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Abstract

We introduce a newimperfect random sourcethat realistically generalizes the SV-source of Sántha and
Vazirani [SV86] and the bit-fixing source of Lichtenstein, Linial and Saks [LLS89]. Our source is expected
to generate a known sequence of (possibly dependent) randomvariables (for example, a stream of unbiased
random bits). However, the realizations/observations of these variables could be imperfect in the following two
ways: (1) inevitably,eachof the observations could beslightlybiased (due to noise, small measurements errors,
imperfections of the source, etc.), which is characterizedby the “statistical noise” parameterÆ 2 [0; 12 ℄, and (2)
fewof the observations could becompletelyincorrect (due to very poor measurement, improper setup, unlikely
but certain internal correlations, etc.), which is characterized by the “number of errors” parameterb � 0. While
the SV-source considered only scenario (1), and the bit-fixing source — only scenario (2), we believe that
our combined source is more realistic in modeling the problem of extracting quasi-random bits from physical
sources. Unfortunately, we show that dealing with thecombinationof scenarios (1) and (2) is dramatically
more difficult (at least from the point of randomness extraction) than dealing with each scenario individually.
For example, ifbÆ = !(1), the adversary controlling our source can force the outcomeof any bit extraction
procedure to a constant with probability1� o(1), irrespective of the random variables, their correlation and the
number of observations.

We also apply our source to the question of producingn-player collective coin-flipping protocols secure
againstadaptiveadversaries. While the optimal non-adaptive adversarial threshold for such protocols is known
to ben=2 [BN00], the optimal adaptive threshold isconjecturedby Ben-Or and Linial [BL90] to be onlyO(pn).
We give some evidence towards this conjecture by showing that there exists noblack-box transformationfrom a
non-adaptivelysecure coin-flipping protocol (with arbitrary conceivableparameters) resulting in anadaptively
secure protocol tolerating!(pn) faulty players.

�Laboratory for Computer Science, Massachusetts Instituteof Technology, 545 Technology Square, Cambridge, MA 02139.Email:
yevgen@theory.lcs.mit.edu.
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1 Imperfect Random Sources
Imperfect Random Sources. Randomization has proved to be extremely useful and fundamental in may areas of
computer science, such as approximation algorithms, counting problems, distributed computing, primality testing,
cryptographic protocols and many others. The common abstraction used to introduce randomness into computation
is that the underlying algorithm has access to a stream of completely unbiased and independent random bits. This
abstraction allows one to use randomness in a clean way, separating out the issue of actually generating such
“strong” random bits. Unfortunately, in reality we do not have sources that emit perfectly uniform and independent
random bits. However, there are many sources (e.g., physical sources like Geiger counters or various computer
statistics like disk access times) whose outputs (which need not be bits) are believed to be “somewhat random”.
Such sources are calledimperfect random sources. A large amount of research (which we survey in a second) has
been devoted to filling in the gap between such realistic imperfect sources and the ideal sources of randomness
(that are actually used in designing various algorithms andprotocols). Very roughly, we can separate two major
and quite different questions addressed when studying imperfect random sources:� Simulation:can we efficiently simulate a probabilistic (BPP) algorithm with our source?� Extraction: can we extract almost (or slightly) perfect randomness fromour source?

Simulation has been successfully done for more and more imperfect (so called “weak”) random sources [VV85,
V86, CG88, CW89, Z96, ACR+99], culminating in using extremely weak sources [ACR+99]. These works take
advantage of the fact that even though it is impossible to generate almost random bits from the corresponding weak
sources, it is possible to generate random strings that avoid falling into the negligibly small set of “bad” strings.
Randomness extraction, which is also the objective of this paper, would provide a more direct and clean way to
use an imperfect random source in place of ideal randomness for almost any application (including simulation and
many others). Thus, extraction from the source is a very desirable property to have. Unfortunately, it is also much
harder to achieve than simulation, even for relatively structured imperfect random sources.

Extraction from Imperfect Sources. Most initial works in imperfect random sources [vN51, B86, SV86,
LLS89, CG88] considered what we callstreamingsources. These sources output anordered streamof bits,1 but
these bits could be somewhat biased and/or correlated (exact details depend on the streaming source considered).
Since these sources are studied in this paper, we survey themin more detail a bit later.

A lot of work has also been done on sources that produce (at once) a string ofn bits, some of which (say,b) are adversarially fixed, but the other(n � b) are truly random. The goal of extraction for such sources is to
design a function (called aresilient function) whose output is “close” to random no matter whichb input bits are
fixed. It turns out that there is a huge difference depending on whether theb “fixed” bits get set before or after the(n � b) random bits are chosen. In the first scenario (studied by [V87, CFG+85, BBR88, F92, KJS97, DSS00])
quite positive almost optimal results are known for extracting manybits (one bit is trivially extracted by the parity).
In the second scenario (b fixed bits are setafter the random bits)2, even one bit is hard to extract: the optimalb for
this task lies somewhere between
(n= log2 n) [AL93] andO(n= log n) [KKL89].

Originated by Chor and Goldreich [CG88], much subsequent research has been dedicated to various flavors of
the so calledweakrandom sources, where no string has a very high probability of occurring.3 While such sources
are very general (and, as we mentioned, can still be used to simulateBPP algorithms), they are also too broad for
any kind of randomness extraction [CG88],4 unless we make some relaxations. For example, Trevisan and Vad-
han [TV00] consider the problem of extraction fromefficiently samplabledistributions with a given min-entropy.
In another major development (introduced by Nisan and Zuckerman [NZ96]), the randomness extractor is allowed
to use a small number oftruly random bitsin addition to the output of a given weak source. This line of work pro-
duced an immense amount of research and found many applications (see [NT99, T99, RSW00] and the references

1More generally, we can talk about a stream of random variables over larger domains. We deal with such generalized streaming sources
in Section 5, and stick to bits for the purposes of exposition.

2Such resilient functions are equivalent to1-round/1-bit collective coin-flippingprotocols [BL90] discussed in Section 4.
3Specifically, a weak source is said to havemin-entropym if probability of every sample is at most2�m.
4For example, every deterministic boolean function fromN bits can be fixed to a constant by a source of (huge) min-entropy (N � 1).
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therein). Finally, we mention a series of other works [SV86,V87, CG88, TV00] which (quite successfully) try to
extract randomness from severalindependentimperfect sources, which is quite a strong assumption.

Streaming Sources. We now come back to the streaming sources. Recall, our abstraction of randomness assumes
the presence of a source that emits an ordered sequence (“stream”) of unbiased and independent random bits.
Similarly, streaming sources emit an ordered sequence of bits, but these bits could be somewhat biased and/or
correlated. In other words, any streaming source has the same “syntax” as the ideal source, but the bias of each
subsequent bit could depend in some way (how exactly dependson the streaming source considered) on the “state of
the source” so far. Streaming sources model (quite realistically) any process that produces “imperfect randomness”
incrementally over time (for example, most of the physical sources of randomness). While such sources are usually
less general than the weak random sources, the perspective of successful extraction looks much brighter for many
of such sources. The study of such sources is also useful in several other regards. Firstly, such sources are quite
realistic for many situations, and yet correspond more closely to the ideal sources of randomness. Secondly, they
relate to the study of “discrete control processes” [LLS89](that examine how much “control” or “influence” over
a given discrete process is needed in order to force some desired event). Thirdly, they allow us to distill and study
the effects of several specific complications arising when dealing with physical sources. For example, (limited)
bias of the coins, measurement errors, noise, or possible internal correlations between various samples produced.
And finally, various streaming sources can arise in other scenarios, like collective coin-flipping (see [LLS89] and
Section 4).

Prior Streaming Sources. Perhaps the first streaming source goes all the way back to vonNewman [vN51] who
showed how to extract perfect random bits from a sequence ofindependentcoin tosses of thesamebiased coin (of
unknown bias). Elias [E72] showed how to improve this resultand extract perfect random bits at the optimal rate.
Blum [B86] relaxed the independence requirement on the source by considering streaming sources generated by
finite-state Markov chains (ofunknownstructure), and showed how to generalize von Newman’s algorithm to still
extractperfectbits from such a source (provided the Markov chain has enoughentropy).

The next important development was made by Sántha and Vazirani [SV86] who considered a more general
streaming source, called asemi-random source(or an SV-source). In this source each subsequent bit can be
arbitrarily correlated withall the previous bits, as long as it has some uncertainty. More specifically, the source is
specified by the “noise” parameter0 � Æ � 12 , and can produce an arbitrary sequence of bitsx1; x2; : : : as long asPr(xi = 1 j x1 : : : xi�1) 2 [12�Æ; 12+Æ℄. This source tries to model the fact that physical sources can never produce
completelyperfect bits (anyway, our observation of such sources is bound to introduce some noise). Alternatively,
the stream of bits could be produced by a distributive coin-flipping protocol [BL90], where few malicious players
can slightly bias each of the bits. Additionally, in both of the above examples the bits can be correlated in a very
non-trivial way, so we are better off without making any assumptions about the nature of these correlations (except
that no bit can be completely determined from the previous bits, which is also one of the main limitations of this
source).

