
Universal Con�gurations in Light-Flipping GamesYevgeniy Dodis� Peter Winklery1 \Lights Out" and \Orbix"The following is a popular hand-held eletroni gameby Tiger Eletronis, alled \Lights Out". This gameis played on a 5 � 5 grid of buttons whih also havelights in them. By pressing a button, its light and thoseof the (non-diagonally) adjaent buttons will hange(swith ON if it was OFF, and vie versa). Givensome initial pattern of lights, one has to swith themall OFF by pressing several buttons. Obviously, thegame an be played on other boards (indeed, Tigerprodued a 6 � 6 version, and even a 3 � 3 � 3 ubeversion), and naturally generalizes to any graph G. Inaddition, there are many on-line implementations andother interesting doumentation about the game (see[4℄ and the numerous links therein, or simply searh theweb for \lights out tiger").On a more sienti� front, \Lights Out" and thequestions derived from it (e.g., whih on�gurations anbe turned o� for whih graphs, how many buttons doesone have to press, what is the smallest number of lightsthat an be left ON, et.) have generated a surprisingamount of researh (see [5℄ and the referenes therein).We shall point out only one somewhat surprising fat,�rst disovered by Sutner [3℄, and later simpli�ed by[1, 2℄. Namely, while many initial on�gurations annotbe ompletely turned o� for many graphsG, it turns outthat the \all-ON" on�guration an always be turnedo�, for any n-vertex graph G. We will all suh aon�guration universal. We notie that another (trivial)universal on�guration is the \all-OFF" on�guration.By looking at the omplete graph G (whih has onlytwo opposite on�gurations for any initial on�gurationof lights), we see that all-ON and all-OFF are the onlyuniversal on�gurations for the \Lights Out" game.\Orbix" is another very similar sounding eletronigame produed by Me�ert's [6℄. Now the basi gameis played on the iosahedron rather than a grid. Butthe rules are the same exept for one major di�erene:pressing a button only hanges the state of the neigh-boring buttons, but not the state of the atual button�MIT Lab for Computer Siene, 545 Tehnology Square,Cambridge, MA 02139. Email: yevgen�theory.ls.mit.eduyDepartment of Fundamental Mathematis Researh, BellLabs, 700 Mountain Avenue, Murray Hill, NJ 07974. Email:pw�researh.bell-labs.om

pressed. Again, \Orbix" obviously generalizes to anygraph G. Now, however, the only universal on�gura-tion (the one that an be ompletely turned o� for anyG) is the trivial all-OFF on�guration (whih an beseen by looking at the empty graph, where any initialon�guration an not be hanged in \Orbix").2 Common GeneralizationWe now onsider the following ommon generalizationof the above two games, whih we all the light-ippinggame. As before, we are given some undireted n-vertexgraph G, eah of whose nodes has an indiator light(whih an be ON or OFF) and a button. However,now the buttons are of two possible types: exlusiveand inlusive. Pressing any exlusive button will ipthe state of all of the neighboring buttons in G (fromON to OFF and vie versa), but leaves unhanged thestate of the button pressed (ala \Orbix"). On the otherhand, pressing any inlusive button will also ip thestate of this button as well (ala \Lights Out"). Let bbe the vetor of button types, i.e. bv = 0 if button vis exlusive, and bv = 1 for an inlusive v. Given someinitial on�guration  of lights, the objetive of the light-ipping game is to turn all the lights OFF by pressingseveral buttons.Definition 2.1. A on�guration  is alled universalfor a button pattern b, if  an be turned o� for anygraph G.In this paper we determine all universal on�gu-rations for arbitrary light-ipping games (given by b).Given a on�guration of lights , we will write v = 1 ifv's light is ON, and v = 0 if it is OFF. Then, our mainresult is given by the followingTheorem 2.1. The only universal on�gurations  fora given button pattern b are  = ~0 (the trivial all-OFFon�guration) and  = b. In partiular, for any graphG one an turn o� all the lights when  = b.Notie that our result generalizes the result ofSutner [3℄ for the \Lights Out" game, stating that = ~1 (all-ON) is a universal on�guration for this game.Also, any light-ipping game other than \Orbix" has a(unique) non-trivial universal on�guration  = b. In1



