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1 IntrodutionMotivation. Exposure of seret keys is perhaps the most devastating attak on a ryptosystemsine it typially means that seurity is entirely lost. This problem is probably the greatest threatto ryptography in the real world: in pratie, it is typially easier for an adversary to obtain aseret key from a naive user than to break the omputational assumption on whih the system isbased. The threat is inreasing nowadays with users arrying mobile devies whih allow remoteaess from publi or foreign domains.Two lasses of methods exist to deal with this problem. The �rst tries to prevent key exposurealtogether. While this is an important goal, it is not always pratial. For example, when usingportable devies to perform ryptographi operations (e.g., derypting transmissions using a mobilephone) one must expet that the devie itself may be physially ompromised in some way (e.g., lostor stolen) and thus key exposure is inevitable. Furthermore, omplete prevention of key exposure| even for non-mobile devies | will usually require some degree of physial seurity whih an beexpensive and inonvenient. The seond approah assumes that key exposure will inevitably ourand seeks instead to minimize the damage whih results when keys are obtained by an adversary.Seret sharing [37℄, threshold ryptography [14, 13℄, proative ryptography [33℄, exposure-resilientryptography [10℄ and forward-seure signatures [3, 5℄ may all be viewed as di�erent means oftaking this approah.The most suessful solution will involve a ombination of the above approahes. Physialseurity may be ensured for a single devie and thus we may assume that data stored on thisdevie will remain seret. On the other hand, this devie may be omputationally limited or elsenot suitable for a partiular appliation and thus we are again faed with the problem that somekeys will need to be stored on inseure devies whih are likely to be ompromised during thelifetime of the system. Therefore, tehniques to minimize the damage aused by suh ompromisesmust also be implemented.Our Model. We fous here on a notion we term key-insulated seurity. Our model is the following(the disussion here fouses on publi-key enryption, yet the term applies equally-well to the aseof digital signatures). The user begins by registering a single publi key PK. A \master" seretkey SK� is stored on a devie whih is physially seure and hene resistant to ompromise. Allderyption, however, is done on an inseure devie for whih key exposure is expeted to be aproblem. The lifetime of the protool is divided into distint periods 1; : : : ; N (for simpliity, onemay think of these time periods as being of equal length; e.g., one day). At the beginning of eahperiod, the user interats with the seure devie to derive a temporary seret key whih will beused to derypt messages sent during that period; we denote by SKi the temporary key for periodi. On the other hand, the publi key PK used to enrypt messages does not hange at eah period;instead, iphertexts are now labeled with the time period during whih they were enrypted. Thus,enrypting M in period i results in iphertext hi; Ci.The inseure devie, whih does all atual deryption, is vulnerable to repeated key exposures;spei�ally, we assume that up to t < N periods an be ompromised (where t is a parameter). Ourgoal is to minimize the e�et suh ompromises will have. Of ourse, when a key SKi is exposed,an adversary will be able to derypt messages sent during time period i. Our notion of seurity(informally) is that this is all an adversary an do. In partiular, the adversary will be unable todetermine any information about messages sent during all time periods other than those in whiha ompromise ourred. This is the strongest level of seurity one an expet in suh a model. Weall a sheme satisfying the above notion (t;N)-key-insulated.If the physially-seure devie is ompletely trusted, we may have this devie generate (PK;SK�)1



itself, keep SK�, and publish PK. When a user requests a key for period i, the devie may omputeSKi and send it to the user. More involved methods are needed when the physially-seure devieis not trusted by the user. In this, more diÆult ase (whih we onsider here), the user maygenerate (PK;SK) himself, publish PK, and then derive keys SK�; SK0. The user then sendsSK� to the devie and stores SK0 himself. When the user requests a key for period i, the deviesends \partial" key SK 0i to the user, who may then ompute the \atual" key SKi using SKi�1and SK 0i. In this way, the user's seurity is guaranteed during all time periods with respet to thedevie itself, provided that the knowledge of SK� alone is not suÆient to derive any of the atualkeys SKi. We note that this strong seurity guarantee is essential when a single devie serves manydi�erent users, o�ering them protetion against key exposure. In this senario, users may trust thisdevie to update their keys, but may not want the devie to be able to read their enrypted traÆ.Thus, there is no reason this devie should have omplete (or any!) knowledge of their \atual"keys. Finally we note that assuring that the devies are synhronized to the same period (so thatonly one seret key per period is given by the physially seure devie) and that they handle properauthentiated interation is taken are of by an underlying protool (whih is outside our model).Other Appliations. Besides the obvious appliation to minimizing the risk of key exposuresaross multiple time periods, key-insulated seurity may also be used to protet against key expo-sures aross multiple loations, or users. For example, a ompany may establish a single publi keyand distribute (di�erent) seret keys to its various employees; eah employee is di�erentiated by his\non-ryptographi ID" i (e.g., a soial seurity number or last name), and an use his own seretkey SKi to perform the desired ryptographi operation. This approah ould dramatially save onthe publi key size, and has the property that the system remains seure (for example, enryptedmessages remain hidden) for all employees whose keys are not exposed.A key-insulated sheme may also be used for purposes of delegation [23℄; here, a user (who haspreviously established a publi key) delegates his rights in some spei�ed, limited way to a seondparty. In this way, even if up to t of the delegated parties' keys are lost, the remaining keys | and,in partiular, the user's seret key |- are seure.Finally, we mention the appliation of key esrow by