In a parallel development, Lichtinstein, Linial and Saks [LLS89] considered another streaming source, called
the (adaptive)bit-fixing source. In this source (characterized by the “number of errors” parameterb) each next bit,
depending on the previous bits, can be either perfectly random (which is one of the main limitations of this source)
or completely fixed to0 or 1. The only constraint is that at mostb of the bits are fixed. This source tries to model
the situation that some of the bits generated by a physical source could bedeterminedfrom the previous bits, even
though we assume that this does not happen very frequently (at mostb times). Alternatively, it relates to the study
of “discrete control processes” that we mentioned earlier,as well as to the problem of adaptive coin-flipping where
each player sends at most one bit (see Section 4).

We will discuss what is known about the above two sources after we introduce our source and develop some
appropriate notation.

Our Goal and Organization. In this paper we study a new streaming source that examines the implications of
havingboth the problems of “constant small noise” and “rare total errors”, naturally generalizing random sources
of [SV86, LLS89]. The paper is organized as follows. In Section 2 we introduce the “bit version” of our source.
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This initial restriction to bits is done for several good reasons: clarity of presentation, closer relationship with
previous work, slightly tighter results than for the general case, and, finally, technically simpler (but conceptually
representative) proofs. In particular, we completely characterize the possibility of bit extraction from our source.
Unfortunately, for most interesting settings of parameters, no reasonable bit extraction turns out to be possible.
Next, in Section 3 we take an alternative view of our source asa discrete control process. In other words, we
examine if our source has enough “power” (or imperfection) to force the (ideally random) output stream to satisfy
some desired property. In particular, we derive tight bounds on how “influential” our source is in this regard. In
Section 4 we have our main application to collective coin-flipping: impossibility ofblack-box transformations
from statically to good adaptively secure protocols. Finally, in Section 5 we discuss our general source (which can
model an arbitrary “stochastic process” and not just a sequence of unbiased bits). We show that all the “bit-results”
can be extended to the general source, and discuss some implications of that.

2 Bit Version of Our Source
Motivation. Recall that Sántha and Vazirani [SV86] tried to model the problem that each of the bits produced by a
streaming source is unlikely to be perfectly random:slighterrors (due to noise, measurement errors, imperfections
of the source) areinevitable. However, the weakness of their approach is that no bit can becompletely determined
from the previous bits. On the other hand, Lichtenstein, Linial and Saks [LLS89] considered the problem that
some (and hopefullyfew) of the bits could have non-trivial dependencies on the previous bits (due to internal
correlations, poor measurement or improper setup), to the point of beingcompletely determinedby them. The
weakness of their approach is the assumption that the other bits areperfect.

While studying the above two imperfectionsindividually has its advantages, we believe that theircombina-
tion provides a more realistic view in modeling the extraction problem from physical sources. Additionally, we
will see that our source relates to discrete control processes, and comes up naturally in the study ofblack-box
transformationsfrom non-adaptively to adaptively secure coin-flipping. Finally, it is very interesting to see if both
imperfections (inevitable small noise and rare total errors) are sufficiently more difficult to deal with than any of
them individually. Interestingly, we will show that the answer to this question is indeed positive.

Defining the Source. Our source is characterized by the “noise” parameterÆ 2 [0; 12 ℄ and the “number of errors”
parameterb � 0. It is also convenient to fix the number of bits,N , emitted by the source. Hence, our source
generatesN bitsx1 : : : xN , where fori = 1 : : : N , the value ofxi can depend onx1 : : : xi�1 in one of the following
two ways: (A)xi could determined byx1 : : : xi�1 (but this can happen for at mostb bits xi), or (B)Pr(xi = 1 jx1 : : : xi�1) 2 [12�Æ; 12+Æ℄. We call our sourceBias-Control Limited(or simply BCL). Clearly,b = 0 corresponds
to the SV-source,Æ = 0 yields the bit-fixing source, andb = Æ = 0 gives the perfect randomness.

In fact, since a good extraction function for (or any other usage of) our source should work forany(Æ; b;N)-
BCL source, it is more convenient to view our source as an “active entity” A, usually seen as anadversary.
Namely, in theideal scenario the source would emitN truly random bits. However, thisadversaryA (which
defines a particular(Æ; b;N)-BCL source) can partiallyinfluencethis ideal behavior. More specifically, given the
outcomes of the first(i � 1) bits x1 : : : xi�1, A can influence the value ofxi using one of the following rules
allowed:

(A) Fix xi to a constant. This rule is called anintervention, and can be used at mostb times.

(B) Biasxi by any value� Æ. More specifically, setxi = 1 with any probability inside[12 � Æ; 12 + Æ℄.5
Now we can quantitatively measure the “goodness” of our source for the problem of bit extraction.

Definition 1 LetA be some(Æ; b;N)-BCL source, andf : f0; 1gN ! f0; 1g be a function. Define� q(Æ; b;N; f;A) be the bias of the coinf(x), wherex = x1 : : : xN was produced byA.� q(Æ; b;N; f) = maxA q(Æ; b;N; f;A) (taken over all(Æ; b;N)-BCL sourcesA).� q(Æ; b;N) = minf q(Æ; b;N; f) (taken over allf : f0; 1gN ! f0; 1g).
5Recall, abiasof a bit is defined to bejPr( = 1)� 12 j.
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Thus,q(Æ; b;N) is the smallest bias of a coin that can be extracted from any(Æ; b;N)-BCL source.

We remark that in applicationsÆ, b andN will usually be functions of some other implicit parameter (clear
from the context). For such sources we can use asymptotic notation (in this implicit parameter). In particular, we
will say that one can extract analmostperfect bit from a(Æ; b;N)-BCL source, ifq(Æ; b;N) = o(1), and aslightly
random bit ifq(Æ; b;N) � 12 �
(1). We will now survey the known results about the SV-source andthe bit-fixing
source, and then parallel them with our results.

Extraction from the Bit-Fixing Source. Recall, the bit-fixing source of [LLS89] corresponds to having b in-
terventions andÆ = 0. Notice, that if we letf to be the majority function, we can tolerateb = O(pN) since
anypN bits (for small enough constant) do not influence the resulting (almost random) value of majority with
probability 1 � o(1). Remarkably enough, Lichtinstein, Linial and Saks [LLS89]actually showed that this is the
best bit extraction possible. In fact,

Theorem 1 ([LLS89]) For anyb, majority is the best bit extraction function for the bit-fixing source. In particular,q(0; 1pN;N) = o(1), whileq(0; 2pN;N) = 12 � o(1) (for some1 < 2).
As a side note, arandomfunctionf : f0; 1gN ! f0; 1g is a terrible bit extraction function for the bit-fixing

source even forb = !(1). Indeed, with high probability the first(N � b) bits do not fixf , soA can use the lastb
interventions to fixf . Another terrible function (even forb = 1) is any parity function: it can be fixed by fixing the
last emitted bit. To summarize, we can tolerateb = �(pN), and the majority is the best bit extraction function.
However, a random function (and any parity function) is “bad” even if b = !(1).
Extraction from the SV-source. Recall, the SV-source [SV86] corresponds to havingb = 0, and wherePr(xi =1 j x1 : : : xi�1) 2 [12 � Æ; 12 + Æ℄. On a negative side, Sántha and Vazirani showed that one cannot extract a bit
whose bias is less thanÆ. In other words, many samples (i.e., largeN ) from the source do not help: outputtingx1
is as good as we can get! Notationally,

Theorem 2 ([SV86]) q(Æ; 0; N) = Æ. Thus, one can extract an almost perfect bit iffÆ = o(1), and a slightly
random bit iffÆ = 12 � 
(1),

Clearly, there are many (optimal) functions that extract aÆ-biased coin from any SV-source: for example, any
parity function will do. In fact, Boppanna and Narayanan [BN96] (extending the ideas of [AR89]) show that a
vast majority of boolean functions fromN bits extract a slighly random bit (provided, of course,Æ = 12 � 
(1)).
Unfortunately, majority is not one of these functions (unless Æ � 1=pN , which will turn out to be important
soon). Indeed, if our source always sets the1-probability of the next bit to be12 + Æ, the resulting bit will be1 with
probability 1 � o(1). In fact, Alon and Rabin [AR89] showed thatmajority is the worstbit extracting function.
Namely, q(Æ; 0; N;majority) � q(Æ; 0; N; f), for any f . To summarize, any parity function is an optimal bit
extractor, a random function does quite well, while the majority is the worst.

