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Abstract

Digital signing is at the heart of Internet based transactions and e-commerce. In this global communica-
tion environment, signature computation will be frequently performed on a relatively insecure device (e.g., a
mobile phone) that cannot be trusted to completely (and at all times) maintain the secrecy of the private key.
Loss of private keys has a devastating effect on digital signature schemes and is considered a catastrophic
event. If the loss of a key is not noticed early enough, the liability involved in the unlimited number of
possible abuses (signature forgeries) may be prohibitive to the wide-scale deployment of digital signatures
for high-volume transactions.

In an effort to deal with this, we propose the study ofstrong key-insulatedsignature schemes whose goal
is to minimize the damage caused by secret-key exposures. Inthe key-insulated model (recently considered
for public-key encryption schemes [8]), the secret key(s) stored on an insecure device are refreshed at dis-
crete time periods via interaction with a physically-secure (but computationally-limited) device which stores
a “master key”. All signing is still done by the insecure device, and the public key remains fixed throughout
the lifetime of the protocol. In a strong(t;N)-key-insulated scheme, an adversary who compromises the
insecure device and obtains secret keys for up tot periods is unable to forge signatures for any of the re-
mainingN � t periods. Furthermore, the physically-secure device (or anadversary who compromises only
this device) is unable to forge signatures foranytime period.

We construct strong key-insulated signature schemes basedon a variety of assumptions. First, we
demonstrate and prove secure a generic construction of a strong(N �1; N)-key-insulated signature scheme
using any standard signature scheme. We then give an improved construction of a strong(t;N)-signature
scheme whose security may be based on the discrete logarithmassumption in the random oracle model.
Finally, we construct strong(N � 1; N)-key-insulated schemes based on any “trapdoor signature scheme”
(a notion we introduce here); this leads to very efficient solutions based on, e.g., the RSA assumption in the
random oracle model. We also investigate a close connectionbetween our notion of key-insulated signature
schemes and that of identity based signature schemes.

1 Introduction

Cryptographic primitives are typically defined based on theassumption of “perfectly secure” storage which
prevents any exposure of the private keys. However, given the rapid development and ever-changing nature
of the communication and computational infrastructure, waiting for this perfect (and unobtainable) situation to
materialize will surely prevent the deployment of cryptography altogether.

In reality, for any signature scheme deployed on an inexpensive, mobile, and (hence) relatively insecure
device, the threat of secret key exposure is perhaps the mostdebilitating. Exposure of the secret key typically�dodis@cs.nyu.edu. Department of Computer Science, New York University.yjkatz@cs.columbia.edu. Department of Computer Science, Columbia University. Worksupported in part by DIMACS.zshouhuai@yahoo.com. Department of Computer Science, George Mason University.xmoti@cs.columbia.edu. CertCo, Inc.
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means that all security guarantees are lost; furthermore, it is often much easier to obtain a secret key from a naive
or unsuspecting user than to break the computational assumption on which the security of the system is based.
With the increasing prevalence of mobile, wireless devicesfor which the importance of secure authentication is
paramount, concerns about key exposure must be addressed ina satisfactory and timely fashion, and this is the
issue we deal with here.

A recently-proposed method of minimizing the damage causedby secret key exposures is that ofkey-
insulated cryptography[8] (motivated by earlier work onforward-secure cryptography[4, 5]). In this model,
physical security (and hence secrecy of stored data) is guaranteed for asingle device that holds a “master”
secret keySK� corresponding to a fixed public keyPK. Day-to-day cryptographic operations, however, are
performed by an insecure device which “refreshes” its key periodically by interacting with the secure device.
In a (t;N)-key-insulated cryptosystem (informally) an adversary who compromises the insecure device and
obtains keys for up tot time periods is unable to violate the security of the cryptosystem for any of the re-
mainingN � t periods; we elaborate for the specific case of digital signatures below. In astrongkey-insulated
system, security is additionally guaranteed with respect to the secure device itself or compromises thereof;
this is vital when the secure device may be untrusted. Strongkey-insulated public-key encryption schemes
have been defined and constructed recently [8]; here, we provide the first definitions and constructions for key-
insulated signature schemes. We believe that signature schemes are important case and deserve special efficient
constructions and theoretical investigation of their own.Precise modeling and tailored constructions for the
case of digital signatures results, in fact, in a wide variety of efficient protocols for this primitive. Theoretical
connections between this primitive and the basic primitiveof ID-based signatures is investigated as well.

1.1 Overview of the Model

We review the informal description of the model as given in [8], adapted here for the case of digital signatures
rather than public-key encryption. As in a standard signature scheme, the user begins by registering a single
public keyPK. A “master” secret keySK�, generated along withPK, is stored on a device which is physically
secure and hence resistant to compromise. All signing, however, is done by the user on an insecure device for
which key exposures may occur. The lifetime of the protocol is divided into distinct periods1; : : : ; N ; one may
think of these each as one day. At the beginning of periodi, the user interacts with the secure device to derive a
temporary secret keySKi which will be used to sign messages during that period. The public keyPK used to
verify signatures remains fixed. Signatures are labeled with the time period during which they were generated.
Thus, signing messageM during periodi results in signaturehi; si.

The user’s insecure device, on which the temporary keys are stored, is assumed to be vulnerable to repeated
key exposures; specifically, we assume that up tot < N periods can be compromised. Our goal is to minimize
the effect such compromises will have. Of course, when a keySKi is exposed an adversary will be able to
sign messages of his choice for periodi. Our notion of security is that this is the best an adversary can do. In
particular, the adversary will be unable to forge a signature on a new message for any of the remainingN � t
periods. We call a scheme satisfying this notion(t;N)-key-insulated.