legal authorities. For example, onsiderthe situation in whih the FBI wants to read email sent to a partiular user on a ertain date. If akey-insulated sheme (updated daily) is used, the appropriate key for up to t desired days an begiven to the FBI without fear that this will enable the FBI to read email sent on other days. Asimilar appliation (with weaker seurity guarantees) was onsidered by [2℄.Our Contributions. We introdue the notion of key-insulated seurity and onstrut eÆientshemes seure under this notion. Although our de�nition may be applied to a variety of ryp-tographi primitives, we fous here on publi-key enryption. In Setion 3, we give a generionstrution of a (t;N)-key-insulated enryption sheme based on any (standard) publi-key en-ryption sheme. Setion 4 gives a more eÆient onstrution whih is seure under the DDHassumption. Both of these shemes ahieve semanti seurity; however, we show in Setion 5 howthe seond sheme an be improved to ahieve hosen-iphertext seurity. The omplexity of allour shemes is essentially independent of the total number of users N . However, at least one ofthe parameters is polynomial in t. This makes our shemes appliable only for moderate valuesof t, whih is, however, suÆient for many appliations. In a ompanion paper [16℄, we onsiderkey-insulated seurity of signature shemes.Related Work. Arriving at the right de�nitions and models for the notion we put forth herehas been somewhat elusive. For example, Girault [22℄ onsiders a notion similar to key-insulatedseurity of signature shemes. However, [22℄ does not present any formal de�nitions, nor does2



it present shemes whih are provably seure. Reently and onurrently with our work, otherattempts at formalizing key-insulated publi-key enryption have been made [39, 31℄. However,these works onsider only a non-adaptive adversary who hooses whih time periods to expose atthe outset of the protool, whereas we onsider the more natural and realisti ase of an adaptiveadversary who may hoose whih time periods to expose at any point during protool exeution.Furthermore, the solution of [39℄ for ahieving hosen-iphertext seurity is proven seure in therandom orale model; our onstrution of Setion 5 is proven seure against hosen-iphertextattaks in the standard model ([31℄ does not address hosen-iphertext seurity at all). Finally, ourde�nition of seurity is stronger than that onsidered in [39, 31℄. Neither work onsiders the aseof an untrusted, physially-seure devie. Additionally, [31℄ require only that an adversary annotfully determine an un-exposed key SKi; we make the muh stronger requirement that an adversaryannot break the underlying ryptographi sheme for any (set of) un-exposed periods.Our notion of seurity omplements the notion of forward seurity for digital signatures.1 Inthis model [3, 5℄, an adversary who ompromises the system during a partiular time period obtainsall the seret information whih exists at that point in time. Clearly, in suh a setting one annothope to prevent the adversary from signing messages assoiated with future time periods (sinethe adversary has all relevant information), even though no expliit key exposures happen duringthose periods. Forward-seure signatures, however, prevent the adversary from signing messagesassoiated with prior time periods. Many improved onstrutions of forward-seure signatures havesubsequently appeared [1, 29, 26, 32℄.Our model uses a stronger assumption in that we allow for (a limited amount of) physially-seure storage whih is used exlusively for key updates and is not used for the atual ryptographiomputations. As a onsequene, we are able to obtain a muh stronger level of seurity in thatthe adversary is unable to sign/derypt messages at any non-ompromised time period, both in thefuture and in the past.Relation to Identity-Based Cryptography. The idea of ID-based ryptography [38℄ (foronreteness, we onentrate on the ase of ID-based enryption) is to have a trusted enter publisha single publi key so that users who know only eah other's \non-ryptographi" identities (e.g., e-mail addresses) an seurely ommuniate. In partiular, a PKI (in whih every user is additionallyassoiated with a publi key) is not needed beyond knowledge of a single global publi key. Ofourse, the trusted enter now must provide eah user with a seret key whih is a funtion of hisidentity. Roughly speaking, an ID-based sheme is seure if no oalition of users an ompromisethe privay of any other user. Note, however, that the trusted server an ompromise the seurityof any user (sine this enter knows all serets of the system).It is easy to see that an ID-based enryption sheme may be onverted an (N � 1; N)-key-insulated enryption sheme by viewing the period number as an \identity" and having the physially-seure devie implement the trusted enter. The onverse is true as well; in other words, a (t;N)-key-insulated enryption sheme with a fully trusted devie may be viewed as a relaxation of ID-based enryption, where we do not insist on t = N � 1. We notie that the �rst pratial ID-basedenryption sheme was proposed only reently by Boneh and Franklin [8℄ in the random oralemodel. Moreover, even though the model of ID-based enryption assumes a fully trusted enter, itwas observed by [6℄ that the partiular sheme of [8℄ | when viewed as an (N�1; N)-key-insulatedenryption sheme | an be very easily modi�ed so that the seure devie no longer needs to betrusted. This almost immediately gives a fully seure key-insulated enryption sheme. It should1Although forward-seurity also applies to publi-key enryption, forward-seure enryption shemes are not yetknown. The related notion of \perfet forward serey" [15℄, where the parties exhange ephemeral keys on a per-session basis, is inomparable to our notion here. 3



