ), where λ is
a security parameter and ℓ = ℓ(λ) is a leakage parameter.

IBE-SSL(λ, ℓ)

Setup : The challenger C computes (mpk, msk)← Setup(1λ)
and gives mpk to the adversary A.

Test Stage 1 : A can adaptively ask C for the following:

SecretKey : On input id ∈ ID, C replies with skid.
Leak : On input id ∈ ID, a PPT function f : ID →

{0, 1}, C replies with f(skid).

Challenge Stage : A selects two messages M0, M1 ∈ M
and a challenge identity id∗ ∈ ID which never appeared

in a secret-key query and appeared in at most ℓ leakage
queries. C chooses b ← {0, 1} uniformly at random and
gives C← Encrypt(id∗, Mb) to the adversary A.

Test Stage 2 : A gets to make secret-key queries SecretKey
for arbitrary id 6= id∗. C replies with skid.

Output : A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

Note: For secret-key or leakage queries, C computes skid ←
KeyGen(id, msk) the first time that id is queried and responds
to all future queries on the same id with the same skid.



The advantage of an adversary A in the semantic security

game with leakage ℓ is AdvIBE-SSL
IBE,A (λ, ℓ)

def
=

˛

˛Pr[A wins]− 1
2

˛

˛.

Definition 2.1 (Leakage-Resilient IBE). An IBE
scheme is ℓ-leakage-resilient, if the advantage of any PPT
adversary A in the semantic security game with leakage ℓ,
is AdvIBE-SSL

IBE,A (λ, ℓ) ≤ negl(λ). We define the relative leakage

of the scheme to be α̂
def
= ℓ/µ̂, where µ̂ is the number of bits

needed to efficiently store identity secret keys skid.

The notion is indeed very similar to the traditional notion
of semantic security for IBE [22, 5], except for the intro-
duction of the leakage queries Leak(id, fi), where fi : SK →
{0, 1} is any efficiently computable function. Without loss
of generality, we restrict the output of each such fi to a sin-
gle bit, but clearly the definition implies the ones where the
attacker can get multiple bits per leakage query, as long as
their total length for each identity is most ℓ bits. As re-
marked, we assume that each leaked secret key skid has to
be the same in all subsequent calls to Leak(id, ·).

Selective Security. If we modify the above security
game so that the adversary gives the challenge identity id∗

to the challenger before the setup, we get the “selective se-
curity” game IBE-sSSL, with the corresponding advantage
AdvIBE-sSSL

IBE,A (λ, ℓ) = Pr[A wins] − 1
2
. This, in turn, yields the

notion of selectively ℓ-leakage resilient secure IBE.

2.2 Identity-Based Hash Proof System
An Identity-Based Hash Proof System (IB-HPS) consists of

five PPT algorithms: (Setup, KeyGen, Encap, Encap∗, Decap).
The algorithms have the following syntax.

IB-HPS

(mpk, msk)← Setup(1λ) : The setup algorithm takes as in-
put a security parameter λ and produces the mas-

ter public key mpk and the master secret key msk.
The master public key defines an identity set ID,
and an encapsulated-key set K. All other algorithms
KeyGen, Encap, Decap, Encap∗ implicitly include mpk as an
input.

skid ← KeyGen(id, msk) : For any identity id ∈ ID, the KeyGen

algorithm uses the master secret key msk to sample an
identity secret key skid.

(C, k)← Encap(id) : The valid encapsulation algorithm cre-
ates pairs (C, k) where C is a valid ciphertext, and k ∈ K
is the encapsulated-key.

C← Encap∗(id) : The alternative invalid encapsulation algo-
rithm samples an invalid ciphertext C for a given id.

k ← Decap(C, skid) : The decapsulation algorithm is determin-
istic, takes a ciphertext C and an identity secret key skid,
and outputs the encapsulated key k.

We require that an IB-HPS satisfies the following properties.

I. Correctness of Decapsulation. For any values of
mpk, msk produced by Setup(1λ), any id ∈ ID, we have

Pr

2

4k 6= k′

˛

˛

˛

˛

˛

˛

skid ← KeyGen(id, msk)
(C, k)← Encap(id)
k′ = Decap(C, skid)

3

5 ≤ negl(λ).

II. Valid/Invalid Ciphertext Indistinguishability. The
valid ciphertexts generated by Encap and the invalid cipher-
texts generated by Encap

∗ should be indistinguishable even
given the identity secret key. This property is captured in
the following distinguishability game.

VI-IND(λ)

Setup : The challenger C computes (mpk, msk)← Setup(1λ)
and gives mpk to the adversary A.

Test Stage 1 : The adversary A adaptively queries the chal-
lenger C with id ∈ ID and C responds with skid.

Challenge Stage : A selects an arbitrary challenge identity
id∗ ∈ ID, and C chooses b← {0, 1}.
If b = 0, C computes (C, k)← Encap(id∗).
If b = 1, C computes C← Encap∗(id∗).
C gives C to the adversary A.

Test Stage 2 : A adaptively queries the challenger with id ∈
ID and C responds with skid.