If the physically-secure device is completely trusted, this device may generate(PK;SK�) itself, keepSK�,
and publishPK on behalf of the user. When the user requests a key for periodi, the device may computeSKi
and send it. More involved methods are needed when the physically-secure device isnot trusted by the user. In
this, more difficult case (which we consider here), a solution is to have the user generate(PK;SK), publishPK, and then derive keysSK�; SK0. The user then sendsSK� to the device and storesSK0 himself on the
insecure device. When the user wants to update his key to thatof periodj (and the user currently holds the
key for periodi) the physically-secure device computes and sends “partial” key SK 0i;j to the user, who may
then compute the “actual” keySKj usingSKi andSK 0i;j. If designed appropriately, the user’s security may
be guaranteed duringall time periods with respect to the device itself. Schemes meeting this level of security
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are termedstrong. As noted previously [8], strong key-insulation is essential when a single device serves many
different users. Here, users may trust the device to update their keys but may not want the device to be able to
sign on their behalf.

The assumption of a basic level of synchronization, so that every party in the system knows the index of the
current period, is necessary for the model to be well-defined. Also necessary is some form of authentication
between the user and the physically-secure device during the key update phase. Note that if a keyK is used for
this authentication and is stored on the insecure device, anadversary who exposes keys evenonceobtainsK and
can then impersonate the user during subsequent key updates(thus obtaining signing keys for subsequent time
periods). As in previous work, however, we assume that authentication is handled by an underlying protocol,
outside the scope of this work, which is immune to such attacks. As one possible example,K might never be
stored on the insecure device but instead might be obtained directly from the user each time authentication is
needed (e.g.,K may be a password or a key derived from biometric information).

1.2 Our Contributions

The initial work on key-insulated cryptosystems [8] focused exclusively on the case of public-key encryp-
tion; here, we focus on specialized and improved solutions for the complementary case of digital signatures.
Adapting a “folklore” result (which has been put forth in [4]), we first show a generic construction of a strong(N � 1; N)-key-insulated signature scheme from any standard signature scheme. We then give a strong(t;N)-
key-insulated signature scheme whose security may be reduced to the discrete logarithm assumption in the
random oracle model. Finally, noting a connection — which had been overlooked in some previous work —
between key-insulated and identity-based cryptosystems,we construct strong(N � 1; N)-key-insulated signa-
ture schemes based on any “trapdoor signature scheme” (a term we introduce here). This results in very efficient
solutions based on, e.g., the RSA assumption in the random oracle model. Our last approach also generalizes
several recent (and independent from this work) proposals [6, 15, 27, 28] for identity-based signature schemes
based on the so called “Gap Diffie-Hellman Groups” (see [25]).

We believe that this demonstated variety of schemes for the specialized protection of digital signatures is an
important step toward full deployment of a Public Key Infrastructure in realistic environments.

1.3 Related Work

Girault [11] investigates a notion similar to that of key insulation of digital signatures in the context of smart
card research. However, this preliminary work has no formalmodel and no proofs of security. Attempts at
key-insulated public-key encryption were considered by Tzeng and Tzeng [33] and also by Lu and Shieh [20]
(but only against a weak non-adaptive adversary). Key-insulated public-key encryption was first formalized,
and schemes with rigorous proofs of security given, in the recent work of Dodis, et al. [8].

The notion of key insulation is related to, yet distinct from, the notion of forward security [4, 5, 3, 19, 16, 21].
In the forward-secure model (introduced by [4, 5]), the secret key is updated without any interaction with an
outside device; thus, an adversary compromising the systemobtainsall the secret information existing at that
point in time. In this setting the adversary cannot be prevented from signing messages associated with future
time periods which is a major consideration herein. Forward-secure signature schemes, however, prevent the
adversary from signing messages associated withprior time periods. A consequence is that even the legal user
is unable to generate signatures for prior time periods.

Compared to the forward-secure model, the key-insulated model makes the stronger assumption of (a lim-
ited amount of) physically-secure storage.1 For this reason, much stronger security guarantees — namely, that

1For many applications, this secure storage can be realized,for example, by a personal smartcard or a non-networked server.
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the adversary cannot sign messages associated withany non-compromised time period — are possible. Fur-
thermore, the assumption of secure storage enables the honest user to request “old” keys thereby allowing the
legal user (who has been correctly authenticated) to sign documents for prior time periods. As we mentioned
above, this is impossible in the forward-secure setting. This random access to keys also allows a two-level
signature scheme in which one, “basic” level is used for normal day-to-day operation (and the key-insulated
security guarantee still holds) and a second, “privileged”level is reserved for emergency or highly sensitive
transactions.

Somewhat related to key insulation is the problem of signature delegation [12]. In this model, a user wants
to delegate use of a signing key in a particular way. For example (to place it in our setting), a user may delegate
the right to sign messages for a single day. Here, one seeks toprevent exposure of the “master” signing key
when a small number of delegated keys are exposed. On the other hand, to prevent excessive delegation it is
required that exposure of many delegated keys completely reveals the master key. The key-insulated model
makes no such requirement, and this allows for greater efficiency and flexibility. We also note that the existing
practical delegation schemes [12] are not provably-secureagainst anadaptiveadversary who chooses which
keys to expose at any point during its execution. Finally, our strongschemes also protect against forgeries by
the physically-secure device itself; this has no counterpart in the context of signature delegation.