be noted, however, that the seurity of this sheme is proven in the random orale model under avery spei�, number-theoreti assumption. By fousing on key-insulated seurity for t� N , as wedo here, shemes based on weaker assumptions (in partiular, not utilizing the random orale whihis the standard model we onsider in this paper) and/or with improved eÆieny and funtionalitymay be designed. In partiular, our results yield several ID-based enryption shemes whih areprovably seure in the standard model, when at most t out of N users ollude. It is still a bigopen problem to design a fully seure ID-based (or key-insulated) enryption sheme without therandom orale assumption.2 De�nitions2.1 The ModelWe now provide a formal model for key-insulated seurity, fousing on the ase of publi-keyenryption (other key-insulated primitives an be de�ned similarly; e.g., signature shemes aretreated in [16℄). Our de�nition of a key-updating enryption sheme parallels the de�nition of a key-evolving signature sheme whih appears in [5℄, with one key di�erene: in a key-updating shemethere is some data (in partiular, SK�) whih is never erased sine it is stored on a physially-seuredevie. However, sine the physially-seure devie may not be fully trusted, new seurity onernsarise.De�nition 1 A key-updating (publi-key) enryption sheme is a 5-tuple of poly-time algorithms(G;U�;U ; E ;D) suh that:� G, the key generation algorithm, is a probabilisti algorithm whih takes as input a seurityparameter 1k and the total number of time periods N . It returns a publi key PK, a masterkey SK�, and an initial key SK0.� U�, the devie key-update algorithm, is a deterministi algorithm whih takes as input anindex i for a time period (throughout, we assume 1 � i � N) and the master key SK�. Itreturns the partial seret key SK 0i for time period i.� U , the user key-update algorithm, is a deterministi algorithm whih takes as input an indexi, seret key SKi�1, and a partial seret key SK 0i. It returns seret key SKi for time period i(and erases SKi�1; SK 0i).� E, the enryption algorithm, is a probabilisti algorithm whih takes as input a publi-keyPK, a time period i, and a message M . It returns a iphertext hi; Ci.� D, the deryption algorithm, is a deterministi algorithm whih takes as input a seret keySKi and a iphertext hi; Ci. It returns a message M or the speial symbol ?.We require that for all messages M , DSKi(EPK(i;M)) =M .A key-updating enryption sheme is used as one might expet. A user begins by generating(PK;SK�; SK0) G(1k; N), registering PK in a entral loation (just as he would for a standardpubli-key sheme), storing SK� on a physially-seure devie, and storing SK0 himself. At thebeginning of time period i, the user requests SK 0i = U�(i; SK�) from the seure devie. Using SK 0iand SKi�1, the user may ompute SKi = U(i; SKi�1; SK 0i). This key may be used to deryptmessages sent during time period i without further aess to the devie. After omputation of SKi,4



the user must erase SK 0i and SKi�1. Note that enryption is always performed with respet to a�xed publi key PK whih need not be hanged. Also note that the ase when the devie is fullytrusted orresponds to SK0 =? and SKi = SK 0i.Random-Aess Key Updates. All the shemes we onstrut will have a useful property weall random-aess key updates. For any urrent period j and any desired period i, it is possible toupdate the seret key from SKj to SKi in \one shot". Namely, we an generalize the key updatingalgorithms U� and U to take a pair of periods i and j suh that U�((i; j); SK�) outputs the partialkey SK 0ij and U((i; j); SKj ; SK 0ij) outputs SKi. Our de�nition above impliitly �xes j = i� 1. Weremark that random-aess key updates are impossible to ahieve in the forward-seurity model.2.2 SeurityThe are three types of exposures we protet against: (1) ordinary key exposure, whih models(repeated) ompromise of the inseure storage (i.e., leakage of SKi); (2) key-update exposure, whihmodels (repeated) ompromise of the inseure devie during the key-updating step (i.e., leakage ofSKi�1 and SK 0i); and (3) master key exposure, whih models ompromise of the physially-seuredevie (i.e., leakage of SK�; this inludes the ase when the devie itself is untrusted).To formally model key exposure attaks, we give the adversary aess to two (possibly three)types of orales. The �rst is a key exposure orale ExpSK�;SK0(�) whih, on input i, returns thetemporary seret key SKi (note that SKi is uniquely de�ned by SK� and SK0). The seond is aleft-or-right enryption orale [4℄, LRPK;~b(�; �; �), where ~b = b1 : : : bN 2 f0; 1gN , de�ned as:LRPK;~b(i;M0;M1) def= EPK(i;Mbi)This models enryption requests by the adversary for time periods and message pairs of his hoie.We allow the adversary to interleave enryption requests and key exposure requests, and in parti-ular the key exposure requests of the adversary may be made adaptively and in any order. Finally,we may also allow the adversary aess to a deryption orale D�SK�;SK0(�) that, on input hi; Ci,omputes DSKi(hi; Ci). This models a hosen-iphertext attak by the adversary.The vetor ~b for the left-or-right orale will be hosen randomly, and the adversary sueedsby guessing the value of bi for any un-exposed time period i. Informally, a sheme is seure if anyprobabilisti polynomial time (PPT) adversary has suess negligibly lose to 1=2. More formally:De�nition 2 Let � = (G;U�;U ; E ;D) be a key-updating enryption sheme. For adversary A,de�ne the following:SuA;�(k) def= Pr h(PK;SK�; SK0) G(1k; N);~b f0; 1gN ;(i; b0) ALRPK;~b(�;�;�);ExpSK�;SK0(�);O(�)(PK) : b0 = bii ;where i was never submitted to ExpSK�;SK0(�), and O(�) =? for a plaintext-only attak and O(�) =D�SK�;SK0(�) for a hosen-iphertext attak (in the latter ase the adversary is not allowed to queryD�(hi; Ci) if hi; Ci was returned by LR(i; �; �)). � is (t;N)-key-insulated if, for any PPT A whosubmits at most t requests to the key-exposure orale, jSuA;�(k)� 1=2j is negligible.As mentioned above, we may also onsider attaks in whih an adversary breaks in to the user'sstorage while a key update is taking plae (i.e., the exposure ours between two periods i � 1and i); we all this a key-update exposure at period i. In this ase, the adversary reeives SKi�1,5



SK 0i, and (an ompute) SKi. Informally, we say a sheme has seure key updates if a key-updateexposure at period i is equivalent to key exposures at periods i � 1 and i and no more. Moreformally:De�nition 3 Key-updating enryption sheme � has seure key updates if the view of any adver-sary A making a key-update exposure request at period i an be perfetly simulated by an adversaryA0 who makes key exposure requests at periods i� 1 and i.This property is desirable in real-world implementations of a key-updating enryption sheme sinean adversary who gains aess to the user's storage is likely to have aess for several onseutivetime periods (i.e., until the user detets or re-boots), inluding the key updating steps.We also onsider attaks whih ompromise the physially-seure devie (this inludes attaksin whih this devie is untrusted). Here, our de�nition requires that the enryption sheme beseure against an adversary whih is given SK� as input. Note that we do not require seurityagainst an adversary who ompromises both the user's storage and the seure devie | in ourmodel this is impossible sine, given SK� and SKi, an adversary an ompute SKj (at least forj > i) by himself.De�nition 4 Let � be a key-updating sheme whih is (t;N)-key-insulated. For any adversary B,de�ne the following:SuB;�(k) def= Pr h(PK;SK�; SK0) G(1k; N);~b f0; 1gN ;(i; b0) BLRPK;~b(�;�;�);O(�)(PK;SK�) : b0 = bii ;where O(�) =? for a plaintext-only attak and O(�) = D�SK�;SK0(�) for a hosen-iphertext attak (inthe latter ase the adversary is not allowed to query D�(hi; Ci) if hi; Ci was returned by LR(i; �; �)).