Output : A outputs a bit b′ ∈ {0, 1} which is the output of
the game. We say that A wins the game if b′ = b.

Note: In both test stages, C computes skid ← KeyGen(id, msk)
the first time that id is queried and responds to all future
queries on the same id with the same skid.

Note that, during the challenge stage, the adversary can
choose any identity id∗, and possibly even one for which it
has seen the secret key skid∗ in Test Stage 1 (or the adver-
sary can simply get skid∗ in Test Stage 2). Without loss
of generality, we assume that the adversary always asks for
skid∗ right before the challenge stage. We define the ad-
vantage of A in distinguishing valid/invalid ciphertexts to

be AdvVI-IND
IB-HPS,A(λ)

def
= |Pr[A wins] − 1

2
|. We require that

AdvVI-IND
IB-HPS,A(λ) ≤ negl(λ).

III. Smoothness. Other than properties I and II, we will
need one additional information theoretic property. Essen-
tially, we want to ensure that there are many possibilities
for the decapsulation of an invalid ciphertext, which are left
undetermined by the public parameters of the system.

Definition 2.2 (Smooth IB-HPS). We say an IB-HPS

is smooth if, for any fixed values of mpk, msk produced by
Setup(1λ), any id ∈ ID, we have

SD((C, k), (C, k′)) ≤ negl(λ)

where C ← Encap
∗(id), k ← Decap(C, KeyGen(id, msk)) and

k′
$
← K.

2.3 Extractors
In our constructions we will use some of the following no-

tions and primitives. For a detailed treatment see [31, 13].
The min-entropy of a random variable X is defined as

H∞(X) = − log (maxx Pr[X = x]). We will mainly use the
average min-entropy of a random variable X conditioned on
another random variable Y . This is defined as

H̃∞(X|Y ) = − log
“

Ey←Y

h

max
x

Pr [X = x|Y = y]
i”

where Ey←Y denotes the expected value over y ← Y .

Definition 2.3. We say that an efficient randomized func-
tion Ext : K → {0, 1}ν is an (average-case) (µ, ǫ)-extractor
(for space K) if for all X, Z such that X is distributed over

K and eH∞(X|Z) ≥ µ, we get

SD((Z, S, Ext(X; S)), (Z, S, Uν)) ≤ ǫ,

where S denotes the coins of Ext (called the seed), and Uν

is the uniform distribution over {0, 1}ν .



An extractor can be used to extract uniform randomness
out of a weakly-random value which is only assumed to have
sufficient min-entropy µ. The famous leftover hash lemma
(see [13]) states that one can have efficient extractors capa-
ble of extracting almost µ (nearly) uniform random bits. We
also notice that, with a proper implementation, the result-
ing extractor is at least as efficient as a cryptographic hash
function, making its cost negligible for our purposes.

Lemma 2.4. For any output length ν ≤ µ−2 log (1/ǫ)−1,
there exists very efficient (µ, ǫ)-extractor Ext : K → {0, 1}ν .

2.4 Leakage-Resilient IBE from IB-HPS
Alwen et al. [2] showed how to convert a smooth IB-HPS,

given by algorithms (Setup, KeyGen, Encap, Encap∗, Decap),
into an ℓ-leakage resilient IBE. We assume that the encapsu-
lated key space K has size 2µ, and will use (µ−ℓ, ǫ)-extractor
Ext : K → {0, 1}ν , where ǫ ≤ negl(λ).

The resulting IBE will have the same identity set ID and
the same Setup, KeyGen algorithms,2 but will operate on the
message space M = {0, 1}ν . The Encrypt, Decrypt algo-
rithms are defined as follows:

Encrypt(id, M): Choose (c1, k) ← Encap(id) and seed s for
Ext, and let c2 = Ext(k; s)⊕M . Output C = (c1, s, c2).

Decrypt(C, skid): Parse C = (c1, s, c2) and then compute k =
Decap(c1, skid). Output M = c2 ⊕ Ext(k; s).

Alwen et al. [2] showed the following intuitive result:

Theorem 2.5 ([2]). Assume that an IB-HPS is smooth
and that the size of the key set K is |K| = 2µ. Let Ext : K →
{0, 1}ν be a (µ− ℓ, ǫ)-extractor for some ǫ ≤ negl(λ). Then
the above transformation produces an ℓ-leakage-resilient IBE.
In particular, by Lemma 2.4, the resulting IBE can achieve
relative leakage arbitrarily close to α̂ ≈ µ/µ̂, where µ̂ is the
bit size of individual secret key skid.

2.5 Bilinear Groups and Assumptions
We assume the existence of a group generator algorithm
G(1λ) which, on input 1λ, outputs a tuple (p, G, GT , e(·, ·))
where groups G, GT are of prime order p = Θ(2λ) which ad-
mit an efficiently computable non-degenerate bilinear map3

e : G×G→ GT . Similarly, we also assume the existence of
an algorithm G′(1λ) which outputs a tuple (N, G, GT , e(·, ·))
where groups G, GT are of composite order N = p1p2p3,
p1, p2, p3 are three prime numbers of magnitude Θ(2λ), and
e(·, ·) is defined similarly as in G(1λ). We further require
that the group operations in G and GT as well as e(·, ·) are
computable in polynomial time with respect to λ, and the
group descriptions of G and GT include generators of the
respective cyclic groups. Denote by Gj the subgroup of G of
order j. Generators of all subgroups of G can be generated
in polynomial time with the factorization of the group order.