Independent of the present work, we have become aware of related work in the context of re-keyed digital
signatures [2]. Recasting this work in our model, one may observe that they construct(N�1; N)-key-insulated
signature schemes based on either (1) generic signature schemes or (2) the factoring assumption. Their generic
construction is essentially identical to ours except that we additionally ensure that our scheme isstronglyse-
cure. Our discrete logarithm scheme has no counterpart in [2]. Our scheme based on trapdoor signatures and
specialized for RSA may be viewed as the “Guillou-Quisquater” [14] analogue to their “Ong-Schnorr” [26]
factoring-based scheme, where again we additionally ensure strong security of our construction. The notion of
random access to keys is unique to our treatment.

Finally, we mention a close connection with identity-basedsignature schemes [31] (a connection which
has been overlooked in some previous work [11]). An identity-based signature scheme may be viewed as an(N � 1; N)-key-insulated scheme, and vice versa. We note, however, that ensuringstrongsecurity requires
additional work, so it might be harder to build strong key-insulated signatures than regular ID-based signatures.
We discuss this connection in more detail in Section 5.

Our work has already infuenced further modeling and furtherschemes. Itkis and Reyzin [17] add to our
notion the idea of proactive refresh capability which allows even a stronger adversary. Their adversary may
corrupt both the signer and the other device as well, in an alternating fashion. We hope that various strength-
enings and similar developments can be further motivated bythis work, since we believe that protection of
cryptographic keys is very central to the notion of security.

2 Definitions

2.1 The Model

In this section, we provide a formal model and definition for key-insulated signature schemes and their security.
We begin with the definition of a key-updating signature scheme, which generalizes the notion of a key-evolving
signature scheme [5]. In a key-updating signature scheme there is some data (namely,SK�) that is never erased;
this data need not be erased since it will be stored on a physically-secure device and hence never exposed.

Definition 1 A key-updating signature scheme� is a 5-tuple of polynomial time algorithms(Gen;Upd�;Upd;Sign;Vrfy)
such that:
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� Gen, thekey generation algorithm, is a probabilistic algorithm taking as input a security parameter1k and the total number of time periodsN . It returns a public keyPK, a master keySK�, and an initial
keySK0.� Upd�, the device key-update algorithm, is a probabilistic algorithm taking as input indicesi; j for
time periods (throughout, we assume1 � i; j � N ) and the master keySK�. It returns a partial secret
keySK 0i;j .� Upd, theuser key-update algorithm, is a deterministic algorithm taking as input indicesi; j, a secret
keySKi, and a partial secret keySK 0i;j . It returns the secret keySKj for time periodj.� Sign, thesigning algorithm, is a probabilistic algorithm taking as input an indexi of a time period, a
messageM , and a secret keySKi. SignSKi(i;M) returns a signaturehi; si consisting of the time periodi and a signatures.� Vrfy, the verification algorithm, is a deterministic algorithm taking as input the public keyPK, a
messageM , and a pairhi; si. VrfyPK(M; hi; si) returns a bitb, whereb = 1 means the signature is
accepted.

If VrfyPK(M; hi; si) = 1, we say thathi; si is avalid signature ofM for periodi. We require that all signatures
output bySignSKi(i;M) are accepted as valid byVrfy.

A key-updating encryption scheme is used as one might expect. A user begins by generating(PK;SK�; SK0) 
Gen(1k; N), registeringPK in a central location (just as he would for a standard public-key scheme), storingSK� on a physically-secure device, and storingSK0 himself.2 When the user — who currently holdsSKi
— wants to obtainSKj the user requestsSK 0i;j  Upd�(i; j; SK�) from the secure device. UsingSKi andSK 0i;j, the user computesSKj = Upd(i; j; SKi; SK 0i;j); this key may be then used to sign messages during
time periodj without further access to the device. After computation ofSKj , the user erasesSKi andSK 0i;j.
Note that verification is always performed with respect to a fixed public keyPK which does not need to be
changed.

Remark 1 The above definition corresponds to schemes supportingrandom-access key updates [8]; that
is, schemes in which one can updateSKi toSKj in one “step” for anyi; j. A weaker definition allowsj = i+1
only. All schemes presented in this paper support random-access key updates.

2.2 Security

Basic key insulation. The adversary we consider is extremely powerful: (1) it may request signatures on
messages of its choice during time periods of its choice, adaptively and in any order (i.e., we do not restrict the
adversary to making its queries in chronological order); (2) it may expose the secrets contained on the insecure
device for up tot adaptively-chosen time periods (alternately, it may choose to expose the secrets stored on
the physically-secure device); and (3) it can compromise the insecure device during a key-update phase, thus
obtaining partial keys in addition to full-fledged secret keys. The adversary is considered successful if it can
forge a valid signaturehi; si on messageM such that the adversary never requested a signature onM for periodi and furthermore the adversary never exposed the insecure device at time periodi.

We will model each of these attacks by defining appropriate oracles to which the adversary is given access.
To model key exposures, we give the adversary access to akey exposure oracleExpSK�;SK0(�) that does

2The purpose ofSK0 is to ensurestrongsecurity; i.e., protection against (compromises of) the physically-secure device. If such
protection is not needed, we may simply setSK0 =?.
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the following on inputi: (1) The oracle first checks whether periodi has been “activated”; if so, the oracle
returns the value already stored forSKi. Otherwise, (2) the oracle runsSK 0i  Upd�(0; i; SK�) followed
by SKi = Upd(0; i; SK0; SK 0i), returns and stores the valueSKi, and labels periodi as “activated”. We
also give the adversary access to asigning oracleSignSK�;SK0(�; �) that does the following on inputi;M : (1)
The oracle first checks whether periodi has been “activated”; if so, the oracle returnsSignSKi(i;M) (where
a value forSKi is already stored). Otherwise, (2) the oracle runsSK 0i  Upd�(0; i; SK�) followed bySKi = Upd(0; i; SK0; SK 0i), storesSKi, returnsSignSKi(i;M), and labels periodi as “activated”.