� is strongly (t;N)-key-insulated if, for any PPT B, jSuB;�(k) � 1=2j is negligible.3 Generi Semantially-Seure ConstrutionLet (G;E;D) be any semantially seure enryption sheme. Rather than giving a separate (bynow, standard) de�nition, we may view it simply as a (0; 1)-key-insulated sheme. Namely, only oneseret key SK is present, and any PPT adversary, given PK and the left-or-right-orale LRPK;b,annot predit b with suess non-negligibly di�erent from 1=2. Hene, our onstrution below anbe viewed as an ampli�ation of a (0; 1)-key-insulated sheme into a general (t;N)-key-insulatedsheme.We will assume below that t; logN = O(poly(k)), where k is our seurity parameter. Thus, weallow exponentially-many periods, and an tolerate exposure of any polynomial number of keys.We assume that E operates on messages of length ` = `(k), and onstrut a (t;N)-key-insulatedsheme operating on messages of length L = L(k).Auxiliary Definitions. We need two auxiliary de�nitions: that of an all-or-nothing trans-form [35, 9℄ (AONT) and a over-free family [19, 17℄. Informally, an AONT splits the message Minto n seret shares x1; : : : ; xn (and possibly one publi share z), and has the property that (1)the message M an be eÆiently reovered from all the shares x1; : : : ; xn; z, but (2) missing even asingle share xj gives \no information" about M . As suh, it is a generalization of (n� 1; n)-seretsharing. We formalize this, modifying the onventional de�nitions [9, 10℄ to a form more ompatiblewith our prior notation. 6



De�nition 5 An eÆient randomized transformation T is alled an (L; `; n)-AONT if: (1) oninput M 2 f0; 1gL, T outputs (X; z) def= (x1; : : : ; xn; z), where xj 2 f0; 1g`; (2) there exists aneÆient inverse funtion I suh that I(X; z) =M ; (3) T satis�es the indistinguishability propertydesribed below.Let X�j = (x1; : : : ; xj�1; xj+1; : : : ; xn) and T�j(M) = (X�j ; z), where (X; z)  T (M). De�ne theleft-or-right orale LRb(j;M0;M1) def= T�j(Mb), where b 2 f0; 1g. For any PPT A, we letSuA;T (k) def= Pr[b f0; 1g; b0  ALRb(�;�;�)(1k) : b0 = b℄We require that jSuA;T (k)� 1=2j is negligible.A family of subsets S1; : : : ; SN over some universe U is said to be t-over-free if no t subsetsSi1 ; : : : ; Sit ontain a (di�erent) subset Si0 ; in other words, for all fi0; : : : ; itg with i0 62 fi1; : : : ; itg,we have Si0 6� [tj=1Sij . A family is said to be (t; �)-over-free, where 0 < � < 1, if, for allfi0; : : : ; itg with i0 62 fi1; : : : ; itg, we have jSi0n [tj=1 Sij j � �jSi0 j. Suh families are well knownand have been used several times in ryptographi appliations [11, 30, 21℄. In what follows, we �x� = 1=2 for simpliity, and will use the following (essentially optimal) result, non-onstrutivelyproven by [19℄ and subsequently made eÆient by [30, 25℄.Theorem 1 ([19, 30, 25℄) For any N and t, one an eÆiently onstrut a (t; 12)-over-free ol-letion of N subsets S1; : : : ; SN of U = f1; : : : ; ug with jSij = n for all i, satisfying u = �(t2 logN)and n = �(t logN).Sine we assumed that t; logN = O(poly(k)), we have u; n = O(poly(k)) as well.Constrution. For simpliity, we �rst desribe the sheme whih is not strongly seure (seeDe�nition 4), and then show a modi�ation making it strongly seure. Let S1; : : : ; SN � [u℄ def=f1; : : : ; ug be the (t; 12 )-over-free family of n-element sets, as given by Theorem 1. Also, let Tbe a seure (L; `; n)-AONT. Our (t;N)-key-insulated sheme will have a set of u independentenryption/deryption keys (skr; pkr) for our basi enryption E, of whih only the subset Si willbe used at time period i. Spei�ally, the publi key of the sheme will be PK = fpk1; : : : ; pkug,the seret key at time i will be SKi = fskr : r 2 Sig, and the master key (for now) will beSK� = fsk1; : : : ; skug. We de�ne the enryption of M 2 f0; 1gL at time period i as:EPK(i;M) = h i; (Epkr1 (x1); : : : ; Epkrn (xn); z) i;where (x1; : : : ; xn; z)  T (M) and Si = fr1; : : : ; rng. To derypt hi; (y1; : : : ; yn; z)i using SKi =fskr : r 2 Sig, the user �rst reovers the xj 's from the yj 's using D, and then reovers themessage M = I(x1; : : : ; xn; z). Key updates are trivial: the devie sends the new key SKi andthe user erases the old key SKi�1. Obviously, the sheme supports seure key updates as well asrandom-aess key updates.Seurity. We sketh the intuition for (t;N)-key-insulated seurity of this sheme. The de�nitionof the AONT implies that the system is seure at time period i provided the adversary misses at leastone key skr, where r 2 Si. Indeed, semanti seurity of E implies that the adversary ompletelymisses the shares enrypted with skr in this ase, and hene has no information about the messageM . On the other hand, if the adversary learn any t keys SKi1 ; : : : ; SKit , he learns the auxiliary keysfskr : r 2 Si1 [Si2 : : :[Sitg. Hene, the neessary and suÆient ondition for (t;N)-key-insulatedseurity is exatly the t-over freeness of the Si's! The parameter � = 12 is used to improve theexat seurity of our redution. 7



Theorem 2 The generi sheme � desribed above is (t;N)-key-insulated with seure key updates,provided (G;E;D) is semantially-seure, T is a seure (L; `; n)-AONT, and the family S1; : : : ; SNis (t; 12)-over-free. Spei�ally, breaking the seurity of � with advantage " implies the same foreither (G;E;D) or T with advantage at least 
("=t).Proof: Let A be the adversary for � with SuA;�(k) = 12 + ". First, we reate the followingadversary A0 suh that SuA0;� � 12 + " � �nu = 12 + 
( "t ). A0 �rst piks a random index r 2 [u℄.Then it runs A up to the point when A outputs (i; b0). At this stage, A0 looks at indies i1; : : : ; itof the t exposed time periods, and heks if r 2 Sin [tj=1 Sij . If this test sueeds, A0 also outputs(i; b0). Else, it outputs (i; ), where  is a random bit. In other words, A0 uses the output ofA provided the guess r is suh that skr is used at period i but A did not learn skr. Sine Aannot output i 2 fi1 : : : itg and sine our family is (t; 12 )-over-free, there are at least �jSij = n=2indies r0 2 Sin [tj=1 Sij . Also, sine A0 hose r 2 [u℄ at random and independently of the runof A, with probability at least q = n2u = 