We review four problems. The first one is about prime or-
der group and we use it to prove security of the first two sys-
tems in Sections 3, 4. The others are related to composite-
order groups which are for the last system in Section 5.

2Assuming Ext is publicly known; otherwise, mpk will also
include the description of Ext.
3We require that for every generator g ∈ G we have that
e(g, g) 6= 1 and for every a, b ∈ Zp : e(ga, gb) = e(g, g)ab.

Assumption 2.6 (DBDH). Decisional Bilinear Diffie-
Hellman problem is, given PP = (p, G, GT , e(·, ·)) ← G(1λ),
D = (g, gx, gy, gz) ∈ G

4 and Tν ∈ GT , distinguish between

ν = 0 or ν = 1, where T0 = e(g, g)xyz and T1
$
← GT . The

advantage of an algorithm A in solving DBDH is defined as

Adv
DBDH
A (λ) = |Pr[A(PP, D, T0) = 0]−Pr[A(PP, D, T1) = 0]|.

We say that the DBDH assumption holds if for all PPT
adversaries A, AdvDBDH

A (λ) ≤ negl(λ).

Assumption 2.7 (Assumptions 1, 2, 3). We first de-

fine the variables PP′ = (N, G, GT , e(·, ·))← G′(1λ), β, z
$
←

ZN , g, X1
$
← Gp1 , X2, Y2, Z2

$
← Gp2 , X3, Y3

$
← Gp3 ,

D(1) = (g, X3),

T
(1)
0

$
← Gp1p2 , T

(1)
1

$
← Gp1 ,

D(2) = (g, X1X2, X3, Y2Y3),

T
(2)
0

$
← G, T

(2)
1

$
← Gp1p3 ,

D(3) = (g, gβX2, g
zY2, Z2, X3),

T
(3)
0 ← e(g, g)βz, T

(3)
1

$
← GT .

We define Adv
(i)
A

(λ), the advantage of an algorithm A, to

be |Pr[A(PP′, D(i), T
(i)
0 ) = 0] − Pr[A(PP′, D(i), T

(i)
1 ) = 0]|.

Assumption i holds if for all PPT A, Adv
(i)
A

(λ) ≤ negl(λ).

3. OUR FIRST SYSTEM
Our first system is similar to Boneh-Boyen IBE [4] and its

security is based on the same assumption (DBDH).
We “tag” a user secret key with an integer tag t by intro-

ducing a factor of gβt (β ∈ Zp is a new secret parameter) to
the term which already has gα (α ∈ Zp is an existing secret
parameter). Intuitively, for an attacker who only gets one
secret key for each identity, deriving a new key of a different
tag requires the knowledge of gα or gβ . To offset the effect
of gβt in decryption, the ciphertext requires a new compo-
nent of e(g, g)βz where z ∈ Zp is its randomness. The same
design principle is used for all systems in this paper.

3.1 Construction
We now present the system which is denoted by CDRWBB.

CDRWBB

Setup(1λ) : Let (p, G = 〈g〉, GT , e(·, ·)) ← G(1λ). Set mpk =

(p, G, GT , e(·, ·), g, u, h, e(g, g)α, e(g, g)β) where u, h
$
← G

and α, β
$
← Zp. Also set msk = (gα, gβ).

KeyGen(id, msk) : For id ∈ Zp, choose t, r
$
← Zp. Output

skid = (s1, s2, s3) = (gαg−βt(uidh)r, g−r, t).

Encap(id) : Choose z
$
← Zp. Output C = (c1, c2, c3) =

(gz , (uidh)z , e(g, g)βz) and k = e(g, g)αz .

Encap∗(id) : Choose z, z′
$
← Zp subject to the constraint z 6=

z′. Output C = (c1, c2, c3) = (gz , (uidh)z , e(g, g)βz′

).
Decap(C, skid) : Output e(c1, s1)e(c2, s2)cs3

3 .

Theorem 3.1. If the DBDH assumption holds, CDRWBB

is a smooth IB-HPS.



Proof. For correctness of decapsulation, we have

e(c1, s1)e(c2, s2)c
s3
3

= e(gz, gαg−βt(uidh)r)e((uidh)z, g−r)(e(g, g)βz)t

= e(g, gαzg−βzt(uidh)zr)e((uidh)−zr, g)e(g, g)βzt

= e(g, gαz)e(g, g−βzt(uidh)zr)e(g, (uidh)−zr)e(g, gβzt)

= e(g, g)αz

For smoothness, for any fixed (mpk, msk, id), consider an

invalid ciphertext (c1, c2, c3) = (gz, (uidh)z, e(g, g)βz′

) and
any secret key (s1, s2, s3) = (gαg−βt(uidh)r, g−r, t), we have

e(c1, s1)e(c2, s2)c
s3
3

= e(gz, gαg−βt(uidh)r)e((uidh)z, g−r)(e(g, g)βz′

)t

= e(g, gαzg−βzt(uidh)zr)e((uidh)−zr, g)e(g, g)βz′t

= e(g, gαz)e(g, g−βzt)e(g, gβz′t)

= e(g, g)αze(g, g)tβ(z′
−z)

So, for any fixed C output by Encap
∗(id), the distribution

of Decap(C, skid), over a uniform skid ← KeyGen(msk, id), is
uniform over GT . This implies smoothness.