Remark 2 Storing the values of the secret keys for “activated” periods is only necessary whenUpd� is
probabilistic; when it is deterministic (as is the case for some of our schemes), the oracle may simply run
Upd� “from scratch” whenever needed to answer an oracle query. Tobe fully general, we might have al-
lowed the adversary to access a “re-issuing oracle” which oninput i re-computes the secret keySKi viaSKi  Upd(0; i; SK0;Upd�(0; i; SK�)). The schemes presented here all remain secure under a more com-
plex definition of this form.

Definition 2 Let� = (Gen;Upd;Upd�;Sign;Vrfy) be a key-updating signature scheme. For any adversaryA, define the following:

SuccA;�(k) def= Pr h VrfyPK(M; hi; si) = 1 ��� (PK;SK�; SK0) Gen(1k; N);(M; hi; si) ASignSK�;SK0(�;�);ExpSK�;SK0(�)(PK) i;
where(i;M) was never submitted to the signing oracle andi was never submitted to the key exposure oracle.
We say that� is (t;N)-key-insulated if, for anyPPT A who submits at mostt requests to the key-exposure
oracle,SuccA;�(k) is negligible. We say� is perfectly key-insulated if� is (N � 1; N)-key-insulated.

We remark that we allow the adversary to interleave signing requests and key exposure requests, and in
particular the key exposure requests of the adversary may bemade adaptively (based on the entire transcript of
the adversary’s execution) and in any order.

Secure key updates. For the purposes of meeting Definition 2, we could let thaSK 0i;j = SK� for all i; j;
the user could then runUpd� andUpd by himself to deriveSKi (and then eraseSK�). Of course, one reason
for not doing so is the realistic concern that an adversary who gains access to the insecure device is likely to
have access for several consecutive time periods (i.e., until the user detects or re-boots) including thekey update
steps. In this case, an adversary attacking the scheme above wouldobtainSK� and we would not be able to
achieve even(1; N)-key-insulated security.

To address this problem, we consider attacks in which an adversary breaks in to the user’s storage while a key
is being updated fromSKi toSKj ; we call this akey-update exposure at(i; j). When this occurs, the adversary
receivesSKi; SK 0i;j , andSKj (actually, the latter can be computed from the former). We say a scheme has
secure key updatesif a key-update exposure at(i; j) is of no more help to the adversary than key exposures at
both periodsi andj. More formally:

Definition 3 A key-updating signature scheme� has secure key updates if the view of any adversaryA
making a key-update exposure at(i; j) can be perfectly simulated by an adversaryA0 making key exposure
requests at periodsi andj.
Strong key insulation. Finally, we address attacks that compromise the physically-secure device (this in-
cludes attacks by the device itself, in case it is untrusted). Here, our definition is similar to Definition 2 except
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that instead of having access to the key exposure oracle, theadversary is simply given the master keySK�.
Schemes which are secure in this sense — and also(t;N)-key-insulated — are termedstrong (t;N)-key-
insulated. Note that we do not protect against an adversary who compromisesboththe physically-secure device
and the user’s storage; in our model, this is impossible to achieve. (But see the recent work of [17] for some
partial solutions to this problem.)

Definition 4 Let� = (Gen;Upd;Upd�;Sign;Vrfy) be a signature scheme which is(t;N)-key-insulated. For
adversaryB, define the following:

SuccB;�(k) def= Pr h VrfyPK(M; hi; si) = 1 ��� (PK;SK�; SK0) Gen(1k; N);(M; hi; si) BSignSK�;SK0(�;�)(PK;SK�) i;
where(i;M) was never submitted toSignSK�;SK0(�; �). We say� is strong (t;N)-key-insulated if for anyPPTB, SuccB;�(k) is negligible.

3 Generic, Perfectly Key-Insulated Signature Scheme

We demonstrate a perfectly key-insulated signature schemethat can be constructed from any existentially un-
forgable (standard) signature scheme� = (G;S; V ). Rather than repeating the standard definition of security,
we may view� as as(0; 1)-key-insulated scheme in the natural way. Thus, our construction can be viewed as
the amplification of a(0; 1)-key-insulated scheme to a perfectly key-insulated scheme. We later show how to
achieve strong key insulation with minimal additional cost.

The basic construction achieving perfect(N�1; N)-key-insulation is folklore.Gen generates a pair of keys(PK;SK�)  G(1k), sets the public key toPK, setsSK0 =?, and storesSK� on the physically-secure
device. At the beginning of time periodi, the device generates a fresh pair of keys(pki; ski) G(1k) and cer-
tifiespki for time periodi by signing it as follows:erti = (pki; SSK�(pkiki)). It then setsSKi = hski; ertii
and sendsSKi to the user, who erases the previous key. The user signs a messageM at time periodi by
using the “temporary” keyski and appending the certificateerti; that is,SignSKi(i;M) = hi; �; ertii, where�  Sski(M). To verify, one first verifies correctness of the cerificate and then uses the period verification
key pki to verify the signature�, accepting only if both are valid. We remark that it is crucial to sign the time
periodi along withpki since this prevents an adversary from re-using the same certificate at a different time.

Signing requires computation equivalent to the original (basic) signature scheme, while the cost of signature
verification is increased by a factor of two. In practice, verifying the validity of erti need only be done once
per period when multiple signatures are verified. Security of the scheme is given by the following.

Lemma 1 If � is existentially unforgeable under a chosen message attack, then� as described is(N � 1; N)-
key-insulated. Furthermore,� has secure key updates.