(1t ) we get that A0 will use the output of A, so thatSuA0;� � (1� q)12 + q(12 + ") � 12 +
( "t ), as laimed.Next, we reate a more favorable environment for A0 to simplify the proof. Right after A0 piksits random r, we give A0 the seret keys skp for all p 6= r. At this point, there is no need toenrypt with any keys other than pkr (A0 an derypt anyway). Moreover, there is no need forour environment to pik a full-edged N -bit vetor ~b; rather, only bi's suh that r 2 Si should behosen. In fat, rather than hoosing the bi's (where r 2 Si) independently, we hoose only onerandom bit b and set bi = b for all i s.t. r 2 Si. Clearly, this only helps A0.2 Sine A0 is ommittedto output a non-random bit b0 only for period i suh that r 2 Si and the original adversary A didnot learn skr, we get that Pr(b0 = b) � 12 +
( "t ) in the modi�ed environment.To summarize, we an assume A0 runs in the following environment Env0. A0 piks a randomr 2 [u℄. We pik a random key pair (skr; pkr) for E and a random bit b 2 f0; 1g. We give A0the publi key pkr, and aess to the \redued" left-or-right orale LR0pkr;b(i;M0;M1) whih anbe alled only for i satisfying r 2 Si. The orale runs (X; z)  T (Mb), and returns the following:(T�j(Mb); Epkr(xj)), where j 2 [n℄ is the position of r inside Si. The goal of A0 is to predit b, andwe assumed that it does so orretly with probability q0 = Pr(b = b0 j Env0) � 12 +
( "t ).Next, we run A0 in a di�erent environment Env1. It is idential to Env0 exept that on left-or-right query (i;M0;M1) (where r 2 Si), rather than returning (T�j(Mb); Epkr(xj)), Env1 insteadreturns (T�j(Mb); Epkr(0)). Namely, it enrypts the all-zero string 0 instead of the share xj. Welet q1 = Pr(b = b0 j Env1).The proof is now almost omplete. The fat that q0 � 12 + 
( "t ) implies that either: (a)q0 � q1 � 
( "t ); or (b) q1 � 12 +
( "t ). We show that either ase is a ontradition: ase (a) to theindistinguishability of enryption E, while ase (b) to the indistinguishability of AONT T .Case (a): If q0 � q1 � 
( "t ), we break the indistiguishability of E by means of the followingadversary A1 whih in turn runs A0 as follows. When A0 hooses r 2 [u℄, A1 views the publi keyof E as pkr and piks a random b 2 f0; 1g. From now on, A1 runs A0 and answers the left-or-rightqueries (i;M0;M1) of A0 as follows. If r 62 Si, it ignores it. Else, it sets (X; z) T (Mb), and givesits own left-or-right orale the query (xj ; 0), where j is the position of r inside Si. When it gets y(enryption of either xj or 0) bak from its orale, it returns to A0 the answer (X�j ; z; y). WhenA0 �nally outputs its guess b0, A1 heks if b = b0. If so, it guesses its own bit d was 0 (i.e., xj wasalways enrypted), else that it was 1 (0 was always enrypted). It is easy to see that if d = 0, we2One way to see this is to imagine that we piked all the bi's independently, then piked a random b and told A0the set of i suh that bi = b (and thus, the set of i where bi = 1� b), but did not dislose b.8



exatly run A0 in Env0, else | exatly in Env1. Hene, A1 predits d orretly with probability12(1� q1) + 12q0 � 12 +
( "t ), ontraditing the seurity of E.Case (b): If q1 � 12 + 
( "t ), we break the indistingushability of T by means of the followingadversary A2 whih in turn runs A0 as follows. A2 piks a random key (pkr; skr) and runs A0 upto ompletion, outputting the same b0 as A0 does. To answer the left-or-right-query (i;M0;M1),where r 2 Si, A2 alls its own orale of (j;M0;M1), where j is the position of r inside Si. It getsbak T�j(Mb), and returns A0 the pair (T�j(Mb); Epkr(0)). Clearly, A2 exatly rereates Env1, andhene predits its own b with probability q1 � 12 +
( "t ), ontraditing seurity of T .Strong Key-Insulated Seurity. The above sheme is not strongly (t;N)-key-insulated sinethe devie stores all the seret keys (sk1; : : : ; sku). However, we an easily �x this problem. The usergenerates one extra key pair (sk0; pk0). It publishes pk0 together with the other publi keys, butkeeps sk0 for itself (never erasing it). Assuming now that T produes n+1 seret shares x0; : : : ; xnrather than n, we just enrypt the �rst share x0 with pk0 (and the others, as before, with theorresponding keys in Si). Formally, let S0i = Si[f0g, the master key is still SK� = fsk1; : : : ; skug,but now PK = fpk0; pk1; : : : ; pkug and the i-th seret key is SKi = fskr : r 2 S0ig. Strongkey-insulated seurity of this sheme follows a similar argument as in Theorem 2.Effiieny. The main parameters of the sheme are: (1) the size of PK and SK� are both u =O(t2 logN); and (2) the user's storage and the number of loal enryptions per global enryptionare both n = O(t logN). In partiular, the surprising aspet of our onstrution is that it supportsan exponential number of periods N and the main parameters depend mainly on t, the numberof exposures we allow. Sine t is usually quite small (say, t = O(1) and ertainly t � N), weobtain good parameters onsidering the generality of the sheme. (In Setion 4 we use a spei�enryption sheme and ahieve jPKj; jSK�j = O(t) and jSKij = O(1).)Additionally, the hoie of a seure (L; `; n)-AONT de�nes the tradeo� between the numberof enrypted bits L ompared to the total enryption size, whih is (�n` + jzj), where � is theexpansion of E, and jzj is the size of the publi share. In partiular, if L = `, we an use anytraditional (n� 1; n)-seret sharing sheme (e.g., Shamir's sheme [37℄, or even XOR-sharing: pikrandom xj's subjet to M =Lxj). This way we have no publi part, but the iphertext inreasesby a fator of �n as ompared to the plaintext. Computationally-seure AONT's allow for bettertradeo�s. For example, using either the omputational seret sharing sheme of [28℄, or the AONTonstrutions of [10℄, we an ahieve jzj = L, while ` an be as small as the seurity parameterk (in partiular, ` � L). Thus, we get additive inrease �n`, whih is essentially independent ofL. Finally, in the random orale model, we ould use the onstrution of [9℄ ahieving jzj = 0,L = `(n � 1), so the iphertext size is �`n � �L. Finally, in pratie one would use the abovesheme to enrypt a random key K (whih is muh shorter thanM) for a symmetri-key enryptionsheme, and onatenate to this the symmetri-key enryption of M using K.Adaptive vs. Non-adaptive adversaries. Theorem 2 holds for an adaptive adversary whomakes key exposure requests based on all information olleted so far. We notie, however, thatboth the seurity and the eÆieny of our onstrution ould be somewhat improved for non-adaptive adversaries, who hoose the key-exposure periods i1; : : : ; it at the outset of the protool(whih is the model of [39, 31, 2℄). For example, it is easy to see that we no longer lose the fatort in the seurity of our redution in Theorem 2. As for the eÆieny, instead of using an AONT(whih is essentially an (n � 1; n)-seret sharing sheme), we an now use any (n=2; n)-\ramp"seret sharing sheme [7℄. This means that n shares reonstrut the seret, but any n=2 sharesyield no information about the seret. Indeed, sine our family is (t; 12)-over-free, any non-exposed9