The most delicate property of valid/invalid ciphertext in-
distinguishability will be done in Section 3.2 below. Here we
just comment on the relative leakage α̂ = µ/µ̂ as explained
in Theorem 2.5. The encapsulated-key size is µ = log p and
the bit size of individual secret key is µ̂ = 3 log p + O(1). So
the leakage allowed is slightly less than 1/3.

3.2 Ciphertext Indistinguishability
Using the original Boneh-Boyen system naturally allows

the cancellation of the master key component gα in the sim-
ulation of secret keys for identities different than id∗. How-
ever in our setting the simulator has to create one secret key
for id∗ which is not possible in the original simulation. In
order to do this we added one more parameter β and the
tag t. Now the DBDH parameters x and y are embedded
in β = xy. The tag is used as a “trapdoor” for the simula-
tor of our proofs to relate α to β in a way hidden from any
attacker without knowing β. Specifically, he picks a known
tag t∗ and sets α = βt∗ + α̃. Knowledge of t∗ allows him to
create secret keys of the challenge identity id∗ tagged only
with t∗ since the resulting gxyt∗ from gα is cancelled by the
g−xyt∗ term from g−βt∗ . The original trick of Boneh-Boyen
still works for identities other than id∗. This key will seem
random to the attacker; as if it was sampled from the entire
space of the secret keys for id∗ since the dependence of α on
x, y and t∗ is oblivious to the attacker.

The new term e(g, g)xyz in the ciphertext will serve as the
challenge term of DBDH. Valid/invalid ciphertext indistin-
guishability comes from this term which is transformed to a
random term in case a non-valid DBDH term is given. The
same intuition holds for all three systems in this paper.

Proof (continued from Section 3.1). B is given the
tuple (g, gx, gy, gz, Tν) from a DBDH challenge. According
to the game for selective security, A gives to B an identity
id∗ that he wishes to attack.

For setup, B sets u = gx, h = (gx)−id∗gh̃, implicitly
sets β = xy and computes e(g, g)β = e(gx, gy). Finally,
he implicitly sets α = βt∗ + α̃ and compute e(g, g)α =

e(gx, gy)t∗e(g, g)α̃, where all new variables such as h̃, t∗, α̃
are chosen uniformly at random from Zp from this point on.

We argue that the variables α, h are properly distributed
because B picks the random exponents α̃, h̃ uniformly at
random. The elements g, x, y are supposed to be picked
uniformly at randomly by the DBDH challenger from their
respective groups, which makes the variables u, β properly
distributed in particular. Hence, the view of A is completely
legitimate when B responds with the public parameter

mpk = (p, G, GT , e(·, ·), g, u, h, e(g, g)α, e(g, g)β).

For test stage 1, B has to compute secret keys for all iden-
tities. For queries on id 6= id∗, B sets s′3 = t∗− t̃ and implic-
itly sets r = −yt̃/(id− id∗)+ r̃, which is properly distributed
since r̃ is chosen uniformly at random. Then he computes

s′1 = gαg−βt(uidh)r

= gxyt∗+α̃ · (g−xyt∗gxyt̃) · (gx(id−id∗)gh̃)
−yt̃

(id−id∗) · (uidh)r̃

= gα̃(gy)−h̃t̃/(id−id∗)(uidh)r̃

s′2 = g−r = (gy)t̃/(id−id∗)g−r̃

and responds with skid = (s′1, s
′
2, s
′
3).

For the query on id∗, he sets s∗3 = t∗ and picks an exponent
r. Since t∗ was chosen randomly in the setup, s∗3 is properly
distributed. Then he computes

s∗1 = gαg−βt∗(uid∗h)r = gβt∗+α̃·g−βt∗ ·(uid∗h)r = gα̃(uid∗h)r,

and s∗2 = g−r. The query is answered by skid∗ = (s∗1, s
∗
2, s
∗
3).

By choosing different t̃’s B can calculate many keys on id

with different tags since t = t∗ − t̃, but he can generate key

with only one tag for id∗ since uid∗h = gxid∗g−xid∗gh̃ = gh̃.

For challenge, B returns (c1, c2, c3) = (gz, (gz)h̃, Tν).
For test stage 2, B calculates the secret keys as he did

in test stage 1. Eventually, A outputs a guess ϕ′, then B
returns ϕ′.