2other words, a on�guration that is ON on inlusivebuttons, and OFF on exlusive buttons an always beturned o�!3 Proof of Main TheoremTake any button pattern b. Let us start with determin-ing whih initial on�gurations ould be universal. Con-sider a graph G whose (only) edges form a lique K onall the inlusive buttons. In partiular, all the exlusivebuttons are the isolated verties of G. Assume that aninitial on�guration  an be turned o� for this G (andb). Then all the exlusive (isolated) buttons should beOFF in , sine there is no other way to turn them o�.On the other hand, sine pressing any inlusive buttonsimultaneosly ips the state of all the inlusive buttons(sine G forms a lique on these buttons), and sinethe all-OFF state has to be reahed, there are only twopossibilities for  on K: either all the inlusive buttonsshould be OFF (this gives  = ~0), or all should be ON(this gives  = b).Before showing the onverse, we rewrite our prob-lem using some linear algebra. First, it never makessense to press a button twie (whih is the same as notpressing the button at all), and the order of the buttonsis not important as well. Thus, turning o� an initialon�guration  is equivalent to �nding a subset S ofbuttons to press. Take any suh andidate S and let xbe the harateristi vetor of S: xw = 1 if w 2 S andxw = 0 otherwise. Then the �nal status of a light at vafter pressing buttons in S is simplyv + Xw2N(v)xw + bvxv(3.1)where the addition modulo 2, and N(v) = fw j (v; w) 2E(G)g is the set of v's neighbors inG. Indeed, v was v'sinitial state, the sum in the middle is the ontributionof v's neighbors in G, and bvxv is the ontribution frompossibly pressing the button v itself. But Equation (3.1)is just an aÆne linear transformation over GF (2)!Namely, if we let A = A(G; b) be the n � n adjaenymatrix of G with the vetor b on the diagonal (i.e., forv 6= w, av;w = 1 i� (v; w) 2 E(G), and av;v = bv), the�nal light on�guration of G will be (Ax+ ), where allthe operations are over GF (2). Hene, a set S turningall the lights o� (i.e., making Ax +  = ~0) exists i� thelinear system Ax =  is solvable over GF (2). Namely,Lemma 3.1. Let b be a button pattern, G be a graph andA = A(G; b). An initial on�guration  an be turnedo� if and only if the linear system Ax =  is solvableover GF (2).As a side remark, the above lemma gives an eÆientproedure to turn all the lights o�, when possible. But

let us get bak to the onverse of our theorem. Sine ~0 isa trivial universal on�guration, it remains to show thatone an always turn o� the on�guration  = b. Notiethat by varying the graph G, the matrix A = A(G; b)ranges through all the symmetri matries over GF (2)whose whose diagonal (denoted diag(A)) is equal to b.Thus, to show that the on�guration  = b is universal itis (neessary and) suÆient to show the following lemmaof independent interest:Lemma 3.2. Let A = (aij) be an n�n symmetri zero-one matrix, and let b = diag(A). Then the linear systemAx = b is solvable over GF (2).Proof. Assume on the ontrary that the system is notsolvable. This means that there are linearly dependentrows i1; : : : ; ik of A whih yield a ontradition, i.e.bi1 + : : :+ bik 6= 0. Sine b = diag(A), we get thatai1;i1 + : : :+ aik ;ik = 1(3.2)Let A0 be a square sub-matrix of A generated by rowsi1; : : : ; ik and olumns i1; : : : ; ik. Let us denote by sthe sum of all the elements of A0, and ompute s intwo di�erent ways. First, sine the rows i1; : : : ; ik of Aare linearly dependent, eah olumn of A0 sums to 0,making s = 0.On the other hand, sine A is symmetri, then so isA0. But the sum of all the entries of a symmetri matrixover GF (2) equals to the sum of its diagonal entries!Indeed, all the o�-diagonal elements are summed twieaneling eah other over GF (2). Hene, s = ai1;i1 +: : :+aik;ik , whih is equal to 1 by Equation (3.2). Hene,we got both s = 0 and s = 1, a ontradition.Aknowledgments: We would like to thank ChipKlostermeyer for pointing out relevant referenes, aswell as Ron Rivest and Yoav Yerushalmi for presentingthe problem to us.Referenes[1℄ Y. Caro, Simple Proofs to Three Parity Theorems, ArsCombinatoria, 42:175{180, 1996.[2℄ R. Cowen, S. Hehler, J. Kennedy, and A. Ryba, In-version and Neighborhood Inversion in Graphs, GraphTheory Notes of New York, vol. XXXVII, pp. 38-42,1999.[3℄ K. Sutner, Linear Cellular Automata and the Garden-of-Eden, The Mathematial Intelligener, 11(2):49{53,1989.[4℄ Lights Out Links. URL:http://www.matthewb.redhotant.o.uk/links.html.[5℄ Fibbonahi Polynomials. URL:http://www.see.wvu.edu/~wfk/fib.html.[6℄ The Orbix. URL:http://www.mefferts-puzzles.om/mefferts-puzzles/puzzles/orbix.html.