period will have the adversary miss more than half of the relevant seret keys. For non-adaptiveadversaries, we know at the outset whih seret keys are non-exposed, and an use a simple hybridargument over these keys to prove the seurity of the modi�ed sheme. For example, we an usethe \ramp" generalization of Shamir's seret sharing sheme3 proposed by Franklin and Yung [20℄,and ahieve L = `n=2 instead of L = ` resulting from regular Shamir's (n� 1; n)-sheme.4 Semanti Seurity Based on DDHIn this setion, we present an eÆient strongly (t;N)-key-insulated sheme, whose semanti seurityan be proved under the DDH assumption.We �rst desribe the basi enryption sheme we build upon. The key generation algorithmGen(1k) selets a random prime q with jqj = k suh that p = 2q+1 is prime. This de�nes a uniquesubgroup G � Z�p of size q in whih the DDH assumption is assumed to hold; namely, it is hardto disinguish a random tuple (g; h; u; v) of four independent elements in G from a random tuplesatisfying logg u = logh v. Given group G , key generation proeeds by seleting random elementsg; h 2 G and random x; y 2 Zq. The publi key onsists of g; h, and the Pedersen ommitment [34℄to x and y: z = gxhy. The seret key ontains both x and y. To enrypt M 2 G , hoose randomr 2 Zq and ompute (gr; hr; zrM). To derypt (u; v; w), ompute M = w=uxvy. This sheme isvery similar to El Gamal enryption [18℄, exept it uses two generators. It has been reently usedby [27℄ in a di�erent ontext.Our Sheme. Our (t;N)-key-insulated sheme builds on the above basi enryption sheme andis presented in Figure 1. The key di�erene is that, after hoosing G ; g; h; as above, we selet tworandom polynomials fx(�) def= Ptj=0 x�j� j and fy(�) def= Ptj=0 y�j � j over Zq of degree t. The publikey onsists of g; h and Pedersen ommitments fz�0 ; : : : ; z�t g to the oeÆients of the two polynomials(see Figure 1). The user stores the onstant terms of the two polynomials (i.e., x�0 and y�0) andthe remaining oeÆients are stored by the physially-seure devie. To enrypt during period i,�rst zi is omputed from the publi key as zi def= �tj=0(z�j )ij . Then (similar to the basi sheme),enryption of message M is done by hoosing r 2 Zq at random and omputing hi; (gr ; hr; zriM)i.Using our notation from above, it is lear that zi = gfx(i)hfy(i). Thus, as long as the user has seretkey SKi = (fx(i); fy(i)) during period i, deryption during that period may be done just as in thebasi sheme. As for key evolution, the user begins with SK0 = (x�0; y�0) = (fx(0); fy(0)). At thestart of any period i, the devie transmits partial key SK 0i = (x0i; y0i) to the user. Note that (f.Figure 1) x0i = fx(i)� fx(i� 1) and y0i = fy(i)� fy(i� 1). Thus, sine the user already has SKi�1,the user may easily ompute SKi from these values. At this point, the user erases SKi�1, and usesSKi to derypt for the remainder of the time period.Theorem 3 Under the DDH assumption, the enryption sheme of Figure 1 is strongly (t;N)-key-insulated under plaintext-only attaks. Furthermore, it has seure key updates and supportsrandom-aess key updates.Proof: Showing seure key updates is trivial, sine an adversary who exposes keys SKi�1 andSKi an ompute the value SK 0i by itself (and thereby perfetly simulate a key-update exposure atperiod i). Similarly, random-aess key updates an be done using partial keys SK 0ij = (x0ij ; y0ij),3Here the message length L = `n=2, and the `-bit parts m1; : : : ;mn=2 of M are viewed as the n=2 lower orderoeÆients of an otherwise random polynomial of degree (n � 1) over GF [2`℄. This polynomial is then evaluated atn points of GF [2`℄ to give the �nal n shares. 10



G(1k): (g; h; q)  Gen(1k); x�0; y�0 ; : : : ; x�t ; y�t  Zqz�0 := gx�0hy�0 ; : : : ; z�t := gx�t hy�tPK := (g; h; q; z�0 ; : : : ; z�t )SK� := (x�1; y�1 ; : : : ; x�t ; y�t ); SK0 := (x�0; y�0)return PK;SK�; SK0U�(i; SK� = (x�1; y�1 ; : : : ; x�t ; y�t )):x0i :=Ptj=1 x�j �ij � (i� 1)j�y0i :=Ptj=1 y�j �ij � (i� 1)j�return SK 0i = (x0i; y0i) U(i; SKi�1 = (xi�1; yi�1); SK 0i = (x0i; y0i)):xi := xi�1 + x0iyi := yi�1 + y0ireturn SKi = (xi; yi)E(g;h;q;z�0 ;:::;z�y)(i;M):zi := �tj=0(z�j )ijr  ZqC := (gr; hr; zriM)return hi; Ci D(xi;yi)(hi; C = (u; v; w)i):M := w=uxivyireturn M
Figure 1: Semantially-seure key-updating enryption sheme based on DDH.where x0ij = fx(i) � fx(j), y0ij = fy(i) � fy(j). The user an then ompute xi = xj + x0ij andyi = yj + y0ij.We now show that the sheme satis�es De�nition 2. By a standard hybrid argument [4℄, it issuÆient to onsider an adversary A who asks a single query to its left-or-right orale (for sometime period i of A's hoie) and must guess the value bi. So we assume A makes only a single queryto the LR orale during period i for whih it did not make a key exposure request. In the originalexperiment (f. Figure 1), the output of LRPK;~b(i;M0;M1) is de�ned as follows: hoose r 2 Zq atrandom and output hi; (gr ; hr; zriMbi)i. Given a tuple (g; h; u; v) whih is either a DDH tuple ora random tuple, modify the original experiment as follows: the output of LRPK;~b(i;M0;M1) willbe hi; (u; v; uxivyiMb)i. Note that if (g; h; u; v) is a DDH tuple, then this is a perfet simulation ofthe original experiment. On the other hand, if (g; h; u; v) is a random tuple then, under the DDHassumption, the suess of any ppt adversary in this modi�ed experiment annot di�er by morethan a negligible amount from its suess in the original experiment. It is important to note that,in running the experiment, we an answer all of A's key exposure requests orretly sine all seretkeys are known. Thus, in ontrast to [39, 31℄, we may handle an adaptive adversary who hooseswhen to make key exposure requests based on all information seen during the experiment.Assume now that (g; h; u; v) is a random tuple and logg h 6= logu v (this will our with allbut negligible probability). We laim that the adversary's view in the modi�ed experiment isindependent of ~b. Indeed, the adversary knows only t values of fx(�) and fy(�) (at points other thani), and sine both fx(�) and fy(�) are random polynomials of degree t, the values xi; yi (= fx(i); fy(i))are information-theoretially uniformly distributed, subjet only to:logg zi = xi + yi logg h: (1)Consider the output hi; (u; v; uxivyiMb)i of the enryption orale. Sine:logu(uxivyi) = xi + yi logu v; (2)and (1) and (2) are linearly independent, the onditional distribution of uxivyi (onditioned on biand the adversary's view) is uniform. Thus, the adversary's view is independent of bi (and hene11