Proof That� has secure key updates is trivial. We therefore focus on the proof of perfect key insulation. LetA attack�. A forgery occurs when the adversary forges a valid signature hi; �; (pk; �)i of some messageM
at time periodi such that: (1)� is a vaild signature of(pkki) w.r.t. PK; (2) � is a valid signature ofM w.r.t.pk; (3) periodi was not exposed; and (4)(i;M) was not submitted to the signing oracle. Denote the event of a
forgery byF.

If period i is “activated” (cf. Section 2.2), then the value ofpki is well defined. In this case, letEq be the
event thatpk = pki. If period i is not activated then the value ofpki is not well defined and we simply definePr[Eq℄ = 0. ClearlyPr(F) = Pr(F ^ Eq) + Pr(F ^ Eq).
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Case 1: In case eventsF andEq both occur thenpk = pki. Assume thatA makes at mostq(k) = poly(k)
queries to the signing oracle overall. We constructA0 attacking� as follows:A0 has as input a verification keypk0 for which it does not know the corresponding secret keysk0, and also has oracle access to the signing oracleSsk0(�). A0 chooses a random indexr 2 f1; : : : ; q(k)g, generates a random key pair(PK;SK�) G(1k), and
runsA on inputPK. Let i� be the period for which therth signing query ofA was made. If a previous signing
query was made for periodi�, the experiment is aborted. Otherwise, adversaryA0 implicitly uses(pk0; sk0)
to respond to the query by making use of its signing oracleSsk0(�). For signature queriesr + 1; : : : ; q(k), ifA requests a signature for periodi� the signature is computed usingSsk0(�). If A ever makes a key exposure
request for periodi�, the experiment is aborted. All other oracle queries are answered byA0 in the expected
manner; namely, by generating fresh temporary keys and using the corresponding secret keys to answer signing
and key exposure requests. If the final output ofA is (M; hi; �; (pk; �)i) and the experiment was never aborted,
thenA0 simply outputs(M;�).

With probability at least1=q(k), the experiment is not aborted andi� = i (recall,i is the period for which a
forgery is made). The success probability ofA0 in forging a signature for� is thus at leastPr[F ^ Eq℄=q(k).
By the assumed security of�, this quantity must be negligible. Sinceq(k) is polynomial ink, it must be thatPr[F ^ Eq℄ is negligible as well.

Case 2: In case eventsF andEq both occur, then either periodi is not “activated” or elsepk 6= pki. We
constructA0 attacking� as follows: A0 has as input a verification keypk0 for which it does not know the
corresponding secret keysk0, and has access to a signing oracleSsk0(�). A0 setsPK = pk0 and implicitly sets
the master keySK� = sk0. A0 then simulates the entire run ofA by generating (on its own) all the temporary
keys as needed, and using its signing oracleSsk0(�) to produce the needed certificates. If the final output ofA
is (M; hi; �; (pk; �)i) thenA0 simply outputs(pkki; �). The success probability ofA0 in forging a signature for� is then exactlyPr[F ^ Eq℄. By the assumed security of�, this quantity is negligible.

Achieving strong key insulation. The above construction is extensively used in practice. However, the
scheme assumes a fully-trusted device on which to storeSK� since, as described, the device can sign mes-
sages without the user’s consent. We now present a simple — yet generic and powerful — method to achieve
strong security forany key-insulated scheme (not just the folklore scheme above) and hence offer protection
against the device.

Let � = (Gen;Upd�;Upd;Sign;Vrfy) be a(t;N)-key-insulated signature scheme and let� = (G;S; V )
be a standard signature scheme. We construct a scheme�0 as follows. Gen0(1k) runs(PK;SK�; SK0)  
Gen(1k; N) followed by(pk; sk)  G(1k). It setsPK 0 = (PK; pk), SK�0 = SK� andSK 00 = (SK0; sk).
In other words, the user get “his own” signing keysk. The key updating algorithmsUpd�0 andUpd0 do not
change. When signing, the user computes both the signature of M w.r.t. � and the signature of(Mki) w.r.t.S. Formally,Sign0(SKi;sk)(i;M) = hSignSKi(i;M); Ssk(Mki)i. To verify, simply check the validity of both
signatures.

The modified scheme is obviously(t;N)-key-insulated as before (a formal proof is immediate). Strong
security also follows as long as� is secure, since an adversary who has only the master keySK� can never
forge a signature on a “new” message(Mki) with respect to�. We remark that it is crucial that the periodi be
signed along withM usingsk. To summarize:

Lemma 2 If � is (t;N)-key-insulated and� is existentially unforgeable, then�0 as described is strong(t;N)-
key-insulated.

Remark 3 We can also support the following variant of forward security (in addition to the usual key-insulation
property) if we use anyforward-securesignature scheme (e.g., that of [16, 21]) in place of an ordinary signature
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scheme� above. Now, even ifboth the user and the secure device are compromised at periodi, at least all the
previous periods1 : : : (i � 1) are “secure”. (Of course, we must necessarily must give up the random-access
key update property, and only allow to change the keys from periods i to i+ 1).

4 (t; N)-Key Insulation under the DLA

While the scheme of the previous section is asymptotically optimal in all parameters, in practice one might
hope for more efficient — and less generic — solutions, especially for strong security. In particular, one might
hope to avoid the doubling (tripling) of signature/verification time and also to reduce the length of a signature.
In the following sections, we provide schemes based on specific assumptions in which signing and verifying
require only a single application of the signing/verification algorithm of the underlying, “basic” scheme. The
signature length will also be essentially the same as that ofthe underlying scheme.

In this section, we present a(t;N)-key-insulated scheme which may be proven secure under the discrete
logarithm assumption. Unfortunately, the lengths of the public key and the master key grow linearly witht
(yet they are independent ofN ). Thus, while practical for small values oft, it does not completely solve the
problem fort � N . We defer such a solution to the following section.