Extraction from Our Source. Looking at the extreme cases of our source (Æ = 0 andb = 0), we notice that
somewhat reasonable bit extraction (at least of slighltly random bits) is possible for both of them. However, the
extraction functions are diametrically opposite. For the bit-fixing source the best function was the majority, and a
random function (or any parity function) was terrible, while for the SV-source a random function was good (and
any parity function is optimal), and the majority was the worst. Hence, the best bit extractor becomes the worst
and vice versa! One may wonder if some extraction function can work reasonably well for both of these extreme
cases, and hopefully provide a good extraction for our combined source as well. Unfortunately, we show that such
a magic function does not exist for (any “interesting” setting of) our combined source. The following theorem is
proved in Section 3:

Theorem 3 If bÆ = !(1), then it is impossible to extract a slightly random bit from a(Æ; b;N)-BCL source,
irrespective of the value ofN ! More precicely,q(Æ; b;N) � 12 � 2(1 + 2Æ)b = 12 � 12
(Æb)�1 (1)
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In particular, while forÆ = 0 we could tolerateb = O(pN) (and even extract analmostperfect coin), and forb = 0 could deal withÆ < 12 �
(1), now we cannot tolerateb!1 for any (constant)Æ > 0, no matter how largeN is. Also notice that the worst-case bias of any extracted coin exponentiallyapproaches to12 asb grows.

Tightness. To see the tightness of our result, we would like to provide some intuition of why the expressionbÆ is important for our source. We look again at the majority function onN bits. Assume we are givenb andÆ
(both functions of some other parameter). Under which conditions onN will the majority onN bits be a good
bit extraction for(Æ; b;N)-BCL source? A moment look at the binomial distribution reveals that ifN � b2, b
interventions allow the adversary to almost control the coin. On the other hand, ifN � 1=Æ2, then theÆ-bias at
every step again allows the adversary to almost control the coin. Hence, ifb2 � 1=Æ2, i.e. bÆ � 1, then noN
will make the majority “good”. This is not surprising in light of Theorem 3, but the converse statement is more
interesting. It is easy to show that ifb2 � 1=Æ2, i.e. bÆ � 1, anyN such thatb2 � N � 1=Æ2 will result in
the majority being a good extractor (in fact,N � b=Æ is the best). But what ifN > 1=Æ2? Of course, we know
that the majority does not work then. However, we can can still trivially extract an almost random bit by simply
ignoring some (say, the first or the last)N �O(1=Æ2) bits and taking the majority of the remainingO(1=Æ2) bits!
Collecting these simple observations in a careful way, we get

Lemma 1 If bÆ = O(1), b = O(pN) (for small enough constants)6 andÆ = o(1), then one can extract an almost
random bit from a(Æ; b;N)-BCL source:q(Æ; b;N) = o(1). In particular, such extraction can be done by applying
the majority function to anymin(N;O(1=Æ2)) bits of the source.

The above Lemma shows the tightness of Theorem 3. Namely, fora large range of parameters we have: ifbÆ = O(1), thenalmostrandom bit can be extracted, while ifbÆ = !(1), not even aslightly random bit can be
extracted (by Theorem 3). It is also curious to apply the above Lemma to the SV-source (b = 0), in particular
because [AR89] showed that majority ofall N bits is theworstextraction function. Well, ifÆ = O(1=pN), the
majority (while far fromoptimal) still extracts an almost random bit from the SV-source. If
(1=pN) � Æ � o(1),
global majority is bad, but the majority ofO(1=Æ2) bits still works. In fact, even if
(1) � Æ � 12 � 
(1), the
above majority extracts a slightly random bit (notice, in this case analmostperfect bit is impossible by Theorem 2,
sinceÆ = 
(1)).
Complete Picture. We also notice that Theorem 3 does not imply Theorems 1 and 2, which study the extreme
cases of our source. However, bycombiningall three results with the previous discussion (in particular, Lemma 1),
we get a complete characterization of the of bit extraction picture from any(Æ; b;N)-BCL source (at least from
the perspective of extracting almost and slightly random bits). Namely, the following list covers all the significant
cases:

1. If b = 
(pN) or Æ = 12 � o(1) or bÆ = !(1), it is impossible to extract even a slightly random bit. These
results follow from Theorem 1 (even forÆ = 0), Theorem 2 (even forb = 0) and Theorem 3 respectively.

2. If 
(1) � Æ � 12 � 
(1) andb = O(1), then one can extract a slightly random bit, but cannot extract an
almost random bit (the lower bound follows from Theorem 2).

3. If b = O(pN) andbÆ = O(1) andÆ = o(1), then one can extract an almost random bit from our source.
This is exactly Lemma 1.

To have yet another insight on these results, we can let� def= max(Æ;O(1=pN)) to be the “effective noise” of our
source. In other words, ifÆ � 1=pN , increasingÆ to 1=pN does not change the behavior of the source much.
Then we can restate our main result as follows: whenb� = !(1), no good extraction is possible, and ifb� = O(1),
good extraction becomes possible.

Expected Number of Interventions to Fix the Outcome. We also study another bit extraction measure of our
source: theexpectednumber of interventions toalwaysfix the extracted coin (to0 or 1). Due to space limitations,
this is discussed in Appendix A, where we show thatO(1=Æ) expected interventions suffice irrespective ofN .

6To avoid verbosity in the future discussion, the statement� = O(�) should be read as “� � � for a small enough (rather than any)
constant whose value is not important for the discussion”, and similarly for � = 
(�).

5



3 Our Source as a Discrete Control Process
Alternative View of Our Source. Recall that we view our source as an adversaryA who caninfluencethe ideal
behavior of the source by applying rules (A) and (B). So far weconsidered the task ofA to be preventing good
bit extraction. However, an equally (if not more) natural task forA would be to try to force some particularevent,
i.e. to force the stringx = x1 : : : xN to satisfy some particular property. For example,A may try to make the
source emit more1’s than0’s (i.e., force the majority function to true). To formalizethis, letE be an event (or
property) onf0; 1gN . Equivalently,E can be viewed as a boolean functione : f0; 1gN ! f0; 1g, or as alanguageL = e�1(1) � f0; 1gN , via “E happened() e(x) = 1 () x 2 L”.

We can define thenatural probabilityp of E to be the probability thatE happened for theideal source (in our
case, emittingN perfect unbiased bits), i.e.p = jLj=2N . We then say thatE is p-sparse. Now we want to see if
our adversaryA has enough power to significantly influence the occurrence ofE (i.e., to makex 2 L). SuchA
can be viewed as a “controller”: it takes “no effort” forA to slightly influence eachxi (i.e., apply rule (B)), and it
takes “significant effort” tocontrolxi (i.e., apply rule (A)). Now, two dual questions naturally come up for a givenÆ, N andE (with natural probabilityp):

1. For a given number of interventionsb, what is the largest probability of “success” thatA can achieve? In
particular, under what conditions can it be arbitrarily close to1? Can the answer(s) depend onp but not on
other specifics ofE?

2. Assume we want toguaranteesuccess (E always happens), by allowing possibly unbounded number of
interventions. What is the smallestexpectednumber of interventions needed? Can the bound depend onp
but not on other specifics ofE?

We define two natural measuress that allow us to study the quantities addressed in the above questions. For the first
question, it is actually more convenient to study the complement notion of “smallest probability of failure” (i.e.,
to minimizePr(e(x) = 0)). SinceÆ is never going to change in our discussion, we omit it from allthe notation
below (even though all the bounds depend onÆ).
Definition 2 Define� F (p;N; b) = maxE minA Pr(e(x) = 0), taken over allp-sparseE , and all (Æ; b;N)-BCLA.� B(p;N) = maxE minA E[b℄, taken over allp-sparseE and allN -bit sourcesA (with noiseÆ) necessar-

ily producingx satisfyingE . HereE[b℄ stands for the expected number of interventions used byA (the
expectation is over the usage of rule (B)).

Thus,F (p;N; b) is the worst (largest) probability ofA’s failure over allp-sparse events, andB(p;N) is the
smallest expected number of interventionsA needs to always force anyp-sparseE . Notice, both quantities take
the worst case w.r.t.p-sparseE .

Bounding the Probability of Failure. We start with a tight bound onF (p;N; b).
Theorem 4 F (p;N; b) � 1p � (1 + 2Æ)b = 2log(1=p)��(Æb) (2)

In particular, if Æb = !(log(1=p)),A can force anyp-sparseE with probability1� o(1).
We notice thatN does not enter the equation. We also notice that Theorem 4 immediately implies Theorem 3.

Indeed, for any bit extraction functionf , the optimal way to bias the extracted coin is to try to forcef(x) = 0 orf(x) = 1. Since one of these events has natural probabilityp � 1=2, the bound of Theorem 3 follows. Finally, the
bound is almost tight, at least in several significant cases.For example, forp = 12 we argued earlier thatA cannot
almost certainly force1 on the majority ofmin(N; 1=Æ2) bits whenÆb = O(1). On the other hand, ife is the
function that is1 on the firstp2N values ofx (in the lexicographic order),A has to intervene at least
(log(1=p))
times in order to forcee(x) = 1 with probability more than12 + Æ.
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Proof: The statement is true forÆ = 0 or b = 0, sinceF (�; �; �) � 1 � 1=p, so assumeÆ > 0 andb � 1. Defineg(p; b) = 1p(1+2Æ)b . We need to show thatF (p;N; b) � g(p; b) for anyN � 1, 1 � b � N and0 � p � 1. We

prove this by induction onN . ForN = 1, F (0; 1; b) = 1 <1 = g(0; b), andF (p; 1; b) = 0 � g(p; b) for p > 0
(here we usedb � 1). Assume now the claim is true for(N � 1) and we want to show it forN .