~b). This implies that the suess probability of A in this modi�ed experiment is 1=2, and hene thesuess probability of A in the original experiment is at most negligibly di�erent from 1=2.We now onsider seurity against (ompromises of) the physially-seure devie; in this ase,there are no key exposure requests but the adversary learns SK�. Again, it is suÆient to onsideran adversary who asks a single query to its left-or-right orale (for time period i of its hoie)and must guess the value bi. Sine SK� only ontains the t highest-order oeÆients of t-degreepolynomials, the pair (xi; yi) is information-theoretially uniformly distributed (for all i) subjetto xi + yi logg h = logg zi. An argument similar to that given previously shows that the suessprobability of the adversary is at most negligibly better than 1=2, and hene the sheme satis�esDe�nition 4.5 Chosen-Ciphertext Seurity Based on DDHWe may modify the sheme given in the previous setion so as to be resistant to hosen-iphertextattaks. In doing so, we build upon the hosen-iphertext-seure (standard) publi-key enryptionsheme of Cramer and Shoup [12℄.G(1k): (g; h; q) Gen(1k); H  CRHF(1k)for i = 0 to t and n = 0 to 2:x�i;n; y�i;n  Zqfor i = 0 to t:z�i := gx�i;0hy�i;0 ; �i := gx�i;1hy�i;1 ; d�i := gx�i;2hy�i;2PK := (g; h; q;H; fz�i ; �i ; d�i g0�i�t)SK� := (fx�i;n; y�i;ng1�i�t; 0�n�2); SK0 := (fx�0;n; y�0;ng0�n�2)return PK;SK�; SK0U�(i; SK�):for n = 0 to 2:x0i;n :=Ptj=1 x�j;n �ij � (i� 1)j�y0i;n :=Ptj=1 y�j;n �ij � (i� 1)j�return SK 0i = (fx0i;n; y0i;ng0�n�2) U(i; SKi�1; SK 0i):for n = 0 to 2:xi;n = xi�1;n + x0i;nyi;n = yi�1;n + y0i;nreturn SKi = (fxi;n; yi;ng0�n�2)EPK(i;M):zi := �tj=0(z�j )ij ; i := �tj=0(�j )ijdi := �tj=0(d�j )ijr  ZqC := (gr; hr; zriM; (id�i )r);where � def= H(i; gr; hr; zriM)return hi; Ci
DSKi(hi; (u; v; w; e)i):� := H(i; u; v; w)if uxi;1+xi;2�vyi;1+yi;2� 6= ereturn ?else M := w=uxi;0vyi;0return MFigure 2: Chosen-iphertext-seure key-updating enryption sheme based on DDH.We briey review the \basi" Cramer-Shoup sheme (in part to onform to the notation usedin Figure 2). Given generators g; h of group G (as desribed in the previous setion), seret keysfxn; yng0�n�2 are hosen randomly from Zq. Then, publi-key omponents z = gx0hy0 ,  = gx1hy1 ,and d = gx2hy2 are omputed. In addition, a funtion H is randomly hosen from a family ofuniversal one-way hash funtions (UOWHF's). The publi key is (g; h; q; z; ; d;H).12



To enrypt a message M 2 G , a random element r 2 Zq is hosen and the iphertext is:(gr; hr; zrM; (d�)r), where � = H(gr; hr; zrM). To derypt a iphertext (u; v; w; e), we �rst hekwhether ux1+x2�vy1+y2� = e. If not, we output ?. Otherwise, we output M = w=ux0vy0 .In our extended sheme (f. Figure 2), we hoose six random, degree-t polynomials (over Zq) fx0 ,fy0 , fx1 , fy1 , fx2 , and fy2 , where fxn(�) def= Ptj=0 x�j;n� j and fyn(�) def= Ptj=0 y�j;n� j for 0 � n � 2.The user stores the onstant term of eah of these polynomials, and the remaining oeÆients arestored by the physially-seure devie. The publi key onsists of g; h;H, and Pedersen ommit-ments to the oeÆients of these polynomials. Here, H is hosen from a family of ollision-resistanthash funtions (CRHF's). For suh a funtion H, it is infeasible to �nd two distint inputs m1 andm2 suh that H(m1) = H(m2).To enrypt during period i, a user �rst omputes zi; i, and di by evaluating the polynomials\in the exponent" (see Figure 2). Then, similar to the basi sheme, enryption of M is performedby hoosing random r 2 Zq and omputing hi; (gr ; hr; zriM; (id�i )r)i, where � def= H(i; gr ; hr; zriM).Note that we now inlude the period i in the hash funtion; this will be important in the analysis.Also notie that zi = gfx0 (i)hfy0 (i), i = gfx1 (i)hfy1 (i), and di = gfx2 (i)hfy2 (i). Thus, the user anderypt (just as in the basi sheme) as long as he has fxn(i); fyn(i) for 0 � n � 2. The periodseret key SKi ontains exatly these values.Theorem 4 Under the DDH assumption, the enryption sheme of Figure 2 is strongly (t;N)-key-insulated under hosen-iphertext attaks. Furthermore, the sheme has seure key updates andsupports random-aess key updates.Proof: That the sheme has seure key updates is trivial, sine SK 0i may be omputed fromSKi�1 and SKi. Random-aess key updates are done analogously to the sheme of the previoussetion. We now show the key-insulated seurity of the sheme (f. De�nition 2). A standard hybridargument [4℄ shows that it is suÆient to onsider an adversary A who makes only a single requestto its left-or-right orale (for time period i of the adversary's hoie) and must guess the value bi.We stress that polynomially-many alls to the deryption orale are allowed.Assume A makes a single query to the LR orale during period i for whih it did not make a keyexposure request. In the original experiment (f. Figure 2), the output of LRPK;~b(i;M0;M1) is asfollows: hoose r  Zq and output hi; (gr ; hr; zriMbi ; (id�i )r)i, where � is as above. As in the proofof Theorem 3, we now modify the experiment. Given a tuple (g; h; u; v) whih is either a DDH tupleor a random tuple, we de�ne the output of LRPK;~b(i;M0;M1) to be hi; (u; v; ~w = uxi;0vyi;0Mbi ; ~e =uxi;1+xi;2�vyi;1+yi;2�)i, where � def= H(i; u; v; ~w). Note that if (g; h; u; v) is a DDH tuple, then thisresults in a perfet simulation of the LR orale from the original experiment. On the other hand, if(g; h; u; v) is a random tuple, then, under the DDH assumption, the suess of any ppt adversaryannot di�er by a non-negligible amount from its suess in the original experiment. As in theproof of Theorem 3, note that, in running the experiment, we an answer all of A's key exposurequeries. Thus, the proof handles an adaptive adversary whose key exposure requests may be madebased on all information seen up to that point.Assume now that (g; h; u; v) is a random tuple and logg h 6= logu v (this happens with all butnegligible probability). We show that, with all but negligible probability, the adversary's view inthe modi�ed experiment is independent of ~b. The proof parallels [12, Lemma 2℄. Say a iphertexthi; (u0; v0; w0; e0)i is invalid if logg u0 6= logh v0. Then:Claim: If the deryption orale outputs ? for all invalid iphertexts during the adversary's attak,then the value of bi (and hene ~b) is independent of the adversary's view.13