Our scheme builds on the Okamoto-Schnorr signature scheme [24, 29] which we review here. Letp; q be
primes such thatp = 2q + 1 and letG be the subgroup ofZ�p of orderq. Fix generatorsg; h 2 G. A public
key is generated by choosingx; y 2R Zq and settingv = gxhy. To sign messageM , a user chooses randomr1; r2 2 Zq and computesw = gr1hr2 . Using a hash functionH (modeled as a random oracle), the user then
computest = H(M;w), wheret is interpreted as an element ofZq. The signature is:(w; r1�tx; r2�ty) (where
computation is donemodq). A signature(w; a; b) on messageM is verified by computingt = H(M;w) and

then checking thatw ?= gahbvt. It can be shown [24, 23] that signature forgery is equivalent to computinglogg h.

Gen(1k; N):x�0; y�0 ; : : : ; x�t ; y�t  Zqv�i = gx�i hy�i , for i = 0; : : : ; tSK� = (x�1; y�1 ; : : : ; x�̀; y�̀);SK0 = (x�0; y�0)PK = (g; h; v�0 ; : : : ; v�̀)return (PK;SK�; SK0)
Upd�(i; j; (x�1; y�1; : : : ; x�̀; y�̀)) :x0i;j = Ptk=1 x�k(jk � ik)y0i;j = Ptk=1 y�k(jk � ik)return SK 0i;j = (x0i;j; y0i;j) Upd(i; j; (xi; yi); (x0i;j ; y0i;j)) :xj = xi + x0i;jyj = yi + y0i;jreturn SKj = (xj ; yj)
Sign(xi;yi)(i;M) :r1; r2  Zqw = gr1hr2� = H(i;M;w)a = r1 � �xi; b = r2 � �yireturn hi; (w; a; b)i

Vrfy(v�0 ;:::;v�̀)(M; hi; (w; a; b)i) :vi = �tk=0(v�i )ik� = H(i;M;w)if w = gahbv�i return 1else return 0
Figure 1: A strong(t;N)-key-insulated signature scheme.

Our construction achieving strong(t;N)-key-insulated security appears in Figure 1. We stress thatthe
scheme achievesstrongsecurity without additional modifications, yet the time required for signing and ver-
ifying is essentially the same as in the basic Okamoto-Schnorr scheme. Furthermore, using two generators
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enables a proof of security for anadaptiveadversary who can choose which time periods to expose at any point
during its execution. This is vital for our intended applications. For completeness, we include here a theorem
describing the security of this construction; the proof of security appears in Appendix A.

Theorem 1 Under the discrete logarithm assumption, and modelingH(�) as a random oracle, the scheme of
Figure 1 is strong(t;N)-key-insulated and has secure key updates.

5 Perfectly Key-Insulated Signature Schemes

We now construct a strong,perfectlykey-insulated scheme whose security (in the random oracle model) is
based on what we calltrapdoor signatures. This scheme is more efficient than the generic signature scheme
presented in Section 3, and results in a variety of specific perfectly key-insulated signatures; e.g., an efficient
perfectly key-insulated scheme based on ordinary RSA (in the random oracle model).

Informally, we say that signature scheme� = (G;S; V ) is atrapdoor signature schemeif the following hold:
(1) Key generation consists of selecting a permutation(f; f�1) from some family of trapdoor permutations,
choosing randomy, and computingx = f�1(y); and (2) the public key ishf; yi and the private key isx. It is
essential that it isnot necessary to includef�1 as part of the private key.

Given any (secure) trapdoor signature scheme, we constructa perfectly key-insulated signature scheme�
as follows (methods for achieving strong security are discussed below):Gen chooses trapdoor permutation(f; f�1) and publishesPK = hf;Hi for some hash functionH (which will be treated as a random oracle
in our analysis). The long-term secret key isSK� = f�1. The keySKi for time periodi is computed asSKi = f�1(H(i)), and a signature on messageM during periodi is computed (using the basic scheme) via�  SSKi(M). Verification of signaturehi;M i is done using the basic verification algorithm and “period

public key”PKi def= hf;H(i)i. The security of this scheme is given by the following:

Theorem 2 If � is a secure trapdoor signature scheme, then� (as constructed above) is perfectly key-insulated
and has secure key updates.

Proof That � has secure key updates is obvious. Given an adversaryA attacking the security of�, we
construct an adversaryB attacking the security of�. AdversaryB is given public keyhf; yi for an instance of� as well as access to a signing oracleSx(�). Assume thatA makesq(k) = poly(k) queries to hash functionH(�). AdversaryB chooses a random indexi 2 f1; : : : ; q(k)g and runsA on inputPK = f . We assume
without loss of generality that for any indexI, A queriesH(I) before queryingExp(I) or Sign(I; �) and also
before outputting a forgery of the form(M; hI; �i); if not, we can haveB perform these queries on its own.
To answer thejth query ofA to H(�) for j 6= i, B chooses a randomxj, computesyj = f(xj), and returnsyj. To answer theith query ofA to H(�), B simply returnsy. Let I1; : : : ; Iq(k) represent the queries ofA toH(�). Note thatB can answer honestly all oracle queries of the formSign(Ij; �) for 1 � j � q(k): whenj 6= i
thenB has the necessary secret key and whenj = i thenB can make use of its own signing oracle to answer
the query. Furthermore,B can answer honestly all oracle queries of the formExp(Ij) as long asj 6= i; on the
other hand,B aborts the simulation if the queryExp(Ii) is ever asked. WhenA outputs a forgery(M; hIj ; �i),
if j 6= i thenB aborts; otherwise,B outputs forgery(M;�). Note that the probability thatB does not abort is
exactly1=q(k) and thereforePr[SuB;�℄ = 1=q(k) � Pr[SuA;�℄. Since this quantity must be negligible, the
success probability ofA must be negligible as well.