Take anyp-sparseE given by a functione. Let e0 : f0; 1gN�1 ! f0; 1g be the restriction ofe whenx1 =0. Similarly for e1. This defines ap0-sparse eventE0 and ap1-sparse eventE1 satisfying 12(p0 + p1) = p.
Without loss of generality assumep0 � p � p1. Given suchE , our particular adversaryA will consider two
options and pick the best (using his unbounded computational resources): either he will use an intervention (he
can do it since we assumedb � 1) and fix x1 = 0, reducing the question to that of analyzing thep0-sparse
eventE0 on (N � 1) variables and also reducingb by 1, or he will use rule (B) making the0-probability ofx1 equal to 12 + Æ and leaving the sameb. By the definition of functionF (p;N; b), we know that in the first
case the failure probability ofA will be at mostF (p0; N � 1; b � 1), and in the second case it will be at most(12 � Æ)F (p1; N � 1; b) + (12 + Æ)F (p0; N � 1; b). Since the choice ofp0 � p1 (i.e., howE splits intoE0 andE1)
such thatp0 + p1 = 2p is outside of our control, we will take the maximum over all such choices and obtain the
following recurrence.F (p;N; b) � maxp0�p1p0+p1=2pmin�F (p0; N � 1; b� 1); �12 � Æ� � F (p1; N � 1; b) +�12 + Æ� � F (p0; N � 1; b)�
Let p0 = p(1 + �) andp1 = p(1� �), where0 � � � 1 (sincep0 � p � p1). Using our inductive assumption,F (p;N; b) � max0���1min�g(p(1 + �); b� 1); �12 � Æ� � g(p(1 � �); b) +�12 + Æ� � g(p(1 + �); b)� ?� g(p; b)
Recalling the definition ofg, it thus suffices to show thatmax0���1min 1p(1 + �)(1 + 2Æ)b�1 ; 12 � Æp(1� �)(1 + 2Æ)b + 12 + Æp(1 + �)(1 + 2Æ)b! � 1p(1 + 2Æ)b() max0���1min 1 + 2Æ1 + � ; 12 � Æ1� � + 12 + Æ1 + �! � 1
We see that the expressions under the minimum are equal when� = 2Æ. We consider two cases.� Case 1. Assume� � 2Æ. Then the minimum above is1+2Æ1+� and it suffices to show that1+2Æ1+� � 1, which is

equivalent to our assumption on�.� Case 2. Assume� � 2Æ. Then the minimum above equals to
12�Æ1�� + 12+Æ1+� and it suffices to show that12�Æ1�� + 12+Æ1+� � 1. But this is again equivalent to our assumption on�.

Bounding Expected Number of Interventions. We also show a tight bound onB(p;N). Namely,B(p;N) =O(1Æ log(1=p)) (in particular, this bound is independent onN ). Due to space limitations, the discussion and the
proof appear in Appendix B.

4 Our Source and Collective Coin-Flipping
The Setting. Collective Coin-Flippingin the full-information model was introduced by Ben-Or and Linial [BL90].
In this modeln computationally unbounded processors are trying to generate a random bit in a setting where only
a single broadcast channelis available for communication. As usual, we assume that some of the players (at
mostb out of n, though) can befaulty or malicious, and in fact is controlled by a central adversary A (which is
calledb-bounded). In each round of the protocol every player can broadcast a message to the other players. A
crucial complication is that the network isasynchronous within a round. For example, players cannot flip a coin by
broadcasting a random bit and taking their exclusive OR: thelast player to talk can completely control the output.
Again taking the worst case scenario, we assume that in each round firstA receives all the messages broadcast by
the honest players, and only then decides which messages to send on behalf of the bad players. The output of the
protocol is some pre-agreed deterministic function of the messages exchanged over the broadcast channel.
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The Goal. As we said, the objective of collective coin-flipping (parameterized by the number of players,n) is
for the players to agree on a “random” bit, even in the presence of an adversary. Of course, the adversaryA will
introduce some bias into the coin. We let��(b) be the largest bias achieved by ab-bounded adversary against
protocol�. Then, a coin-flipping protocol� is said to be(weakly)b(n)-resilient if � produces aslightly random
coin: ��(b(n)) � 12 � 
(1), where the constant isindependentof n. Similarly, � is said to bestronglyb(n)-
resilient if � produces analmost random coin:��(b(n)) = o(1). Traditionally, the “standard” definition of
resilience for coin-flipping is that of weak resilience, so this is the notion that we will use.7

Type of Adversary. So far we have been very vague about the type of adversary thatwe have. Perhaps most
importantly, we have not talked about how and when the players becomes faulty. Most of the papers in the full-
information model assume andcrucially usethe fact that the adversaryA is static(or non-adaptive), i.e. it decides
on whichb parties to corruptbefore the protocol starts. The honest players do not know whichb players were
selected byA, but the resulting coin has to be slightly random for anyfixedset ofb players. A somewhat more
realistic and much more powerful type of an adversary is anadaptiveadversary. This adversary can listen to all
the communication and corrupt up tob players anywherein the course of the execution.

Coin-Flipping with Static Adversaries. The optimal resilient threshold for static adversaries inn=2: anyn=2
players can always fix the coin [S89, BN00], while there exist(12 � ")-resilient protocols (even constructive and
efficient ones) for any" > 0 [BN00, ORV94, RZ98, F99]. We also point out a very simple dependence of the
optimal bias�(b) (defined to be the smallest bias achieved by a coin-flipping protocol: min���(b)) on the
number of players:�(b) = �(b=n). The lower bound (which we will use in a second) was elegantlyshown by
Ben-Or and Linial [BL90], while the upper bound eventually followed from the series of works of [BL90, AL93,
AN93] (for larger and largerb). Finally, we point out thatall the best statically secure coin-flipping protocols
are not even1-resilient against adaptive adversaries. This is due to a historical feature that all such protocols
first elect a single (hopefully, not faulty) representativeplayer (called aleader), who then flips the final coin by
itself. Corrupting such a leader at the end clearly controlsthe coin. More generally, the whole philosophy of most
statically secure protocols seems to be not applicable in the adaptive world, as these protocols try to aggressively
“eliminate” players (since a “patient” adaptive adversarycan corrupt the few remaining players).

Coin-Flipping with Adaptive Adversaries. Adaptive adversaries were already considered in the original paper
of Ben-Or and Linial [BL90]. In particular, it was observed there that the “majority” protocol (each player sends
a random bit, and the final coin is their majority) achieves adaptive�(pn)-resilience. Surprisingly enough, this
simple protocol is thebest knownadaptively secure coin-flipping protocol! In fact, Ben-Or and Linial [BL90]
conjectured that this protocol to be optimal!

Conjecture 1 ([BL90]) Majority is the optimal coin-flipping protocol against adaptive adversaries. In particular,
the maximum threshold that can be tolerated isO(pn).

This conjecture, if true, would imply that adaptive adversaries are much more powerful than static adversaries
for the problem of collective coin-flipping (which can tolerate up ton=2 faulty players). Interestingly enough,
the only result that in support of this conjecture comes fromthe bit-fixing source of [LLS89]. Namely, it is easy
to see than when each player sends only1 bit in the entire protocol, the optimal behavior of the adversary is
exactly the same as in the bit-fixing source withb interventions! Since the majority was the best bit extraction
function for the bit-fixing source, we get that Conjecture 1 if true if each player is restricted to send only1 bit.
This result is interesting since is already illustrates thepower of adaptivity. Namely, in the static case one can
achieve
(n= log2 n)-resilience [AL93] when players send only1 bit, even in one round. However, the above
result supports Conjecture 1 much less than it seems to. Indeed, restricting each player to send at most1 bit seems
like a huge limitation. For example, we saw that it was very limiting even for statically secure protocols(recall,
no function can be more thanO(n= log n)-resilient by the result of [KKL89], and there are generaln=2-resilient
statistically secure protocols [BN00, ORV94, RZ98, F99]).For adaptively secure protocols, the limitation seems
to be even more severe (even though it would not be if Conjecture 1 was true).

7In fact, since our main result for coin-flipping is an impossibility result, it will become only stronger with strong resilience.
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To summarize, adaptively secure coin-flipping is much less understood than its static counter-part, there seems
to be some indication that adaptive adversaries are much more powerful than static adversaries, but there is little
formal evidence supporting this claim.