It is easy to see that c2 is valid by recalling uid∗h = gh̃.
With β = xy, it is easy to see that c3 is valid if Tν =
e(g, g)xyz. This (perfectly) corresponds to the distribution

of a valid ciphertext. On the other hand if Tν =
$
← GT , then

c3 = e(g, g)βz′

for a random z′, independent of z which is
1/p statistically close to the distribution of invalid cipher-
texts output by Encap

∗(id∗). We thus proved that the ad-
vantage of B in breaking the DBDH assumption is negligibly
close to the advantage of A in the selective-ID valid/invalid
indistinguishability game.

4. OUR SECOND SYSTEM
Now we modify CDRWBB in a way similar to [35] to get

an adaptively-secure identity-based hash proof system. We
assume that all identities are B-bit vectors, and we denote
the i-th bit of id by idi. The only change is that we use Wa-
ters hash u0

QB
i=1 uidi

i for identity id = (id1, id2, · · · , idB) ∈

{0, 1}B , where B is a polynomial in the security parameter
λ, instead of Boneh-Boyen hash uidh for id ∈ Zp.



CDRWW

Setup(1λ) : Let (p, G = 〈g〉, GT , e(·, ·)) ← G(1λ). Pick

α, β
$
← Zp and u0, · · · , uB

$
← G. Set msk = (gα, gβ). Set

mpk = (p, G, GT , e(·, ·), g, u0, · · · , uB , e(g, g)α, e(g, g)β).

KeyGen(id, msk) : For id ∈ {0, 1}B , choose t, r
$
← Zp. Output

skid = (s1, s2, s3) = (gαg−βt(u0
QB

i=1 u
idi
i )r, g−r, t).

Encap(id) : Choose z
$
← Zp. Output C = (c1, c2, c3) =

(gz , (u0
QB

i=1 u
idi
i )z , e(g, g)βz) and k = e(g, g)αz .

Encap∗(id) : Choose z, z′
$
← Zp where z 6= z′. Output C =

(c1, c2, c3) = (gz , (u0
QB

i=1 u
idi
i )z , e(g, g)βz′

).

Decap(C, skid) : Output e(c1, s1)e(c2, s2)cs3
3 .

Theorem 4.1. If the DBDH assumption holds, CDRWW

is a smooth IB-HPS.

Proof. Correctness and smoothness are easy to see. The
relative amount of leakage is slightly less than 1/3 of the
secret key for the same reasons as in CDRWBB. The proof
for valid/invalid ciphertext indistinguishability follows the
original security proof [35] modified to our IB-HPS system
and security game. Details can be found in the full version
[9].

5. OUR THIRD SYSTEM
Our third system is based on the dual encryption system of

Lewko-Waters [28], designed in order to achieve full security
with smaller public parameters size. The transformation we
apply is similar to the one we used in Boneh-Boyen system.

5.1 Construction
Now we present CDRWLW, the last IB-HPS in this paper.

CDRWLW

Setup(1λ) : Let (N = p1p2p3, G, GT , e(·, ·)) ← G′(1λ). Set
mpk = (N, G, GT , e(·, ·), g, u, h, e(g, g)α, e(g, g)β) where

g is a generator of Gp1 , u, h
$
← Gp1 and α, β

$
← ZN . Set

msk = (gα, gβ , X3) where X3 is a generator of Gp3 .

KeyGen(id, msk) : For id ∈ ZN , choose t, r, ρ, ρ′
$
← ZN . Out-

put skid = (s1, s2, s3) = (gαg−βt(uidh)rX
ρ
3 , g−rX

ρ′

3 , t).

Encap(id) : Choose z
$
← ZN . Output C = (c1, c2, c3) =

(gz , (uidh)z , e(g, g)βz) and k = e(g, g)αz .

Encap∗(id) : Choose z, z′
$
← ZN subject to the constraint z 6=

z′. Output C = (c1, c2, c3) = (gz , (uidh)z , e(g, g)βz′

).
Decap(C, skid) : Output e(c1, s1)e(c2, s2)cs3

3 .

Theorem 5.1. Under Assumptions 1, 2 and 3, CDRWLW

is a smooth IB-HPS.

Proof. Decapsulation of a valid ciphertext gives

e(c1, s1)e(c2, s2)c
s3
3

= e(gz, gαg−βt(uidh)rXρ
3 )e((uidh)z, g−rXρ′

3 )(e(g, g)βz)t

= e(g, g)αze(g, g)−βzte(g, uidh)zre(g, X3)
zρ

e(uidh, g)−zre(uidh, X3)
zρ′

e(g, g)βzt

= e(g, g)αze(g, g)−βzte(g, uidh)zre(g, uidh)−zre(g, g)βzt

= e(g, g)αz

The terms e(g, X3)
zρ e(uidh, X3)

zρ′

disappear since g, u, h
are in Gp1 and X3 is in Gp3 . This proves correctness. On
the other hand, decapsulation of an invalid ciphertext gives

e(c1, s1)e(c2, s2)c
s3
3 = e(g, g)αze(g, g)tβ(z′

−z).

So, for any fixed C output by Encap
∗(id), the distribution of

Decap(C, skid) is uniform over GT . This implies smoothness.
The security proof for valid/invalid ciphertext indistin-

guishability is much more complicated than that of CDRWBB

since we have to move from the original security game to a
game where all secret keys and the ciphertext have a specific
semi-functional form. We dedicate Section 5.2 for that.