We note that the conversion to a perfectly key-insulated scheme is quite efficient. The length of public keyPK is roughly equal to the length of the public key in�, and temporary keysSKi require as much storage
as secret keys in the original scheme. Signing and verifyingtimes in� are essentially identical to those in
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�. As for concrete instantiations of trapdoor signature scheme �, we note that the scheme of Guillou and
Quisquater [14] provides an example of such a scheme whose security is equivalent to the RSA assumption
(in the random oracle model). However, a number of additional schemes satisfy this requirement as well (i.e.,
[9, 22, 26, 32, 30]). Thus our technique is quite flexible and allows for adaptation of a number of standard (and
previously analyzed) schemes. As an example, the second scheme of [2] may be viewed as an instance of our
construction instantiated with the Ong-Schnorr trapdoor signature scheme [26], implying an immediate proof
of security.

Relation to Identity-based Signatures. Recall that anID-based signature scheme[31] allows the trusted
venter to publish a single public keyPK for the system (keeping the “master” keySK�), and useSK� to
extract a valid signing keySKI corresponding toany identityI. The security of ID-based signatures roughly
states that no coalition of users can sign on behalf of any other user. Obviously, by identifying our concept
of time periods with the concept of identities, any ID-basedsignature scheme is equivalent to a perfectly (but
not necessarily strong) key-insulated signature scheme. Indeed, when our “trapdoor” construction above is
instantiated with the Guillou-Quisquater scheme, the resulting scheme is essentially equivalent to the original
proposal of Shamir [31] for an ID-based signature. We mention, however, that prior to our work no truly formal
definitions or proofs of security for any identity-based signature scheme have appeared. We believe that it is
extremely important to provide such formal treatment due tothe huge practical relevance of both ID-based and
key-insulated signatures. The above connection that we found is also very interesting.

We also remark that very recently (and independently from this work) several proposals [28, 27, 6, 15] for
ID-based signatures were given. (Among those, only [6] provided formal definitions and analysis; indeed,
one of the schemes of [15] was recently broken [7].) Interestingly, they all can be viewed as applying our
“trapdoor” methodology of Theorem 2 to various regular trapdoor signatures, since all these signatures use the
same functionf�1. Roughly, the corresponding function (considered in some special “gap Diffie-Hellman”
groups; see [25]) had the formf�1g;ga(gb) = gab. This (inverse) function can be indeed computed given the
trapdoora. And even thoughf itself is not efficiently computable given onlyg; ga, one can easily see that all
we need in Theorem 2 is to efficiently sample random pairs of the form (gb; gab) (in order to respond to the
random oracle queries), which is easy to do for the abovef . Thus, our general approach seems to encompass a
variety of currently proposed schemes.

Achieving strong security. Strong security for any scheme following the above construction can be achieved
immediately using the “generic” conversion outlined in Section 3 and proven secure in Lemma 2. This increases
the cost of signature computation and verification. For specific schemes, however, we can often do better:
in particular, when computation off�1 can be done in a 2-out-of-2 threshold manner by the user and the

device. As an example, for the RSA-based scheme [14] in whichfN;e(x) def= xe mod N and f�1N;d(y) def=yd mod N (for ed = 1 mod '(N)), the user and the device can shared additivelyusing standard3 threshold
techniques (i.e., [10]). Here, the user stores (at all times) d1 and the physically-secure device storesd2 such
that d1 + d2 = d mod '(N). To compute the keySKi for period i, the device sendsxi;2 = H(i)d2 to the
user who then computesSKi = xi;2 �H(i)d1 = H(i)d. We note that similar threshold techniques are available
for computingf�1 in 2t-root signature schemes [18], showing that the scheme of [2]can be made strong as
well. Finally, the recent proposals for ID-based signatureschemes [28, 27, 6, 15] utilizingf�1g;ga(x) = xa and
having master keya, can also be trivially made strong by randomly splittinga = a1 + a2 and noticing thatf�1g;ga(H(i)) = (H(i))a = (H(i))a1 (H(i))a2 , so that the device can compute(H(i))a2 and the user can then

3For our application we may assume a trusted dealer since the user himself acts as the dealer during the key generation phase.
Furthermore, we may assume that the physically-secure device is (at worst) honest-but-curious since if this is not the case then this
device can simply refuse to cooperate with the user altogether.
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multiply it by (H(i))a1 .
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A Proof of Theorem 1

We prove the theorem in a number of steps. We first consider thenotion of a key-updating identification pro-
tocol and state the natural definition of key-insulated security in this context. Then, we show and prove secure
a particular identification scheme based on the discrete logarithm assumption. Applying the Fiat-Shamir tran-
formation [9] to this protocol yields the protocol of Figure1; security of the transformed protocol (considered
as a signature scheme) in the random oracle model follows in astraightforward way from the results of [5] (see
also [1]).4

We work in the standard framework for identification protocols in which public keys are associated with
users. The prover has a secret keySK associated with a public keyPK, and the prover wants to identify
himself to the verifier. We assume here, for simplicity, a three-round protocol in which the prover sends an initial
message, the verifier sends a random “challenge”, and the prover responds with some “answer”. Informally,
an identification protocol is secure if an adversary, even after participating as a verifier in many interactions,

4Fiat-Shamir transform in the context of standard security and forward security; however, it is clear that their resultscan be extended
to the case of key-insulated security.
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cannot impersonate the prover to another verifier. We note that our definition of security includes the case of an
adversary who may act as adishonestverifier and choose his challenge in an arbitrary manner.