Our Approach and Impossibility Result. Due to space limitations, we leave the formal treatment of the re-
mainder of this section to Appendix C, and instead provide informal (but informative) intuition of our approach.
We give another partial support to Conjecture 1 by looking atthe problem of adaptivity from an entirely different
angle: we examine the question of whether it is possible to obtain an adaptively secure coin-flipping protocols “for
free”? More specifically, can we transform some good statically secure protocol� so as to obtain a reasonable
adaptively secure protocol, where the proof of adaptive security should only depend only on the knowledge that�
is statically secure (and not on any other specifics about�)? While a positive answer to such kind of a question
would seem astonishing (and, indeed, our answer will be mainly negative), we formulate the question in such a
way that (at least from the first look) the negative answer is not obvious at all (in fact, wewill be able to achieveO(pn)-resilience, which is believed to be optimal, but show that our approach does not allow us to break this
barrier).

We will try to sequentially run� many (say,N ) times against an adaptive adversaryA who can corrupt up
to b players. These runs produce coinsx1 : : : xN . Of course, since we run a static protocol against an adaptive
adversary, some of thexi’s might be very biased. However,A can corrupt at mostb players! Thus, at least(N � b)
of the subprotocols were effectively run against astaticadversary, and therefore produced somewhat random coins.
Let us say that the bias of these coins is at leastÆ (which depends onb and the properties of�). But then, even
if the otherb runs producedxi which were completely fixed byA,8 we can view the resultingx = x1 : : : xN as
being produced by a(Æ; b;N)-BCL source!

Notice also thatb andÆ depend on the properties ofn, � and our objective (how good of an adaptive protocol
we want), and hence could be viewed as fixed. However, we have the power to makeN arbitrarily huge, which
seems to give us a considerable advantage. Unfortunately, the strong negative result of Theorem 3 shows that
this advantage is, actually, an illusion. Namely, recall from our results that for knownb andÆ, the possibility of
bit extraction from(Æ; b;N)-BCL source depends on whetherbÆ = O(1) or bÆ = !(1), i.e. a large number of
repetitionsN doesnot help. Nevertheless, when isbÆ = O(1)? Notice that the bestÆ we could hope for (without
looking at the specifics of�), while definitely nomorethan�(b), can not be muchlessthan�(b) = �(b=n) as
well. For example, at the very beginningA could corruptb=2 players that can achieveÆ � �(b=2) = �(�(b)),
and still haveb=2 arbitrary corruptions left. Hence, our “black-box” approach can work (and actuallycan be made
to work) only if b � �(b=n) = O(1), i.e. b = O(pn). Since suchb can be trivially achieved by the majority
protocol, we cannot achieve adaptive security (beyond whatis known) “for free”.

Discussion. We are not claiming that black-box transformations are the most natural way to approach adaptive
security. They are certainly not (in particular, Conjecture 1 reminds widely open). However, we feel that this
approach is something that had to be tried, and, at least on the first look, our approach did seem quite promising
(e.g., we could makeN arbitrary large and hope to circumventb � N interventions). In fact, the proof that the
approach fails is not trivial, and the “breaking point” is exactly (believed to be optimal)b = �(pN). The latter
“coincidence” does give some further evidence to Conjecture 1. Finally, the above connection to coin-flipping is a
surprising application of our new source.

5 Our General Source
Modeling Any Stochastic Process. We finally introduce the general version of our source. So farwe examined
of question of how much various imperfections can affect an “ideal” stream ofunbiased random bits. While this
is an extremely natural ideal stream to consider, a lot of physical (and other) streaming sources of randomness do

8The “worst-case” assumption that corrupting even one player in � will allow an adaptiveA to control the coin might appear problem-
atic. We point out three answers for that: (1) we are looking at black-boxtransformations; (2) all the best known static protocols are not
adaptively1-resilient, and (3) even some relaxed assumptions (e.g., corruption of players can control the coin) will allow us to get weaker
but non-trivial bounds.
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not (even in the “ideal” scenario) produce a stream of bits, and what they produce need not be uncorrelated as
well. In a much more general scenario, we can consider an arbitrary “ideal” stochastic processP that produces
a sequence of random variablesX1;X2; : : : . The (known) ideal distribution (and even the domain!) ofXi can
arbitrarily depend on the realizations ofX1 : : : Xi�1 = x1 : : : xi�1. We denote this conditional distribution byDi = Di(x1 : : : xi�1). Now, similarly to the “bit-case”, we can study the effects of two imperfections on this ideal
source: inevitable small statistical deviation of eachXi from Di, and rare complete errors in the process. In fact,
almost all the notions from the bit-case can be naturally extended, as long as we replace the notion of bias by a
more general notion of astatistical distance.9 In particular, we can view our general(Æ; b;N)-BCL source (w.r.t.
to a particular stochastic processP in mind) as an adversaryA who, for i = 1 : : : N and givenx1 : : : xi�1, can
influence the ideal sample ofXi using one of the following rules:

(A) Fix Xi to any constant in the support ofDi. This rule can be used at mostb times, however.

(B) SampleXi from any distributionD0i (on the same support set) of statistical distance at mostÆ fromDi.
Power of Our Source. In particular, we can study our general(Æ; b;N)-BCL source in relation to discrete control
processes. For any eventE , we can define thenatural probability p of E (w.r.t. P), and in the same manner
as before talk about quantitiesF (p;N; b) andB(p;N) studied in Section 3. In particular,F (p;N; b) tells us
the largest probability ofA’s failure to force somep-sparse event, andB(p;N) studies the expected number of
interventions needed to enforce any suchE . We obtain an (essentially) equally strong (but much more general)
analog of Theorems 4 and 7.

Theorem 5� F (p;N; b) � (1�Æ)bp = 2log(1=p)�
(Æb).
Thus,Æb = !(log(1p)))A can force anyp-sparse event with probability1� o(1).� B(p;N) � log1�Æ p = O(1Æ � log(1=p)).

We notice the generality of this result: it holds for arbitrary stochastic processP, arbitraryp-sparse events w.r.t.P
(both of which are not chosen byA), and the bounds do not explicitly depend onN . The proof of the above result
is conceptually the same as what we had for the “bit-source”.However, the generality of the statement makes the
“algebra” and the details somewhat more challenging. The proof can be found in Appendix D.

Sampling General Distributions. We conclude by briefly pointing another implication of Theorem 5. First,
if Æb = 
(1), no ideal processP yields a(Æ; b;N)-BCL source where one could extract even a single slightly
random bit. More generally, one can examine the question of sampling other distributions, and get the following
impossibility result. Assumef is an extraction function that ideally extracts a random variableY from our source.
Assume the objective ofA is to have our source generateY 0 with the largest statistical distance fromY . For any
eventE on Y of natural probabilityp, we know thatÆb = !(log(1=p)) implies thatA can produceY 0 satisfyinge(Y 0) = 1 with probability1� o(1). Notice, in this casekY � Y 0k � ke(Y )� e(Y 0)k = p� o(1). Hence, if we
define thefairness(Y ) of Y 10 to be the largestp � 12 such that some eventE has natural probabilityp w.r.t. Y ,
Theorem 5 implies the following:

Corollary 1 Assume an extraction proceduref ideally extracts a variableY from a(Æ; b;N)-BCL source, and let = (Y ) be the fairness ofY . Then� If Æb = !(1), thenA can produceY 0 satisfyingkY � Y 0k �  � o(1).� If Æb = !(log(1=)), thenA can produceY 0 satisfyingkY � Y 0k � 1�  � o(1) � 12 � o(1).
We notice that fairness ofY measures how good of a coin-flip we can deterministically extract fromY . We remark
that any natural distribution has fairness
(1).11 Thus, the above result says that for any such naturalY , Æb = !(1)
implies thatA can influenceY into Y 0 that isstatistically farfrom Y .

9Recall, thestatistical distancebetween random variablesZ andW over a domainR is kZ�Wk = 12 �P�2R jPr(Z = �)�Pr(W =�)j. The same notation stands for the distributions generatingZ andW .
10If Y is a bit,(Y ) is indeedmin(Pr(Y = 0);Pr(Y = 1)).
11For example,(Y ) � 12 (1�maxy Pr(Y = y)). Thus,(Y ) = o(1)) 9y Pr(Y = y) = 1� o(1), makingY “almost constant”.
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A Expected Number of Interventions to Fix the Coin

We also define another related measure for our source. Here weassume that our adversary, rather than trying to
bias the coin with a limited number of interventions, is actually trying to alwaysfix the coin (to0 or 1), trying to
minimize theexpected number of interventions(hence, there is no absolute bound on the number of interventions).
For example, iff is the majority onN bits, and the adversaryA tries to makef(x) = 1, the optimal behavior of
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A is the following. If settingx1 = 0 will ensure thatf(x) = 0 (i.e., there areN=2 � 1 zeros inx1 : : : xi�1), use
the intervention and setxi = 1. Otherwise, use rule (B) making the bias ofxi toward1 equal toÆ.

We letv(Æ;N) be the smallest expected number of interventions that suffice to fix the coin (to0 or 1) for any
bit extraction procedure applied to anN -bit source with noise parameterÆ. We remark that this quantity does not
make sense for the SV-source, but was studied for the bit-fixing source (corresponding toÆ = 0). In particular,
Lichtenstein et al. [LLS89] showed thatv(0; N) = �(pN). While the optimal function isnot the majority,
majority is “close” and requires
(pN) expected interventions as well. We show that

Theorem 6 v(Æ;N) � O (1=Æ) (3)

In particular, if Æ = 
(1), a constant expected number of interventions suffice irrespective ofN !