We observe that the encapsulated-key size is log |GTp1
|

where GTp1
denotes the subgroup of GT of order p1. If we

assume that elements in the composite order group GT can
be represented with 3λ bits, we get that the fraction of the
secret key that can be leaked is slightly less than 1/9.

5.2 Ciphertext Indistinguishability
To prove valid/invalid ciphertext indistinguishability we

will use the additional structures, defined in [28], of semi-
functional ciphertexts and semi-functional keys. The keys
generated by KeyGen and the ciphertexts generated by Encap

and Encap
∗ will be referred to as normal.

Definition 5.2. To create a semi-functional key, firstly
a normal key (s1, s2, s3) is created, then a random element

X2
$
← Gp2 and a random exponent θk

$
← ZN are chosen.

The semi-functional key is (s′1, s
′
2, s
′
3) = (s1X

θk
2 , s2X

−1
2 , s3).

Definition 5.3. To create a semi-functional ciphertext,
firstly a normal ciphertext (c1, c2, c3) is created, then a ran-

dom element Y2
$
← Gp2 and a random exponent θc

$
← ZN

are chosen. The semi-functional ciphertext is (c′1, c
′
2, c
′
3) =

(c1Y2, c2Y
θc
2 , c3).

Using a semi-functional key to decrypt a semi-functional
ciphertext will result in something depends on θk and θc.

e(c′1, s
′
1)e(c

′
2, s
′
2)(c

′
3)

s′3

e(c1, s1)e(c2, s2)(c3)
s3e(Y2, X

θk
2 )e(Y θc

2 , X−1
2 )

= e(g, g)αze(Y2, X2)
(θk−θc)

The proof of security relies on Assumptions 1,2,3 of Sec-
tion 2.5. We will define a sequence of games and use them
in a hybrid proof of security.

VCI. The first game is the normal security game as defined
in Section 2.2 which the challenger chooses b = 0, i.e., a
(normal) valid ciphertext is given to the adversary.

Res. The next game is the same except that all identities
the attacker queries are not equal to the challenge identity
id∗ mod p2. That means that when the attacker gives an id∗

such that for some id in test stage 1 or 2, id∗ = id mod p2 the

challenger picks a random bit ϕ
$
← {0, 1} and the attacker

succeeds if ϕ = 0. We will retain this restriction in all
subsequent games.

KGi. We denote by L(λ) the maximum number of different
identities used in secret-key queries. Then for each i ∈ [L−
1] ∪ {0} we define the game KGi to be like the Res security
game but the ciphertext is semi-functional and the generated
keys of the first i identities are semi-functional excluding the



key of i∗-th queried identity where i∗ is an index randomly
selected from [L]. If the i∗-th queried identity is not the

challenge identity, the challenger picks a random bit ϕ
$
←

{0, 1} and the attacker succeeds if ϕ = 0. We will retain this
restriction in all subsequent games. In game KG0 all keys
are normal and the ciphertext is semi-functional. In game
KGL−1 all generated keys except the key of the challenge
identity are semi-functional.

SICI. The difference of this game from the game KGK is that
the challenge ciphertext is a semi-functional invalid cipher-
text, i.e., it is first generated by Encap

∗, then is converted
to a semi-functional one as previously described.

KG′i. For each i ∈ [L− 1] ∪ {0}, we define the game KG′i to
be like the KGi security game but the ciphertext is invalid.
In game KG′L−1 all keys except the i∗-th queried identity
are semi-functional and the ciphertext is semi-functional and
invalid, i.e., KG′L−1 = SICI. In game KG′0 all keys are normal,
and the ciphertext is semi-functional and invalid.

ICI. The final game is the normal security game as defined
in Section 2.2 which the challenger chooses b = 1, i.e., a
(normal) invalid ciphertext is given to the adversary.

The advantages of all algorithms in the above games are
defined in the same way as AdvVI-IND. In the following lem-
mas we will prove that all of these games are indistinguish-
able by PPT attackers under the assumptions in Section 2.5.

Lemma 5.4. Suppose there exists a PPT algorithm A such
that AdvVCI

A − AdvRes
A = ǫ, we can build a PPT algorithm B

with advantage at least ǫ in breaking either Assumption 1 or
Assumption 2.

Proof. In both assumptions simulator B is given g and
X3, B can then “simulate” CDRWLW as in the real world by

picking uniformly at random exponents x, y, α, β
$
← ZN and

setting u = gx, h = gy. Since he knows the master secret
key (α, β, X3), he can generate secret keys for all identities.

According to the lemma’s assumption, A will query for
identities id 6= id∗ mod N and id = id∗ mod p2 with proba-
bility ǫ. This means that in the end B can compute a non-
trivial factor of N = p1p2p3 by calculating Q = N/ gcd(id−
id∗, N) where gcd(·, ·) denotes the function for the greatest
common divisor. To see, it is true that with probability ǫ:

Case 1: Q = p1 or Q = p1p3 Case 2: Q = p3

One of the two cases occurs with probability at least ǫ/2. In
case 1, B breaks Assumption 1 by raising the challenge term
Tν to Q. If ν = 1 then T Q

ν = 1. Otherwise T Q
ν 6= 1.