The adversary knows at most t values of fx0(�) and fy0(�) (at points other than i). Sine fx0(�)and fy0(�) are random polynomials of degree t, the values xi;0; yi;0 (= fx0(i); fy0(i)) are uniformlydistributed subjet only to the onstraint given by the publi key:logg zi = xi;0 + yi;0 logg h: (3)Furthermore, when the deryption orale derypts valid iphertexts hi; (u0; v0; w0; e0)i, the adversaryonly obtains linearly-dependent relations r0 logg zi = r0xi;0 + r0yi;0 logg h (where r0 def= logg u0).Similarly, deryptions of valid iphertexts at other time periods do not further onstrain xi;0; yi;0.Now onsider the third omponent uxi;0vyi;0Mbi of the enryption orale (the only one whih dependson bi). Spei�ally, onsider the disrete log of the \one-time pad" uxi;0vyi;0 :logu(uxi;0vyi;0) = xi;0 + yi;0 logu v: (4)Sine we assumed that logu v 6= logg h, (3) and (4) are linearly independent and the distribution ofuxi;0vyi;0 (onditioned on bi and the adversary's view) is uniform. Thus, uxi;0vyi;0 ats as a perfet\one-time pad" and the adversary's view is independent of bi. The following laim now ompletesthe proof of key-insulated seurity:Claim: With all but negligible probability, the deryption orale will output ? for all invalidiphertexts.Consider an invalid iphertext hj; (u0; v0; w0; e0)i, where j represents a period during whih a keyexposure request was not made, and let �0 = H(j; u0; v0; w0). We show that, with all but negligibleprobability, this iphertext is rejeted if it is invalid. There are two ases to onsider: (1) j = i(reall that i is the period during whih the all to the LR orale is made) and (2) j 6= i.When j = i, the proof of the laim follows the proof of [12, Claim 2℄ exatly. The adversaryknows at most t values of fx1(�); fy1(�); fx2(�), and fy2(�) (at points other than i). Sine these areall random polynomials of degree t, the values (xi;1; yi;1; xi;2; yi;2) are uniformly distributed subjetonly to: logg i = xi;1 + yi;1 logg h (5)logg di = xi;2 + yi;2 logg h (6)logu ~e = xi;1 + �xi;2 + (logu v) yi;1 + (logu v)� yi;2; (7)where (5) and (6) ome from the publi key and (7) omes from the output of the enryptionorale. If the submitted iphertext hi; (u0; v0; w0; e0)i is invalid and (u0; v0; w0; e0) 6= (u; v; ~w; ~e), thereare three possibilities:Case 1. (u0; v0; w0) = (u; v; ~w). In this ase, e0 6= ~e ensures that the deryption orale will rejet.Case 2. (u0; v0; w0) 6= (u; v; ~w) but H(i; u0; v0; w0) = H(i; u; v; ~w). This immediately violates theollision-resistane of our hash funtion and hene annot our with non-negligible probability.Case 3. H(i; u0; v0; w0) 6= H(i; u; v; ~w), i.e. � 6= �0. The deryption orale will rejet unless:logu0 e0 = xi;1 + �0xi;2 + (logu0 v0) yi;1 + (logu0 v0)�0 yi;2: (8)But (5){(8) are all linearly independent when � 6= �0, logg h 6= logu v and logg h 6= logu0 v0 (theiphertext is invalid), from whih it follows that the deryption orale rejets exept with probability1=q. (As in [12℄, eah rejetion further onstrains the values (xi;1; yi;1; xi;2; yi;2); however, the kthquery will be rejeted exept with probability at most 1=(q � k + 1).)14



When j 6= i, the proof is a bit more involved. The 8-tuple (xi;1; yi;1; xi;2; yi;2; xj;1; yj;1; xj;2; yj;2)is uniformly distributed subjet to several onstraints. First, we have the three onstraints (5){(7).Next, we have the following two onstraints arising from the publi key:logg j = xj;1 + yj;1 logg h (9)logg dj = xj;2 + yj;2 logg h: (10)Furthermore, sine the adversary ould have made up to t key exposure requests (at periods otherthan i and j), it may now know t values of eah of fx1 ; fx2 ; fy1 ; fy2 . This means than it knowsa linear relation between eah pair (xi;1; xj;1), (xi;2; xj;2), (yi;1; yj;1), (yi;2; yj;2). Spei�ally, theserelations are of the form: xi;1 + �xj;1 = s1 (11)xi;2 + �xj;2 = s2 (12)yi;1 + �yj;1 = s3 (13)yi;2 + �yj;2 = s4; (14)where � is the orresponding Lagrange oeÆient � = (i� i1) � � � (i� it)=(j � i1) � � � (j � it). Notiethat the same � appears in all four onstraints. On �rst glane, it appears we have more onstraintsthan unknowns. However, it is easy to see that (13) is linearly dependent on (5), (9), and (11)while (14) is linearly dependent on (6), (10), and (12). Hene, we only have 7 linearly independentonstraints and 8 unknowns.If the iphertext hj; (u0; v0; w0; e0)i submitted by the adversary is invalid, the deryption oralewill rejet unless: logu0 e0 = xj;1 + �0xj;2 + (logu0 v0) yj;1 + (logu0 v0)�0 yj;2: (15)Now, looking at all 8 equations (5){(7), (9){(12), (15), we see that they are linearly independentpreisely when the following three onditions hold:1. logg h 6= logu v. This is true with overwhelming probability sine (g; h; u; v) is a random tuple.2. logg h 6= logu0 v0. This is true sine the iphertext hj; (u0; v0; w0; e0)i is invalid.3. � 6= �0, i.e. H(i; u; v; ~w) 6= H(j; u0; v0; w0). This is true sine we assumed that i 6= j and His hosen from a family of ollision resistant funtions. Here we require ollision resistane ofH sine the adversary's hoie of i; j is not known in advane.Thus, (15) is linearly independent from all previous onstraints and thus the iphertext is rejetedexept with negligible probability at most 1=q (again, the kth suh query is rejeted exept withprobability at most 1=(q � k + 1)).This ompletes the proof of (t;N)-key-insulated seurity. The proof of strong key-insulatedseurity follows exatly the same arguments given above exept the onstraints (11){(14) now have� = �1, as the adversary knows (xi;1 � xj;1), et. from SK�.CRHF's vs. UOWHF's. In the proof we use the fat that H is ollision resistant, while inthe basi Cramer-Shoup sheme [12℄, a universal one-way hash funtion suÆes. We note that thisdoes not introdue an extra assumption as ollision-resistant hash families an be onstruted basedon the DDH assumption [34, 36℄ (in fat, the disrete logarithm assumption is enough). Seond,15
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