We notice that the above result does not imply the result of [LLS89] thatv(0; N) = �(pN). However, by
combining these two results we get the “complete picture”. Indeed, it is easy to see that majority requires
(pN)
expected interventions even ifÆ = O(1=pN). Thus,v(Æ;N) = �(pN) for Æ = O(1=pN). On the other hand,
the same argument shows that whenÆ = 
(1=pN), majority ofO(1=Æ2) (which is less thanN ) arbitrary bits
of our source requires
(1=Æ) expected interventions, which is optimal (up to a constant factor) by Theorem 6.
Recalling the definition of “effective noise”� = max(Æ;O(1=pN)), we get

Corollary 2 For anyÆ and andN , v(Æ;N) = �(min(1=Æ;pN)) = �(1=�).
The proof of Theorem 6 will follow from the discussion in Section 3 and Appendix B.

B Expected Number of Interventions to Force an Event

To state our bound on the number of interventions, it is more convenient to work with def= 12 � Æ. This can be
viewed as the minimalfairness12 of the coin influenced by rule (B). We start from the followingeasily verified
analytical Lemma whose proof we omit.

Lemma 2 For any0 <  < 12 the equation z 1 + 1 = 2 � z 1�1 (4)

has a unique solutionz 2 (1; 2). In addition,z is a continuous decreasing function of such thatlim!0 z = 2,lim! 12 z = 1, log2 z = �(1� 2), and for all1 � w � z we havew1= + 1 � 2 � w1=�1.
Theorem 7 B(p;N) � logz (1=p) = O� 11� 2 � log(1=p)� = O�1Æ � log(1=p)� (5)

Again, notice thatN does not enter the equation (the only dependence fromN comes implicitly fromp).
We also notice that since each bit extraction function has either a majority of1’s or a majority of0’s, Theorem 7
immediately implies the bound given by Theorem 6. Finally, the bound is almost tight, at least in several significant
cases. The examples are the same as for Theorem 4.

Proof: The proof is very analogous to that of Theorem 4. Letz = z and defineh(p) = logz(1=p). We need
to show thatB(p;N) � h(p) for anyN � 1 and0 � p � 1. We prove this by induction onN . ForN = 1,B(0; 1) =1 = h(0), andB(12 ; 1) = 1 � logz 2 = h(12 ) (sincez � 2) andB(1; 1) = 0 = h(1). Assume now the
claim is true for(N � 1) and we want to show it forN .

Let p0, p1, E0, E1 have the same meaning they had in the proof of Theorem 4. In fact, our adversaryA will
be the same as well! In other words, he will consider spendingone intervention to setx1 = 0 against saving the
intervention and making the0-probability ofx1 equal to12 + Æ = 1 � . The only difference with the setting of

12The fairnessof a bit  is defined to bemin(Pr( = 0);Pr( = 1)) = 12 � bias().
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Theorem 4 is that thereA could “run out” of hisb interventions and also minimized a different quantity (F (p;N; b),
with different initial conditions), while in our caseA will always use an extra intervention if this pays off. We get
the following recurrence (recall, = 12 � Æ, 1�  = 12 + Æ):B(p;N) � maxp0�p1p0+p1=2pmin [B(p0; N � 1) + 1 ;  �B(p1; N � 1) + (1� ) � B(p0; N � 1)℄ (6)= maxp0�p1p0+p1=2p ( B(p0; N � 1) + min [ 1 ;  � fB(p1; N � 1)�B(p0; N � 1)g ℄ ) (7)

Substituting as beforep0 = p(1 + �) andp1 = p(1� �), where0 � � � min(1; 1=p � 1) � 1 and using our
inductive assumption on(N � 1), we getB(p;N) � max0���1 ( h(p(1 + �)) + min [ 1 ;  � fh(p(1 � �))� h(p(1 + �))g ℄ ) ?� h(p) (8)

Recalling the definition ofh, it thus suffices to show thatmax0���1� logz 1p(1 + �) + min� 1 ;  � logz 1 + �1� � � � � logz 1p
It will now be convenient to make a change of variable and let� = �1+1 for some � 1 (this is always possible
because0 � � � 1). Noticing thatlogz(1=p) cancels,1�� = 2=(+1), 1+� = 2=(+1), (1+�)=(1��) = 
and1 = logz z, we get that it suffices to show thatmax�1 � logz + 12 +min [ logz z ;  � logz  ℄ � � 0 ()max�1 � + 12 �min [z;  ℄ � � 1
We now make the final change of variable, letting = w1= . Then it suffices to show thatmaxw�1  w1= + 12w1= �min [z; w℄ ! � 1 (9)

To show the last equation, we consider two cases.� Case 1. Assumew � z. Thenmin[z; w℄ = w and it suffices to showw1= + 1 � 2w1=�1, which follows
from Lemma 2 since1 � w � z by our assumption.� Case 2. Assumew � z. Thenmin[z; w℄ = z and it suffices to show(w1=+1)z � 2w1= , which is the same
asw1= � z=(2�z). But sincez = z is the solution to Equation (4), it is easy to see thatz=(2�z) = z1= ,
so it suffices to showw1= � z1= , which is the same as our assumptionw � z.

C Impossibility of Black-Box Transformations

In this section we formally define “black-box transformations” from statically to adaptively secure coin-flipping
protocols, relate them to our imperfect source, and show that this approach does not allow us to break theb =O(pn) barrier for adaptive protocols.
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Black-Box Transformations. Assume we are given a protocol� which is known be “very good” againststatic
adversaries. We ask the question if it is possible to transform � in a “black-box” way so as to obtain a “somewhat
good”adaptively secureprotocol�. To capture the intuition that we are really obtaining� from�, we do not allow
the player to send any messages outside those they send in�, but allow them to run� sequentially as many times
as they wish. Of course, one might try to let the players run some sub-protocols in between running�, but then it
is very hard to say that we are really using� and do not, say, run a brand new protocol in the middle and ignore
everything that happens in�. Thus,� can run� any number of times timesN , get some coinsx = x1 : : : xN ,
and then can apply any deterministic functionf : f0; 1gN ! f0; 1g to extract the final coin. This leads us to the
following natural definition.

Definition 3 LetN be any integer andf : f0; 1gN ! f0; 1g be any function. We let�(N; f;�) (often we omit�) be the protocol where players sequentially runN times the protocol�, obtain coinsx1 : : : xN , and outputf(x1 : : : xN ) as the resulting coin. The classf�(N; f;�) j N � 1; f : f0; 1gN ! f0; 1gg is called the class of
black-box transformationsof�.

The (False) Hope. The intuitive reason why black-box transformations look very promising is the following.
Assume that� is b(n)-resilient and we wish to construct an adaptivelyb(n)-resilient�(N; f;�). Ignoring the
question of efficiency, we can makeN arbitrarily large compared tob(n) andn (e.g.,22n if we so wish). Assume
nowA can adaptively corrupt up tob(n) players. Let us take the worst case, and assume that wheneverA corrupts
even a single player in the middle of�i (thei-th run of�), he controlsxi. But this can happen at mostb(n)� N
times.And if A does not corrupt a player in the middle of�, we know from the static security of� that the coin is
at least slightly random. Thus, at mostb � N of thexi’s are really biased, the remaining(N � b) of thexi’s are
at least slightly random (maybe even almost random). So it seems like there should not be a big problem to design
a functionf that would be able to “ignore” this “tiny” numberb of “fixed” bits, and extract just a good random
bit from the remaining(N � b) “good” bits. Of course, we just asked the question if a good bit can be extracted
from (Æ; b;N)-BCL source is possible (whereÆ depends on the properties of�)! Unfortunately, we showed in
Theorem 3 some strong negative results concerning the bit extraction from our source. In particular, we will show
that one cannot beat the simple majority protocol using the above approach.

Adaptive Adversary for a Black-Box Transformation. The definition of a black-box transformation views the
protocol� as “one piece” that is simply being run several times. Even though given a particular� (andN andf ),
we will end up with a particular protocol�(N; f;�) and can talk about it being adaptivelyb(n)-resilient, it is more
natural to let the adaptive adversaryA for � perform “meta-operations” on the entire run of each� (consistent
with the static security of�). Namely, (1)A can decide not to corrupt any players during the run of�, and then
the bias of the resulting coin is what is achieved by the security of �, or (2)A can decide to corrupt one or more
player during the run of�, and then we do not know anything about the resulting coin, and, therefore, have to
assume the worst (i.e.,A can fix the coin). We make this more formal.