In case 2, B tests if e
`

(Y2Y3)
Q, Tν

´

= 1. Note that Y p3
3 =

0. If Tν contains no p2 part, i.e., when ν = 1, this pairing
equals 1. Otherwise Tν ∈ G and ν = 0.

Lemma 5.5. Suppose there exists a PPT algorithm A such
that AdvRes

A − Adv
KG0
A

= ǫ, we can build a PPT algorithm B
with advantage ǫ in breaking Assumption 1.

Proof. As in Lemma 5.4, B is given g and X3 and he can
simulate a “full” version of CDRWLW. In particular, he sets
u = gx, h = gy which makes a normal ciphertext (c1, c2, c3)

for id satisfies the relation c2 = cxid+y
1 . In the challenge

stage, B responds with the following ciphertext using the
challenge term Tν after received the challenge identity id∗:

(c∗1, c
∗
2, c
∗
3) = (Tν , T xid∗+y

ν , e(Tν , g)β).

If Tν ∈ Gp1 , A plays game Res since Tν = gz for some
z ∈ ZN , and hence we get a normal ciphertext for id∗. If
Tν ∈ Gp1p2 , Tν can be written as gzX2 for some X2 ∈
Gp2 with e(X2, g) = 0, then the above is a semi-functional
ciphertext with θc = xid∗ + y and A plays game KG0. The
value of θc modulo p2 is not correlated with the values of x
and y modulo p1 so this is correctly distributed. Hence, if
B answers ν′ = 0 when A succeeds, he has advantage ǫ in
breaking Assumption 1.

Lemma 5.6. Suppose there exists a PPT algorithm A such

that Adv
KGi−1

A,CDRWLW − Adv
KGi

A,CDRWLW = ǫ, we can build a PPT

algorithm B with advantage at least ǫ/L in breaking Assump-
tion 2.

Proof. Algorithm B has to create semi-functional keys
for some identities excluding the challenge identity. Since
he does not know id∗ before the challenge stage, he picks

uniformly at random an index i∗
$
← [L] as a guess for the

challenge identity. With probability 1/L, the guess is cor-
rect. Notice that according to the assumptions on how the
adversaries work the secret key of the challenge identity has
always been asked. For the i∗-th queried identity the secret
key is normal, regardless of its position.

As before, B sets u = gx and h = gy, and normal keys
can always be generated using the msk = (α, β, X3). For
the first i − 1 secret-key queries responds with a properly
distributed semi-functional key by:

s1 = gαg−βt(uidh)r(Y2Y3)
ρ

s2 = g−r(Y2Y3)
ρ′

X3
ρ′′

s3 = t

where id is the queried identity and t, r, ρ, ρ′, ρ′′
$
← ZN .

For the i-th queried identity he uses the challenge term:

s1 = gαg−βtT
θk
ν X3

ρ

s2 = T−1
ν s3 = t

where t, ρ
$
← ZN and θk = xid+y. For the remaining queries

B creates normal secret keys using his master secret key.
At the challenge stage A responds with the challenge iden-

tity id∗. If B did not make a correct guess for the challenge
identity, he aborts at this point. Otherwise he returns the
following challenge ciphertext:

(c∗1, c
∗
2, c
∗
3) = ((X1X2), (X1X2)

xid∗+y, e((X1X2), g)β)

which is a properly distributed semi-functional ciphertext
with θc = xid∗ + y since e(X2, g) = 0.

This is where we use our modular restriction that all iden-
tities are different to the challenge identity modulo p2. Since
for all queries id 6= id∗ mod p2, we have that the θk = xid+y
for the i-th identity and the θc = xid∗ + y seem randomly
distributed to A modulo p2. This relationship is the rea-
son that we can not create a semi-functional secret key for
the challenge identity. Then we would have θc = θk mod p2

and obviously they would not be properly distributed, i.e.,
random. For test stage 2 B answers with normal secret keys.

Notice that if Tν ∈ Gp1p3 then the secret key of the i-
th queried identity is normal. Thus A played game KGi−1.
If Tν ∈ G then this secret key is semi-functional and A
played the KGi game. Therefore if B answers ν′ = 0 when A
succeeds, he breaks Assumption 2 with probability ǫ/L.



Lemma 5.7. Suppose there exists a PPT algorithm A such
that Adv

KGL

A
− AdvSICI

A = ǫ, we can build a PPT algorithm B
with advantage ǫ/L in breaking Assumption 3.

Proof. According to Assumption 3, B first receives

(g, gβX2, g
zY2, Z2, X3, Tν).

It chooses random exponents x, y, t∗, α̃
$
← ZN and sets im-

plicitly α = t∗β + α̃. Notice that he does not know the
master secret key. He calculates the public parameters as:

u = gx e(g, g)β = e(gβX2, g)

h = gy e(g, g)α =
`

e(g, g)β
´t∗

e(g, g)α̃

and sends them to A. As in the other proofs B guesses
the challenge identity by picking a random i∗ ∈ [L]. With
probability 1/L the guess is correct.