Completely analogous to the key-updating signature schemedefined in Section 2, we may also define a key-
updating identification scheme. Here we have a master keySK� which is stored on a physically-secure device.
At the beginning of time periodi, the prover interacts with the secure device in order to obtain a keySKi valid
for the current time period. The prover (who may be operatingon an insecure device) proves his identity to a
verifier in periodi using keySKi.

As with key-updating signatures, we may consider an adversary who interacts with the prover in an execution
of the identification protocol during various time periods,and may additionally compromise the insecure device
and obtain the temporary keys for a limited number of time periods. We say that an identification scheme is(t;N)-key-insulated if, for any adversary who compromises the system at mostt times, the adversary will not
be able to successfully impersonate the prover during any time period other than those in which a compromise
occurred. A formal definition along the lines of Definition 2 is easily obtained from the above discussion. We
may definestrongsecurity in an analogous fashion to Definition 4.

A proof of the following may be immediately dervived from [1](cf. footnote 4).

Theorem 3 For any strong(t;N)-key-insulated identification scheme, the corresponding key-updating signa-
ture scheme derived by applying the Fiat-Shamir transform [9] (and assuming a random oracle) is strong(t;N)-key-insulated. Furthermore, if the identification schemehas secure key updates then so does the signa-
ture scheme.

In fact, we note that the identification scheme need only be secure against a passive adversary (see [1]) for The-
orem 3 to hold; however, our construction achieves the stronger level of security (security against an adaptive
adversary) anyway.

The identification scheme will be defined in the obvious way based on Figure 1. Primesp; q with p =2q + 1 are fixed, as are elementsg; h 2 Z�p of orderq. A user’s public keyPK is chosen by first pickingx�0; y�0 ; : : : ; x�̀; y�̀ 2 Zq and settingv�i = gx�i hy�i . The public key is(v�0 ; : : : ; v�̀), SK� is (x�1; y�1 ; : : : ; x�̀; y�̀),
andSK0 is simply(x�0; y�0). Key updates are done as in Figure 1.

The identification protocol for time periodi proceeds as follows. The prover has secret keySKi = (xi; y1) =(Ptk=0 x�kik;Ptk=0 y�kik) and the verifier computes period public keyvi asvi = �j̀=0(v�i )ij . To begin, the
prover choosesr1; r2 2 Zq, computesw = gr1hr2 , and sendsw as the first message. The verifier responds
with random� 2 Zq as the challenge. The prover calculatesa = r1 � �xi mod q andb = r2 � �yi mod q and

sends response(a; b). The verifier then checks whetherw ?= gahbv�i .

Our proof that the identification scheme sketched above is indeed key-insulated uses the techniques from
[24]. We state the following lemma without proof, and refer the reader to [24] for details:

Lemma 3 Assume there exists an adversaryA with non-negligible probability of impersonating the prover in
time periodi. Then there exists an algorithm which runs in expected polynomial time and outputs two accepted
executions(w; �; a; b) and (w; � 0; a0; b0) of the identification protocol for periodi (i.e., with respect to period
public keyvi), with � 6= � 0.

Using this lemma, we now show that an adversary who can break the key-insulated identification scheme can
be used to computelogg h (which is assumed to be intractable). We denote byG � Z�p the (unique) subgroup
of orderq in Z�p.
Theorem 4 The identification scheme sketched above is strong(t;N)-key-insulated, assuming the hardness of
computing discrete logarithms inG. Furthermore, it has secure key updates.
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Proof That the scheme has secure key updates is obvious. Assume there exists an adversaryA who has non-
negligible probability of impersonating the prover duringa time period for which key exposure did not occur.
We show how to useA to computelogg h. Giveng andh, run the identification scheme in the presence of
adversaryA, taking part in executions of the protocol withA and givingSKi to the adversary when requested
(note that knowledge oflogg h is not required for any of these steps, and we can therefore handle adversariesA who may act as dishonest verifiers). LetI be the set of time periods for which the adversary requested a
key exposure. By assumption,A has non-negligible probability of impersonating the prover during some time
periodi 62 I. Letvi = �j̀=0(v�i )ij . Lemma 1 shows that we can then (with overwhelming probability) generate
two accepted executions(w; �; a; b) and(w; � 0; a0; b0) for periodi with � 6= � 0. Using this, we may calculatex0i = (a0 � a)(� � � 0)�1 mod q andy0i = (b0 � b)(� � � 0)�1 mod q such thatvi = gx0ihy0i .

There are exactlyq solutions(x; y) such thatvi = gxhy. We already have one solution(xi; yi), and have
derived a second solution(x0i; y0i). Note that even a computationally-unbounded adversaryA cannot determine
the values(xi; yi) we already have. To prove this, first consider any accepted execution (w; t; a; b) of the
protocol in periodj. The values(xj; yj) are constrained as follows:logg w = r1 + r2 logg h mod qa = r1 � txj mod qb = r2 � tyj mod q;
and hence allq solutions(xj ; yj) are equally likely. Furthermore, the key exposure requestsof the adversary
reveal only thè valuesf(xj ; yj)gj2I . Since these values are simply the values of the functionsf1(z) =Pj̀=0 x�jzj andf2(z) = Pj̀=0 y�j zj evaluated at̀ distinct points, the adversary gains no information about the
values of these functions at any point not inI.

Therefore, with all but negligible probability1=q, the solutions(xi; yi) and (x0i; y0i) are distinct. We may
then calculatelogg h = (xi � x0i)(y0i � yi)�1 mod q.

The proof of strong security is exactly similar, and is omitted.

Theorem 2 is implied by Theorems 3 and 4.
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