Assume that given a fixed setB of faulty players,� produces a at most a��(B)-biased coin for any static
adversary who corruptsB at the beginning, and let��(b) = maxjBj=b��(B) be the best bias that ab-bounded
static adversary can achieve. Let us denote by�i the i-th run of�, and byxi the resulting coin. As before,A
is calledb-bounded if he corrupts at mostb players overall. However, now we assume thatA (the adversary for�(N; f;�)) has the following capabilities:

(A) If A decides to corrupt at least one new player during the execution of�i, he can set the resulting coinxi to
any value.

(B) If at the beginning of�i the set of corrupted players isB andA decides not to corrupt new players during�, the resulting coinxi is at most��(B)-biased, butA can set the probability ofxi = 0 anywhere in the
interval [12 ���(B); 12 +��(B)℄.
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We justify assumptions (A) and (B) in two ways. First of all, we are talking aboutblack-box reductions. In other
words, we do not know and do not want to assume anything more about� than what is given to us by the function��(B). Thus, ifA does not corrupt new players inside�i, we know thatPr(xi = 0) 2 [12���(B); 12+��(B)℄,
but we cannot assume anything more, so we assume thatA can setPr(xi = 0) anywhere in this interval. Similarly,
onceA corrupts a player inside�i, nothing can be said about the behavior of the resulting coin, so we again have
to assume the worst case.

The other justification comes from the fact that all best non-adaptively secure coin-flipping protocols (e.g.,
[AN93, ORV94, RZ98, F99]) essentially satisfy both of theseassumptions.13 Assumption (A) because they always
elect the leader, so corrupting the leader allows the adversary to control the coin. And assumption (B) because
these protocols are actually symmetric in0 and1 and by making faulty players be “less and less faulty”, they can
indeed achieve essentially any probability inside the specified interval.

Main Result. Our main result in coin-flipping is the following theorem, which states that using black-box reduc-
tions one cannot significantly beat the simple majority protocol, giving further support to Conjecture 1.

Theorem 8 For any family of coin-flipping protocols�, there is no black-box transformation resulting in an
adaptively!(pn)-resilient family of protocols�(N; f;�).
Reduction to Imperfect Random Sources. We reduce the proof of Theorem 8 to the analysis of our Bias-
Control Limited source. Namely, assume�(N; f;�) is adaptively2b(n)-resilient. We construct the following2b(n)-bounded adversary for� satisfying properties (A) and (B). Letb = b(n), Æ = ��(b) and letB be the set
of players of cardinalityb achieving��(B) = ��(b) = Æ. Before�1 starts,A corrupts all the players inB.
Therefore, from now on in each of theN invocations of�, A can set the0-probability ofxi anywhere in at least
the interval[12 � Æ; 12 + Æ℄. AsA will later corrupt more players, this interval can only expand, but our particularA
will not use it. IfA decides to follow rule (A), he will corrupt a single player and set the corresponding bitxi to
the value he wants. Therefore, since� claims to be2b-resilient,A can use rule (A) exactlyb times. Hence, now
weexactly reduced the possible behavior ofA to an arbitrary(Æ; b;N)-BCL source.

Tracing back to the adaptive coin-flipping, once we decided to achieve adaptive2b(n)-resilience, there is
fundamental limitation on how fair we can make the resultingcoin, irrespective of how many times we run the
black-box protocol�. In other words, our informal intuition was wrong, when we claimed that we should be able
to “overcome” any numberb of completely biased bits when having an overwhelming majority of (N � b) slightly
random bits.

We can now apply Theorem 3 to establish the impossibility of black-box reductions given by Theorem 8. Recall
that we concluded that it is impossible to obtain a weakly adaptively 2b-resilient�(b;N;�) if it is impossible to
extract a slightly random bit from(Æ; b;N)-BCL source, whereÆ = ��(b). From the upper bound of Ben-Or
and Linial [BL90] that we mentioned in Section 4, we know that��(b) � 
(b=n). ThusbÆ = 
(b2=n). By
Theorem 3, it is impossible to extract a slightly random bit wheneverb2=n = !(1), i.e. b = !(pn), establishing
Theorem 8.14

D Proof of Theorem 5

Both statements are proven by induction onN in a very similar manner. After establishing the baseN = 1, we
consider a recursive adversary who will either use an intervention onX1 to force the most desirable value on theX1 (but loose an intervention) and then behaves optimally, or will try to biasX1 by Æ towards the outcome that it
prefers (without loosing an intervention) and then behavesoptimally. By choosing the best of the above options
and using the inductive assumption (since we reducedN in both cases), we will be able to complete the induction.

13In fact, it is easy to check that our main Theorem 8 holds on a “concrete level” if we replace� with any of these protocols.
14If we want to extractalmostrandom bit, it is impossible to do it ifb = 
(pn).
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We illustrate this first forF (p;N; b). The statement is true forÆ = 0 or b = 0, sinceF (�; �; �) � 1 � 1=p, so
assumeÆ > 0 andb � 1. Defineg(p; b) = (1 � Æ)b=p. We need to show thatF (p;N; b) � g(p; b) for anyN � 1,1 � b � N and0 � p � 1. We prove this by induction onN . ForN = 1, F (0; 1; b) = 1 < 1 = g(0; b), andF (p; 1; b) = 0 � g(p; b) for p > 0 (here we usedb � 1). Assume now the claim is true for(N � 1) and we want
to show it forN .

Let D1 = f�1 : : : �tg be the distribution onX1 (thus,
Pi �i = 1), which we can assume is the supported

on the setf1 : : : tg. And let us take anyp-sparseE given by a functione. For 1 � i � t, let ei(X2; : : : ;Xn)
be the restriction ofe whenX1 = i. Eachei defines api-sparse eventEi, which satisfy

Pi �ipi = p. Without
loss of generality assumep1 � : : : � pt (i.e., rename the�i’s to satisfy this). First, if�1 > 1 � Æ (in particular,
whent = 1), then we are done. Indeed, in this case our adversary can fixX1 = 1 without using an intervention,
reducing the analysis to that of ap1-sparse eventE1 with the sameb. Sincep1 � p and using the induction, we getF (p;N; b) � F (p1; N � 1; b) � (1� Æ)b=p1 � (1� Æ)b=p. Thus, assume�1 � 1� Æ. Then there exists an indexk > 1 such that�k + : : : + �t � Æ but�k+1 + : : : + �t < Æ. Then a particular distributionD01 = (�01 : : : �0t) of
statistical distanceÆ from D1 is given by:�01 = �1 + Æ, �0i = �i for 2 � i < k, �0k = �k + : : : + �t � Æ and�0i = 0 for i > k. In other words, we increase the “most desirable” (for the adversary) probability ofX1 = 1 by Æ,
an decreased the “least desirable” probabilities�k : : : �t by Æ (overall).

Now, our particular adversaryA will consider two options and pick the best (using his unbounded computa-
tional resources): either he will use an intervention (he can do it since we assumedb � 1) and fixX1 = 1, reducing
the question to that of analyzing thep1-sparse eventE1 on (N � 1) variables and also reducingb by 1, or he will
use rule (B) with the probability distributionD01 instead ofD1 (leaving the sameb). SinceA will pick the best of
the two events, and using the inductive assumption, we getF (p;N; b) � min"F (p1; N � 1; b� 1); kXi=1 �0iF (pi; N � 1; b)# � min"g(p1; b� 1);Xi �0ig(pi; b)# ?� g(p; b)
Thus, it suffices to show the last inequality. Letpi = �ip, where�1 � : : : � �t � 0. Thus,

Pti=1 �i�i = 1.
Recalling now the definition ofg(p; b) = (1� Æ)b=p, we need to show:min"(1� Æ)b�1�1p ; kXi=1 �0i � (1� Æ)b�ip #

?� (1� Æ)bp () min" 1(1� Æ)�1 ; kXi=1 �0i�i # ?� 1
Now, we would be done if�1 � 1=(1 � Æ), so let us assume that�1 < 1=(1 � Æ). With this in mind, we have
to show that

Pki=1 �0i=�i � 1. Unfortunately, we have very little control over�0i and�i. But we do know several
things. First,�0i form a distribution, and thus

Pki=1 �0i = 1. Also, since�01 = �1 + Æ, we have�01 � Æ. Second,
recalling the definition off�0ig from f�ig, and using the fact that

Pti=1 �i�i = 1, we get that
Pki=1 �0i�i =Pti=1 �i�i + Æ(�1 � �k) = 1 + Æ(�1 � �k). Finally, we know that1=(1 � Æ) > �1 � : : : � �k � 0. Thus, to

complete the induction it suffices to show the following technical lemma, which we prove separately:

Lemma 3 For anyk � 2, any1=(1 � Æ) > �1 � : : : � �k � 0, any�01 � Æ, any�02 : : : ; �0k � 0 satisfying:P�0i = 1 and
P�0i�i = 1 + Æ(�1 � �k), we haveX �0i�i � 1 (10)

Proof: As a sanity check, we notice that we cannot have�k = 0 (making the sum on the left equal to infinity).
Indeed,1 + Æ(�1 � �k) =P�0i�i � �1 �P�0i = �1 < 1 + Æ�1 (as�1 < 1=(1 � Æ)), implying �k > 0. Thus, all
the�i’s are strictly positive. Now we show Equation (10) by induction onk.