In test stage 1, when A asks for a key on identity id 6=
id(i∗) B generates the following semi-functional keys. It picks

random exponents t̃, r, ρ, ρ′, ρ′′, ρ′′′
$
← ZN and computes:

s′1 = (gβX2)
t̃gα̃(uidh)rXρ

3Zρ′′′

2

s′2 = g−rXρ′

3 Zρ′′

2 s′3 = t∗ − t̃

The above is a properly distributed semi-functional secret

key, because gα̃(gβ)t̃ = gαg−βs′3 .

For the secret key of id∗, B picks random r, ρ, ρ′
$
← ZN

and computes a correctly distributed normal key by:

s∗1 = gα̃(uid∗h)rXρ
3 , s∗2 = g−rXρ′

3 , s∗3 = t∗.

A gives to B the challenge identity id∗. B returns

(c∗1, c
∗
2, c
∗
3) = ((gzY2), (g

zY2)
xid∗+y, Tν).

Since the values of x, y matter only modulo p1 and θc matters
only modulo p2, there is no correlation between them and
θc = xid∗ + y seems randomly chosen for any adversary.

If Tν = e(g, g)βz, then this is a valid semi-functional ci-
phertext. Therefore this game is the game KGL. If Tν ∈ GT ,
then B creates an invalid semi-functional ciphertext. This
means that A played the game SICI. Therefore B breaks
Assumption 3 with advantage ǫ/L.

Lemma 5.8. Suppose there exists a PPT algorithm A such

that Adv
KG′

i

A
− Adv

KG′

i−1

A
= ǫ, we can build a PPT algorithm

B with advantage ǫ/L in breaking Assumption 2.

Lemma 5.9. Suppose there exists a PPT algorithm A such

that Adv
KG′

1
A
− AdvICI

A = ǫ, we can build a PPT algorithm B
with advantage at least ǫ/L in breaking Assumption 2.

Proof. The proofs for Lemmas 5.8 and 5.9 are similar to
those for Lemmas 5.6 and 5.5. Note that the c3 component
of the challenge ciphertext can be easily randomized with a
random exponent z′.

Theorem 5.10. If Assumptions 1, 2 and 3 hold, CDRWLW

is valid/invalid ciphertext indistinguishable.

Proof. Suppose ǫ1(λ), ǫ2(λ), ǫ3(λ) are the maximum ad-
vantages over all attackers on Assumptions 1,2,3, respec-
tively, then for any attacker A on our system we have the

following:

Lemma Result Range

5.4 AdvVCI
A − AdvRes

A ≤ 2 max(ǫ1, ǫ2)

5.5 AdvRes
A − Adv

KG0
A
≤ ǫ1

5.6 Adv
KGi−1

A
− Adv

KGi

A
≤ Lǫ2 1 ≤ i ≤ L− 1

5.7 Adv
KGL

A
− AdvSICI

A ≤ Lǫ3

5.8 Adv
KG′

i

A
− Adv

KG′

i−1

A
≤ Lǫ2 1 ≤ i ≤ L− 1

5.9 Adv
KG′

0
A
− AdvICI

A ≤ Lǫ1

Recall that SICI = KG′L−1, by adding all the inequalities:

Adv
VCI
A −Adv

ICI
A ≤ 2 max(ǫ1, ǫ2)+ǫ1+2L(L−1)ǫ2+L(ǫ1+ǫ3).

If the premise of the theorem is true, ǫ1, ǫ2, ǫ3, are negligi-
ble functions of λ. Since L is a polynomial of λ, we conclude
that the advantage of all PPT attackers is negligible.

We remark that one may define Encap
∗ differently for less

game transitions, as long as it still achieves smoothness.

6. FUTURE DIRECTIONS
Improve Leakage Fraction. A promising direction is
to improve the leakage allowed from each secret key as the
fraction of its size. It seems that our results can be general-
ized by using multiple tags in the secret key, but the security
analysis is more complicated.

Multiple-key Leakage. In all leakage-resilient IBE sys-
tems, including the ones presented in this paper, leakage is
allowed from only one secret key per identity. Although,
this can be easily achieved by generating the randomness of
the secret-key algorithm using a pseudo-random generator,
leakage from multiple keys might be useful in HIBE (hierar-
chical identity-based encryption) and ABE (attribute-based
encryption) systems, based on IBE constructions. In these
cases different secret keys have to be generated for the same
identities, and as a result it is more difficult to apply leakage-
resilient techniques.

Master Secret Key Leakage. As we saw no leakage is
allowed from the master secret key of our systems. We as-
sumed that it is totally hidden from the adversary. It is an
interesting open question if there exist IBE systems resilient
to master secret key leakage. Since there is a generic trans-
formation of any IBE system to a signature scheme having as
signing key the master secret key of the IBE system, it will
provide constructions of leakage-resilient signature schemes.

Leakage-Resilient HIBE. Finally, it is interesting to see
whether leakage-resilient HIBE systems exist, or how exist-
ing techniques (like tagging) can be applied. to this setting.
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