The base casek = 2 is the most technical one to show. We know that�01 + �02 = 1 and�01�1 + �02�2 =1 + Æ(�1 � �2), where�1 � �2. This system of equations above has a unique solution for�01 and�02, unless
we have�1 = �2. However, in the latter case the system is solvable only if�1 = �2 = 1, in which case�01=�1 + �02=�2 = �01 + �02 = 1, and we are done. Thus, assume�1 > �2. We then get a unique solution
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�01 = Æ + (1 � �2)=(�1 � �2), and�02 = �Æ + (�1 � 1)=(�1 � �2). We notice that since we know that�01 � Æ,
we get�2 � 1. Using some simple algebra, we get�01�1 + �02�2 = �1 + �2 � 1� Æ(�1 � �2)�1�2 = 1 + (�1 � 1)(1 � �2)� Æ(�1 � �2)�1�2 ?� 1 (11)

Let x = �1 � 1, y = 1� �2. As 1=(1 � Æ) � �1 � 1 � �2 � 0, we get thatx 2 [0; Æ1�Æ ℄ andy 2 [0; 1℄. To show
Equation (11), we need to show(�1 � 1)(1 � �2) � Æ � (�1 � �2). Noticing thatx+ y = �1 � �2, it remains to
show thatxy � Æ(x+ y), or Æ=x+ Æ=y � 1 (in the latter part we used thatx; y � 0). But using our upper boundsx � Æ=(1 � Æ) andy � 1, we indeed getÆ=x+ Æ=y � (1� Æ) + Æ = 1.

We can now establish the inductive step. Assumek � 3 and the statement is true for(k � 1). Take any1 < i < k (for examplei = k � 1). We will now define a distribution(�001 ; : : : ; �00k�1) on (k � 1) elements.
This will be done by “removing”�0i from our original distribution�01; : : : ; �0k, and distributing its mass to the
“neighbors”�0i�1 and�0i+1. Since the are many way to distribute�0i, we will choose a way that leaves the same�’s (so that we do not violate any constraints on the�’s and can use induction). More precisely, we let�01 =�1; : : : ; �0i�1 = �i�1; �0i = �i+1; : : : ; �0k�1 = �k (i.e., “remove”�i), and�001 = �01; : : : ; �00i�2 = �0i�2; �00i�1 =�i�1 + x; �00i = �i+1 + y; �00i+1 = �i+2; : : : ; �00k�1 = �0k, where we will choosex � 0 andy � 0 satisfying the
following two conditions: � x+ y = �0ix � �i�1 + y � �i+1 = �0i � �i

We will elaborate on assigning suchx andy in a second, but now we notice that the first condition above
implies that

Pk�1j=1 �00j =Pj 6=i �0j + (x+ y) =Pkj=1 �0j = 1, while the second condition impliesk�1Xj=1 �00j�0j = i�2Xj=1 �0j�j + (�0i�1 + x)�i�1 + (�0i+1 + y)�i+1 + kXj=i+2�0j�j= Xj 6=i �0j�j + x�i�1 + y�i+1 = kXj=1 �0j�j = 1 + Æ(�1 � �k)= 1 + Æ(�01 � �0k�1)
Also, since we will assignx � 0, we will get (even wheni = 2) that�001 � �01 � Æ. Thus,�001 ; : : : ; �00k�1 and�01; : : : ; �0k�1 will satisfy all the preconditions of our statement for(k � 1), and hence our inductive assumption

will tell us that
Pk�1j=1 �00i =�0i � 1. To complete the induction, we need to show two things: (a) how to assign

the neededx andy, and (b)
Pkj=1 �0j=�j � Pk�1j=1 �00j =�0j (and we know that the latter is at most1). From the

definition of�00j and�0j , it is easy to see that the latter inequality is equivalent tox�i�1 + y�i+1 ?� �0i�i (12)

We now consider two cases. First, if�i�1 = �i+1, then we in fact have�i�1 = �i = �i+1 = �. In this case
the above system forx andy has infinitely many solutionsx andy (as long asx+ y = �0i). Take any such solution
wherex � 0 andy � 0. To see that Equation (12) indeed holds, we see thatx=�i�1+y=�i+1 = (x+y)=� = �0i=�i.

Now, we consider the interesting case�i�1 > �i+1. Then the above system onx andy has a unique solution� x = �0i � (�i � �i+1)=(�i�1 � �i+1)y = �0i � (�i�1 � �i)=(�i�1 � �i+1)
Notice, we indeed havex; y � 0. Then the needed Equation (12) becomes�0i�i�1 � �i+1 � ��i � �i+1�i�1 + �i�1 � �i�i+1 �

?� �0i�i ()�i+1�i + �i�i�1 + �i�1�i+1 ?� �i+1�i�1 + �i�1�i + �i�i+1
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However, the latter equation is easily seen to be true for any�i�1 � �i � �i+1 > 0 (for example, multiplying both
sides by�i�1�i�i+1 > 0 makes it equivalent to(�i�1 � �i)(�i � �i+1)(�i�1 � �i+1) � 0, which is true). This
established Equation (12) and completes the proof of the technical lemma.

We now establish the bound onB(p;N) in a similar manner to that forF (p;N; b) above. Luckily, a lot of
technical machinery and notation has been developed already.

Let z = 1=(1 � Æ) and assumeÆ > 0 (otherwise there is noting to prove), so thatz > 1. Defineh(p) =logz(1=p). We need to show thatB(p;N) � h(p) for anyN � 1 and0 � p � 1. We prove this by induction onN . ForN = 1, we have:B(0; 1) = 1 = h(0); if 0 < p � 1 � Æ, thenB(p; 1) = 1 � logz(1=p) = h(p); and if1� Æ � p � 1, thenB(p; 1) = 0 � h(p) (since then we can forceE by applying rule (B)). Assume now the claim
is true for(N � 1) and we want to show it forN .

We assume anidenticalnotation with the previous proof forF (p;N; b). Namely, denote byD1 = f�1 : : : �tg
be the distribution onX1, take anyp-sparseE , definepi-sparse “projection” eventsEi, which satisfy

Pi �ipi = p,
assume (without loss of generality) thatp1 � : : : � pt. As before, if�1 > 1 � Æ (in particular, whent = 1),
then we are done. Indeed, in this case our adversary can fixX1 = 1 without using an intervention, reducing the
analysis to that of ap1-sparse eventE1. Sincep1 � p and using the induction, we getB(p;N) � B(p1; N � 1) �logz(1=p1) � logz(1=p). Thus, assume�1 � 1 � Æ. As before, take indexk > 1 such that�k + : : : + �t � Æ
but�k+1 + : : : + �t < Æ, and define the distributionD01 = (�01 : : : �0t) of statistical distanceÆ from D1 as before:�01 = �1+Æ, �0i = �i for 2 � i < k, �0k = �k+ : : :+�t�Æ and�0i = 0 for i > k. Again, our particular adversaryA will consider two options and pick the best (using his unbounded computational resources): either he will use
an intervention and fixX1 = 1, reducing the question to that of analyzing thep1-sparse eventE1 on (N � 1), or he
will use rule (B) (and save an intervention) with the probability distribution D01 instead ofD1. SinceA will pick
the best of the two events, and using the inductive assumption, we getB(p;N) � min"1 +B(p1; N � 1); kXi=1 �0iB(pi; N � 1)# � min"1 + h(p1); Xi �0ih(pi)# ?� h(p)
Thus, it suffices to show the last inequality. Following again the same notation as before, letpi = �ip, where�1 � : : : � �t � 0. Thus,

Pti=1 �i�i = 1. Recalling now the definition ofh(p) = logz(1=p), we need to show:min"1 + logz � 1�1p� ; kXi=1 �0i � logz � 1�ip�# ?� logz �1p� () min"logz � z�1� ; kXi=1 �0i logz � 1�i�# ?� 0
(in the last equivalence we used

Pki=1 �0i = 1). Now, if we convert the weighted sum oflog’s into a log of a
product of exponents, write0 = logz 1, and then get rid oflogz, we only need to show (recall,z = 1=(1 � Æ)):min" 1(1� Æ)�1 ; kYi=1� 1�i��0i # ?� 1

Now, we would be done if�1 � 1=(1 � Æ), so let us assume that�1 < 1=(1 � Æ). With this in mind, we have
to show that

Qki=1(1=�i)�0i � 1. However, by Cauchy-Schwartz inequality and since
Pki=1 �0i = 1, we havekYi=1� 1�i��0i �  Pki=1 �0i=�iPki=1 �0i !Pki=1 �0i = kXi=1 �0i�i

Hence, it suffices to show that
Pki=1 �0i�i � 1. But this is exactly the statement of Lemma 3! Indeed, we used

the same notation for�0i and�i and have the sameidenticalset on constraints on them. Hence, another application
of Lemma 3 completes the induction and the overall proof of Theorem 5.
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